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THE OPTIMAL BIVARIATE
'BONFERRONI-TYPE LOWER BOUNDS

MIN-YOUNG LEE

ABSTRACT. Let Ay, A2, -+, Am and By, Be,--- , B be two sequences
of events on the same probability space. Let X = X,,(A) and
Y = Yn(B), respectively, be the number of those A; and B; which oc-
cur. We establish bivariate lower bounds on the distribution P(X >
1, Y > 1) and P(X >4, Y > j) by linear combinations of the bino-
mial moments S j, 1 <4< m, 1 <j < n, which extend and refine
bivariate Bonferroni-type lower bounds given by Chen and Seneta
(1995) and Lee (1997).

1. Introduction

Let Ay, Ay, -, Ay, and By, Bs, -+, B, be two sequences of events
on the same probability space. Let X = X,,(4) and Y = Y, (B), re-
spectively, be the number of those A; and B; which occur. For integers
t>0and j >0, set

(1) Sij =8i;(A,B)=E [(f) (j)]

For i = 0 or j = 0 we also write S; p(A) = S;(A) and Sp ;(B) = S;(B)
and we know that Sp o = So0(4, B) = 1. The sets S; ;, S;(A) and S;(B)
are called the binomial moments of the vector (X,Y’) and the variables
X and Y, respectively. |

By turning to indicator variables we immediately get that for 1 <+¢ <
m, 1<j<mn,

(2) Sij =3 P(Ar, NN Ay N By N---NBy)
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where the summation ) is over all subscripts satisfying 1 <r; < --- <
ri<mand 1<t <---<t; <n.

Galambos and Xu (1993) established optimal bivariate lower bound
on P(X > 1, Y > 1) by means of linear combinations of the binomial
moments S;;, 1 <7 < 2, 1 <j < 2, which those are generalized by
Chen and Seneta (1995) later.

In this paper, we establish new inequalities which refine recent bivari-
ate lower bounds given by Chen and Seneta (1995) and Lee (1997).

2. The Results

We establish sharper bivariate lower bounds on the distribution P(X
>1,Y >1)and P(X >4, Y > j), by means of the bivariate binomial
morments Si,j, 1<:<m,1<j<nand Si’j, Si-l-l,j’ Si,j+1, Si+1,j+1,
respectively.

THEOREM 1. For any positive integers m,79,a and b with 2r; < a <
m, 2rs < b <n,

(4 PX21,Y21)> %{Z > (7)) o0 }

i=1 j=1 2V
(m—a+2'r1—1
where k = max 1,F(m)G(n)}, where F(m) = 1 — —LZL)— and

n—b+2r2—1)
) 27y
REMARK.
1) If F(m) > 0 or G(n) >0, then k = 1.
2) If r; = ro = 1, then this inequality is same as that of Chen and
Seneta (1995);
2
that is, P(X > 1,Y > 1) > %{4‘9;1 - 25};2 - ‘32’1 + f 22 }
a a(y) (3)b ) (G)
mn(2a —1—m)(2b — 1 — n)
a(a — 1)b(b —1)
3) This inequality is a refinement of Theorem 4 in Lee (1997).

where k = max{l,
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THEOREM 2. For any positﬁ/e integers a,b,i and j witha > 2, b >
2,121, 7>21,
E+DG+1)g (+1)j »
ai j b B i BY)
() (%) () ()
i(j+1) 1]
T (i Skl F T Sit1, '+1}
AT I A [ R
(™) (ai + a = 1~ m)(’;)(bj +b—1-—n) }
(‘gl)(a - 1)(*;?)(b —1)
This inequality is a generalization of that of Chen and Seneta (1995)

and a refinement of Theorem 5 in Lee [1997]. If ¢ = j = 1, then this
inequality is same as that of Chen and Seneta (1995); that is,

1 451;1 2512 253, Sa,2
P(X21,'Y_>_1)2—{ 1_ 252 2521, S }
kL ab ey (b (96

mn(2a —1 —m)(2b—1—n)
a(a —1)b(b — 1) }

P(X >, Yzﬁz-};{

(4)

where k = max{l,

where k = max{l,

3. Proofs

The proofs of Theorems 1 and 2 are based on the method of indicators
and are utilized the inequalities in Tan and Xu (1989).

PROOF. we use the inequafity of Tan and Xu (1989); that is, for
positive integers a,b,m1 and 7o ‘with 2r; <a <m, 2rg <b<n,

2ry
5a P(X >1) > (~1)*! 27.”1 ‘ii
o 20230 ()
2rq
(6a P(Y >1) > (—1)yt! 27? S5
) (v 21 tg ) (])(?)
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Turning to indicators, (5a) and (6a) become

27 -
(b) I(X>1)> Z(_l)i.H <2’;'1> %T)

2ry Yy
(6b) I(Y >1) > ) (-1)7*! (222) %
j=1 j

Let the right hand side of (5b) = F(z) and the right hand side of

(65) = G(z). Then F(z) = 1 (_'(_+:); and Gy) = 1 — %)L)

for 2ry <a <m, 2ry <b < n and both F(z) and G(y) are less than or
equal 1, respectively.

We can multiply (5b) and (6b) without changing the inequalities if
F(z) > 0 or G(y) > 0. But if both of them have negative values,
F(m)G(n) can be greater than 1 because both F(z) and G(y) are de-
creasing'functions and have negative minimum values at x =m, y=n
for z > 2a, y > 2b, respectively.

Hence we can choose k such that F(z)G(y) < kforalll <z <m, 1<
y < n, where k = max(1, F(m)G(n)). Note that £ = 1 if F(m) > 0 or

G(n) > 0.
Upon dividing inequality of above inequality by k and using the
method of indicators and taking expectations, we get (3). U

PROOF. We also use the inequality of Tan and Xu (1989); that is, for
positive integers a,b,? and j with¢>1, 7>1, a> 2, b> 2,

1+1 7

(73.) P(X Z Z) Z . Sz = Ta Sz‘—i—l
(7) ()
N J+1 j
(8a) PY >j) > 228 — s

()
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Turning to indicators, (7a) and (8a) become

() I(X >t (f) - iﬁ (Z i" 1) _ (’E)(C(L%J)r(z': i; z)

v LW (v ) _Qitb-1-y)
(8b) I(Y >j)> @ (J) (J+1)<g+1) (He-1)

Let the right hand side of (7b) = H(z) and the right hand side of (8b) =
K{y). Then H(z) and K(y) have zeroes at z = 0,1,2,---i—1, ai+a~-1
and y = 0,1,2,---5 — 1, bj + b — 1, respectively, and are decreasing
functions for £ > ai + a — 1'and y > b7 + b — 1, respectively.

Hence H(z) and K(y) have maximum value 1 at z =ai — 1, ai, y =
bj — 1, by, respectively. Also they have negative minimum values at
z=m, y=nifai+a—-1-+x<0, bj+b—1—y <0, respectively.

Therefore we can multiply (7b) and (8b) without changing the inequal-
ity if H(z) > 0 or K(y) > 0. But if both H(m) and K(n) are negative
values, then H(m)K(n) can be greater than 1.

Hence we can choose k such that H(z)K(y) < k for all 1
m, 1 < y < n, where £ = max(1l, H(m)K(n)). Note that k
ai+a—1-m>0o0rbj+b—-1-n>0.

Upon dividing inequality of above inequality by k and using the
method of indicators and taking expectation, we get (4). O

S <
=1 if

4. Numerical Example

Let a machine consist of two pieces of equipment A and B. Let X; be
the time to failure of the i-th component of equipment A and let Y; be
the time to failure of the j-th component of equipment B. Assume that
each X; and each Y; is unit 'exponential variates; that is, for each ¢, 3;

PX;<z)=1-¢€% z2>0

and .
PY;<y)=1-eY y>0

'
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Consider a group A of ten components and a group B of three compo-
nents. Let X3, X2, -+, X190 be independent and identically distributed
random variables and let Y;,Y5,Y3 be independent and identically dis-
tributed random variables. We assume the structure is such that each
X is completely dependent on each Y; and it has probability zero that
at least one component of equipment A(B) fails within z(y) period of
time and all components of equipment B(A) fail after y(x) period of
time; that is, for each 1 <:<10,1< 35 <3,

P(U%EI(Xi <z), ﬂ?:l(y} >y)) = P(ﬁ%gx(Xi >z), U?:I(Yj <))
=0
We also specify the bivariate distributions and the trivariate distri-
butions of the combination of X; and Y;. For simplicity, let us use the

same bivariate and trivariate distribution for all dependent components.
Let,for 1 <:<10,1<5<3,

P(Xi<a, % <y)=(1—e)(1—e)(1 - 2e=),

le—h—y)

PXi, <z, Xp,<z,Y;<y)=1-e)*1—e¥(1- 3

and
1
PXi<z,Y,<y,Y,<y=1-e*)(1-e¥>1- _?;e—a:—Qy),

We can now compute Sy,1, S1,2 and Sz ;. We have
_ (10 /3 2 —y 1 .y
su= (1) (})e-ean-emu-ze=,

5= (V) (3)a-emu-empa-jem,
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Let us use the same 4-th multivariate distribution for all dependent
components. Let

P(Xll <z, Xi2 <z, le <y’ }/j2 <y)
— (1= P2 - V1 Je )

Also, we can now compute Sy 5. For a numerical calculation, let us
choose z = 0.1 and y = 0.2. Let V1o be the number of those 4; = (X; <
0.1) which occur and let Us be the number of those C; = (Y; < 0.2)
which occur. By inequality of E. Galambos [1965] and Meyer [1969];
that is, ‘

y11=PVie>21,U32>1) 2811~ 512~ 521

we get P(Vip>1, Us>1) Z 0.079. But, when we use the inequalities
of (2) in Remark, we get the sharper bounds

P(Vip>1, Us > 1) > 0.113

where we substitute k =1, a = 2 and b = 2.
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