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MAP/G/1/K QUEUE WITH MULTIPLE
THRESHOLDS ON BUFFER

Doo I CHoI

ABSTRACT. We consider M AP/G/1 finite capacity queue with mul-
tiple thresholds on buffer. The arrival of customers follows a Markov-
ian arrival process (MAP). The service time of a customer depends
on the queue length at service initiation of the customer. By using
the embedded Markov chain method and the supplementary variable
method, we obtain the queue length distribution at departure epochs
and at arbitrary epochs. This gives the loss probability and the mean
waiting time by Little’s law. We also give a simple numerical examples
to apply the overload control in packetized networks.

1. Introduction

We analyze M AP/G/1/K queue with queue length dependent service
times. The arrival of customers is assumed to follow a Markovian arrival
process (MAP) introduced by Lucantoni et al. [1]. The MAP is a non-
renewal process which includes the phase-type renewal process [2], the
Markov-modulated Poisson process (MMPP) [3] and the superpositions
of such processes [1] as a particular case. Recently, Asmussen and Koole
[4] have shown that the MAP is weakly dense in the class of stationary
point processes. Therefore, the MAP is a generalized arrival process.
The service time of a customer depends on the queue length at service
initiation of the customer. We assume the finite capacity of the buffer
to apply the practical applications.

An analysis of such a queueing system with queue length dependent
service times is motivated by performance evaluation of a traffic control
which often occurs in ATM networks [6]. To obtain better performance
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for voice traffic, Sriram et al. [5,6] proposed the method which discards
packets with the less significant information at output of buffer with-
out transmission during congestion. They analyzed such a system by
M/D/1/K queueing system with one or two thresholds on buffer by as-
suming Poisson arrival process. However, the Poisson process may not
be suitable to model the superposition of packetized voice traffics with
a fair amount of correlation [7].

Recently, as an application for cell discarding scheme in ATM net-
works, Choi et al. [8] analyzed MMPP/G/1/K queue with one thresh-
old on the buffer. They assumed the arrival to be MM PP for bursty
voice traffic. By using the embedded Markov chain method, they ana-
lyzed the queueing system and obtained loss probability and mean wait-
ing time. They also gave numerical examples to show the effect of cell
discarding and burstiness. When the arrival is Poisson process, Choi et
al. [9] also analyzed the same model by using the supplementary vari-
able method and constructed exact solutions for stationary queue length
distribution and asymptotic approximations of the solutions which yield
simple formulas for performance measures such as loss rates and tail
probabilities. This paper is an extension of the queueing system ana-
lyzed by Choi et al. [8,9].

In Section 2, we describe the M AP and model in details. In Sec-
tion 3, we analyze the queueing system using the embedded Markov
chain method and obtain the queue length distribution at departure
epochs. Then, by using of the supplementary variable method, we give
the queue length distribution at an arbitrary time, the loss probability
and the mean waiting time. In Section 4, we give some simple numerical
examples and discussion.

2. Preliminary for analysis

We describe the Markovian arrival process (MAP) introduced by Lu-
cantoni et al. [1]. Consider a continuous-time Markov process on the
state space {1,2,--- ,m,m+ 1}, where the states 1,- .- ,m are transient
and the state m+ 1 is absorbing. Absorption, starting from any state, is
certain. The epoch of absorption corresponds to an arrival of the M AP.
The Markov process is instantaneously restarted in a transient state,
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where the selection of the new state depends on the state from which
absorption occurred. When the Markov process is in a transient state
1,1 < i < m, the sojourn time in the state ¢ is exponentially distributed
with parameter ;. Let p; ; be the probability that the process enters
the absorbing state from state ¢ and is immediately restarted in state j,
1<14,7 <m and ¢ ; be the probability that the process enters another
state 7 from state 7, without being absorbed, 1 < 7,5 < m and 7 # j.

Note that
m m
Y i+ py=1, 1<i<m.
j=1 j=1
J#
It is convenient to represent the evolution of the system in terms of

matrices C' and D given below. The matrices C and D with C;; and
D; ; as (i, j)-elements are given by

Cij=X@ij, 1#J, Cii = =i,
D;j=Apij, 1<4,57<m.

Then, the irreducible matrix C + D is the infinitesimal generator of the
Markov process restricted to the states {1,--- ,m}, called the underlying
Markov process. We assume the matrix C' is nonsingular. In other words
C is a stable matrix (i.e., all of its eigenvalues have negative real parts;
see e.g., pp. 251 of Bellman [10]). This implies that the interarrival
times are finite with probability one (see Lemma 2.2.1 of Neuts [2]) and
that the arrival process does not terminate. Let J(t) be the state of the
underlying Markov process at time t and 7 be its stationary probability
vector. The probability vector 7 is given by solving the equations

m(C + D) =0, e =1,

where e is a column vector with all elements equal to one.
Then, the mean arrival rate A* of the MAP is given by A\* =nDe. As a
special cases of the MAP we obtain the following:

(a) Poisson process with rate A. In this case, C = -\, D = A.

(b) PH-renewal process. The phase type (PH) renewal process is in-
troduced in Neuts [2]. A PH-renewal process with representation
(a,T) is a MAP with C =T,D = —Tea.
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(¢) Markov-modulated Poisson process (MMPP). The MMPP is a
doubly stochastic Poisson process whose arrival rate is given
by A[J(t)] > 0, where J(t),t > 0, is an m-state irreducible
Markov process. The arrival rate therefore takes on only m val-
ues A1,--,Am, and is equal to A; whenever the Markov pro-
cess is in the state j. If the underlying Markov process has in-
finitesimal generator R and A = diag(A1,- - ,An), then with
C=R-A,D=A. The MMPP is a MAP.

(d) A superposition of MAP’s. The class of MAP’s is closed un-
der superposition. That is, the superposition of n independent
MAP’s with representation {C;, D;},1 < i < n is also a MAP
with representation {C1 ®--- @ Cp,D1®--- & D, } where “®”
denotes the matrix Kronecker sum [10].

Let M(t) be the number of customers arriving during the interval
(0,t]. Now we define the conditional probabilities

pij(n,t) = Pr{M(¢t) = n, J(t) = jIM(0) = 0, J(0) = i},
n>0,1<%j5<m.

By the Chapman-Kolmogorov’s forward equation, we have the following
set of the differential-difference equations for the m x m matrix P(n,t) £

(p":aj(n7t))1§i,j3m,
P'(n,t):P(n,t)C+P(n—1,t)D, n>0, t>0,

where P(—1,t) is the matrix 0.
By simple calculation, it is easily shown that the matrix P(n,t) have the
probability generating function

P(z,t) £ P(n,t)2"
n=0

= e(CFzD)t, 2] <1, ¢t >0.

Customers arrive at the queue in accordance with the M AP described
above. There is a single server and queue with finite capacity K (includ-
ing customer in service), so that the customers arriving when the queue
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is full are lost. Customers in the queue are served on the first-come
first-service basis. The service time of a customer depends on the queue
length at service initiation epoch of the customer. Concretely, we place
the threshold values Ly(L; < Lj, i < j, 1 < 4,5 < T) on the queue. If
the queue length at service initiation of a customer is greater than or
equal to the threshold L;_; and less than the threshold L, the service
time of the customer is Si(k = 1,2,---,T), where Ly = 1,L7 = K.
The service time Sy has the distribution function G with mean s; and
Laplace-Stieltjes transform G (s).

3. Analysis

3.1 The stationary queue length distribution at departure
epochs

By using the embedded Markov chain method, we first derive the
queue length distribution just after departure epochs. Let 7,(n > 1) be
" the epoch of successive departures with 79 = 0. We also introduce the
following notations:

N,, = the queue length at time 7,+,
Jn = the state of the underlying Markov process at time 7, + .

Then, the process {(Np,Jn),n > 0} forms a Markov chain with finite
state space {0,1,--- ,K — 1} x {1,2,--- ,m}. In order to derive the
stationary probability distribution of the Markov chain {(Ny,J,),n >
0}, define the probabilities Tk,; and the vectors as

Tr; = lim Pr{N,=k,J, =1}, 0<k<K-1, 1<i<m.

n—00

fl

z = (2o0,%1,+ ,Tk—1) With = (zk,1, Tk 2, - y Them)-

The one-step transition probability matrix Q of the Markov chain {(Nn,
Jn),n 2> 0} is given as follows:



616 Doo 1l Choi

Q=
’ ’ ’ ’ I 7 ’ —
Ay Ay .. AL, A . AL Ay, Ag, Ag_y
1 _1
Ay AL AL, AL . AL, AL Ak, Ay 1
1 _1
0 Ay ... A}, A}, .. A} AL o Ak Ak _2
: : . P
Al A} c AL o Abopige o Aker, AKz_Ll_H
2 2 3
A A A AL AR Ak-n,
Do : : . : : __k
0 0 ... 0 0 ... Ak Ak A 1, Ak_Lon
k+1 k+1 k+1 —k+1
Ak Ak o AR Ak,
: : . : i
0 0 AT A._,T
0 0 .. AT A;

where the blocks A}, are given by
(e ]
= / P(k,z)dG,(z), 1<r<T, k20,
0

: the (7, j)-element of the block A} is the conditional probability that
there are k customers arriving during the service time S, and the state
of the underlying Markov chain is j at the next departure epoch, given
that there are at least one customer in the queue and the state of the

underlying Markov chain is ¢ just after a departure, the blocks A;c are
given by

A, = / P(0,t)Ddt AL = —C~'DA;, k>0,
0

: the (¢, j)-element of block A;c is the conditional probability that there
are k customers arriving during the service time S; and the state of the
underlying Markov chain is j at the next departure epoch, given that
the system is empty and the state of the underlying Markov chain is ¢
just after a departure,
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and the blocks Z; are as follows:

B oo , —r [o o]
Ag 1= Y, A, A=) Ay, 1<r<T k20
n=K-1 n=k

The stationary probability vector z of the Markov chain {(Np, Jp),n >
0} is given by solving the equations

zQ = =z, ze = 1.

3.2 The stationary queue length distribution at an arbitrary
time

In this section we derive the formulas for the stationary queue length
distribution at an arbitrary time. For an arbitrary time ¢, let N(t) and
J(t) be the queue length (including customer in service) and the state of
the underlying Markov process respectively. Furthermore we introduce
the following notations:

R(t) =r if the service time of the customer in service at time ¢
is Sy, r=1,---,T,
£(t) = { 0 if the server is idle at time ¢,
1 if the server is busy at time ¢.

The quantities of interest are the steady state probabilities:

y(0,5) = Jim Pr{N(5)=0,J(t) =j,®) =0}, 1<j<m,

Yo = (y(Oa 1),y(0’ 2)’ T ,y(O’ m))7
v (n,d) = Jlim Pr{N(t) =n, J(t) = j, R(t) = r,€() = 1},
y:z = (yr(n’ 1),yr(n,2)’ Tt ,yr(n’ m))a r= 1, T ’T,

T
Yn = Zyg, n > 1.
r=1
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First, we compute the vector yo that the system is empty. The j-th
component y(0,7) of yo is derlved by a application of the key renewal
theorem [8]:

m

o v0.0) =3 o [ prstoa

k=1
where m(0,k) is the mean recurrence time of the state (0,k) in the
Markov chain {(N,, J,),n > 0} given by

K-1 m

(2)  m(0,k) Z > zniElm — nio1] (Nicy, Jiz1) = (n, )

kan =0 j=1

By the fact that the mean duration of an idle period starting in state j
of the underlying Markov chain {J,,n > 0} is

[s ¢}
/ P(0,t)dte = —C~1e,
0

we easily have
(3) m(0,k) = E'xo P
where £ = zo(—C71)e + s1z0e + Zk=1 Sk Zﬁ;}i_l ZTpe is the mean

interdeparture time of customers.
Substituting (3) into (1), we finally obtain the vector y; as

(4) m=%mpc*y

In order to obtain the stationary queue length distribution {y,,n > 1}
at an arbitrary time when the server is busy, we use the supplementary
variable method. Let T and T be the remaining and the elapsed service
time for the customer in service respectively. We define the joint prob-
ability distribution of the queue length and the remaining service time
for the customer in service at arbitrary time 7 as

ar(n,j,t)dt
= Pr{N(r) =n,J(r) = j,R(r) = r,t <T <t +dt,&(r) = 1}.
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We also define the Laplace transform of a.(n, j,t)
[o o]
@ind9)= [ e et n2l, r=1.--T,
0

and the vectors

a*(n s) =( :(n 1 s) ,a:(n,m,s)), r=1,... ,T,

o*(n,s) = Za n, s) n>1.

For calculation of a*(n,s), we need to know the probability of arrivals
during the elapsed service time 7. Define the conditional probability
/B"‘(n7j1>j27t)dt as

:Br(n)jl’j2at)dt

= Pr{ n arrivals during T, J(7) = j2, R(T) = 1,

t<T<t+dt|JF)=n}, n>0, r=1,---,T,

where T is the starting time of the service time which includes the time
T.

Let 8%(n, j1, j2, 5) be the Laplace transform of 3, (n, j1, j2,t) and G5 (n, s)
the matrix with 3%(n, 71, j2, s) as (J1,j2)-element:

B:(n7j17j2,s):/0 Stﬂr( 7.71)]27 )dt7
ﬁ:(n’s) = (ﬁ:(n,jl,jm3))1_<_j1,j2§m, n > 0, r= 1,' e ’T'

Then, the vectors a(n, s) satisfy the following equations:

(5a)
min(n,L;—1)

ai(n,s)=7% [2o(~CHDFi(n - L)+ > zBi(n—ks)
k=1

1<n<K-1,
(5b)

[e’s) Li—1 oo
a;(K,s)—_—fE-l-[xo(—c-l)D{ B, } Zxk{ 3 B zs)H
= I=K—-k

k=1
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(6a)
s min(n,L,.—1)
a:(n,s) = ET z mk,@:(n—k,s), L,y STLSK—I,
k=L,_1
(6b)
s L,.—1 o)
(K =2 Y [ > ﬂ:(z,s>J ,
k=L_1 I=K—k
ar(n,s) =0, for all n else.
We finally obtain that
(7)
a*(n,s)
T
=Za:(n,s) 1<n<K-1
r=1

1 T min{n,L,—1}
=% s1wo(—C~ 1) DB (n—1,8) + Zsr Z zkfr(n —k,s) .

r=1 k=L,._1

As shown in Appendix, 8} (n,s) is given as follows:

n

Z A;‘Rn—l(s) - G:(S)an(s)] ’ r=1,-- 7T7

®) Bins) =
=0

r

where R,,(s) = (sI + C)~Y(=D(sI + C)~1)™.

Finally, substituting 8}(n,s)(r = 1,--- ,T) into (7), we obtain the re-
sults.

THEOREM. The stationary queue length probabilities y, = a*(n,0)
is given by
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For1<n< K,

n—1
(9) Yn = %[zo(—C—I)DZAIIC_l{D(——C“l)}"_l_l
=0

_ Z ka_I{D(—C_l)}n_k
k=0
T min{n,L,—1} n—k

+S Y m Y AcHD(-cH,

r=1 k=L, =0

where Zzza zr =01ifb<a, and

K-1
(10) Yg = — Z Yk-
k=0

Using the stationary queue length distribution {y,,n > 0}, we obtain
the following performance measures:
a. The loss probability:

c. By Little’s law, we obtain the mean waiting time in the system:

M

W - )\*(1 - IDloss) )
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4. Numerical examples and discussion

In this section, we present some simple numerical examples for per-
formance measures of our queueing system. We put two threshold values
L; and Ly on buffer and investigate loss probability and mean waiting
time of our queueing system and the uncontrolled system. As an input
process for numerical examples, we use a two-state MAP with C and D
given by

C=| N2—a q12 D= |® 0 ‘
go1 —qa1 —az |’ 0 a

The infinitesimal generator of the underlying Markov process is the sum
(C 4+ D) of the matrices C and D. Then, the mean arrival rate \* of the
MAP is given by
A= P13 + q12a2
G2 +qa1

For the numerical examples, we take the buffer size K = 12,q15 =
0.1,g21 = 0.2, and the deterministic service times S; = 3,53 = 2,53 =
1(S$1 = S; = S3 = 3 6r L; = Ly = B for uncontrolled system without
overload control).

In figures below we display the loss probability and the mean waiting
time when Ly = 3,Ls = 6 and L; = 5,Ls = 8 in our queueing system,
in which keeping as/a; = 4.

Fig. 1 displays the loss probability as a function of the mean arrival
rate A*. The loss probability of the system with overload control (our
queueing system) is improved considerly compared with the uncontrolled
system, and also the small threshold values give low loss probability than
the large threshold values.

Fig. 2 also displays the mean waiting time as a function of the mean
arrival rate. We can see same results as in Fig. 1. Since very small
threshold values may cause congestion of network by fast transmission,
the threshold values must be taken by considering congestion of the
network in applying the overload control in ATM networks. Therefore,
appropriate threshold values must be given by considering Quality of
Service of traffic and congestion of network.
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Appendix

Consider at an arbitrary point of time that the server is busy and
the service time is S,. This sampling point will fall in one of the service
time (S?) in the sequence of service time {S%,7 > 1} which is independent
and identically distributed with distribution function G.(-) and density
function g.(-). Let s, and G(s) be the mean and the Laplace transform
of the distribution function G,(-). This particularly selected service time
59 has density function ¢%(z) = zg.(z)/s-, where g2(z) is the density of
S0. The remaining service time T and the elapsed service time T have
the same distribution function, that is, 7*(s) = T*(s) = [L — GZ(s)]/ssr,
and the conditional distribution

Ele™*T|S%] = (1 — e7*57)/5S0.
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Let R(z) = C + zD. Then, 3} (n,s) can be derived as follows:

o0
> Br(n,s)z"
n=0
- E [e—sT eR(z)T]
- E [E[e—sTeR(z)Tlsg]] - E [eR(z)ng [e—(sH—R(z))T'SgH

~ B [( eR(ISY _ os57) /sg] (sI + R(2))™}

=/o°° [(eR(z)m =7/ ] 29,(2) ;. (sI + R(z))"}

_ i o) eR(z)m_e—sa: 2)dx(s 2)) 1
2, )ar (@)da(sI + R(2))

= sl Z:AIz " G:(s)I] [Z Rn(s)z"]
T _n=0 n=0

=Sl ZZAk nk(8) — ZG* s)Rn(s)}
T n=0k=0

where R,(s) = (sI + C)7[(-D)(sI + C)~1|".

By coefficient comparison, we have

B (n,s) = . [ZA Ro_i(s) — G’;‘(s)Rn(s)] ,  1<r<T.
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