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GLOBAL STABILITY OF SOLUTIONS
OF AN ELECTROCHEMISTRY MODEL
WITH A SINGLE REACTION

EUHEE Kim ‘

ABSTRACT. In this paper an electrochemistry model which consists
of three charged species is considered. A dissociation-association re-
action is allowed to take place between these species. The species of
ions diffuse owing to concentration gradients and migrate because of
electric forces.  We prove that any initial distribution of species con-
centrations will settle down to the unique steady state as time becomes.
large.

1. Introduction

We consider an electrochemistry model of three charged species which
simultaneously undergo diffusion owing to concentration gradients, mi-
gration because of electric force and dissociation-association reaction (see
[6]). Let ui, up and u3 denote the density of the charged particles A, B
and C, respectively, where A is a neutrally charged species, and B and
C are some positively and negatively charged species, respectively. The
electric potential is denoted by ¢. We assume that the species undergo a
dissociation-association reaction which is represented by

A= pB= 4 qC>.
Here p and q are positive integers, and z; is the charge of the i-th species

for i = 1, 2, 3 such that z; = 0, z, > 0 and 23 < 0. Since the charge is
conserved we have

(1.1) pza+qz;=0.
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As for the reaction, we assume mass action kinetics. Hence the rate of
reaction, r, is given by

(1.2) r=ku —kudul, Kk k>0

where k/ and k" are reaction rate constants for forward and reverse reac-
tions, respectively. The conservation equations for all the species are then
given by the following system of nonlinear partial differential equations

(1.3) uy = dy Ay —r,

(1.4) uge = d2V-(Vug+2u Ve) +pr,
(1.5) ugy = dgV-(Vuz+23u3Ve) +¢qr,
(1.6) eAp = —(zus+ zzus).

They are subject to the following boundary and initial conditions

(1.7) Vu;-n=0 on 909, t>0,

(1.8) (Vu; + zu4,Vg) . n=0 on 990, t>0, i=2,3,

(1.9) ¢=0 on I'l, ¢=a on Iy, %:0 on I';, t>0,
(1.10)  u;(z,0) =ud(z) >0, i=1,2,3

where n is the unit outward normal vector at 6. Here we let Q°, w;, wy
be open, bounded, connected subsets of RN, N = 2 such that @7, @z c Q°
and Wy N@; = 0. Let Iy, I'; and '3 be the smooth boundary of wy, wy and
9, respectively. Let @ = Q°\ (@; Uw;) and 8Q = I'; U T, U T3, We shall
study equation (1.1)-(1.10) in the domain Q x R*.

Without loss of generality we assume that ¢ in (1.9) and ¢ in (1.6) are
positive. In particular, the boundary condition (1.7)-(1.8) implies under
the assumption that the flux of species given by — d;(Vu;+2; u;V¢), where
d; > 0 is a diffusion constant, is zero on the boundary 99 for i = 1, 2, 3.

The initial condition ¢(z,0) = ¢°(z) is not prescribed because it can be
obtained by solving the equation A@® = — (2, 4 + 2343) which is subject
to the boundary conditions ¢°|r, = 0, ¢°|r, = @, 8¢°/On|r, = 0.

In addition, one can prove the local existence and uniqueness of solu-
tions to the above initial-boundary value problem (1.1)-(1.10), provided
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that u? (i = 1, 2, 3) are sufficiently smooth and satisfy the boundary con-
ditions (1.7)-(1.8) at the boundary when ¢ = 0. The solutions are smooth
for £ > 0 as long as they exist (see [4]). Furthermore, one can show that
u; > 0 for 0 <t <'T, where T is the maximal time of existence (see [1}).

In the stationary case, steady-state solutions which are obtained from
the evolution problem (1.1)-(1.10) are equivalent to the solutions of the
following nonlinear boundary value problem

(1.11) di Adiy — 7 = 0,

(1.12) 4,V - (Viip + 28V $) + p7 =0,
(1.13) &3V - (Vitg + z33V$) + q7 = 0,
(1.14) e AP = — (231l + 23 U3)

where 7 = kf iy — k' @5 3. The solutions are subject to the following
boundary conditions

(1.15) p/ﬂldz+/ﬁgdx=02, q/ﬂldm+/ﬂ3dz=03,
Q Q o) Q
(1.16) Vi;-n=0 on 99,

(117) (Vi + 2% VP)-n=0 on 8Q, i=2,3,

(1.18) $=0 on I, é=a on Iy, g—izo on I'3.

C; and Cj in (1.15) are known positive constants which are determined by
the initial jon concentrations. Equation (1.11)-(1.18) will be collectively
referred to as the steady-state problem. In the equilibrium state we phys-
ically observe that the reaction term 7 in equation (1.11)-(1.13) becomes
zero. The fact was proved mathematically in the paper [1]:

LEMMA 1.1. Let 4; and ¢ be any solutions to the steady-state prob-
lem (1.11)-(1.18). Then 7 = 0.

Moreover, the existence and uniqueness of steady-state solutions to the
steady-state problem was proved in the paper [1]:

LEMMA 1.2. Let C; and C3 be given positive constants. Then the
positive solution to the steady-state problem is unique.
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In this paper we shall prove the following global stability theorem:

THEOREM 1.1. Let p = ¢ = 1in (1.1). Let w}(i = 1,2,3) be
bounded smooth functions defined on the domain Q C R? which satisfy
the compatibility conditions Vu + zu? V¢’ = 0 on the boundary of
Q. The solutions to equation (1.1)-(1.10) then converge uniformly to the
unique steady-state solutions to the steady-state problem (1.11)-(1.18).

We now shall assume that Theorem 1.2 (see below) is valid, and use it to
‘prove Theorem 1.1. The proof of Theorem 1.2 will be presented in the
section 3.

THEOREM 1.2. Letp = q = 1in (1.1). Suppose that the hypotheses of
Theorem 1.1 onw? (i = 1, 2, 3) are satisfied. Smooth solutions to equation
(1.1)-(1.10) then exist in Q* = Q x [0, o], where § > 0 and

i ll gren vy < Mija
where M; , > 0 depends on the initial data W, 0<A<1l andjisa
positive integer.

We also introduce some definitions, which will be used in the section 3.

DEFINITIONS. Let 0 < A < 1 and T > 0 and, for v(z, t) defined in
Qr = Q x [0, T}, we define the Holder norms of v as follows:

t) — t
o, = sp D@01

(2,8), (v, D€Q@r |z —y|*
I’U(.’L‘, t) — v(a:, 7)'
lvller: = sup
o (2,1), (7, EQr |t — P ’
vl = o=@ + vllers + 1vllovs,e
[l meramagn = Nvllze@n + [wlloar,:
+ D 1D vl maran
|ee|=1

In addition, we define the Sobolev norm of v as follows:

Ivllwes gy = lvellor) + > 1D vl w@n-

lal<2
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We now shall cite the following two lemmas that are contained in [3,
pp. 12-14], which allow us to estimate Holder norm bounds on u; and ¢
of equation (1.1)-(1.10).

LEMMA 1.3. Suppose that the hypotheses of Lemma 3.1 in the section
3 are satisfied. Then for any p > 1, there exists a constant M, > 0 which
may depend on p and the initial data u (i = 1, 2, 3), but which may be
independent of t for t € (0, T) such that

lpell o) < M.

LEMMA 1.4. Suppose that the hypotheses of Lemma 3.1 in the section
3 are satisfied. Then for any 0. < A < 1, there exists a constant k} > 0
which is independent of t for t € (0, T') such that

"¢"H HAA+H/2(Qx [0,T)) < k;

2. Lyapunov functional and the proof of Theorem 1.1

In the case of a damped oscillator without external forcing, energy de-
creases with time. Such monotone behavior makes the dynamics of the
system relatively simple. The dynamics of the solution to any system of
equations will be simpler to understand if we can identify a scalar func-
tional that has a monotone behavior as time increases. Such a functional
is known as Lyapunov functional.

As for our equation (1.1)-(1.10), such a Lyapunov functional exists and
is given by

3 3
V(t) = /Q [g |Vol? + ;u, log(a; u;) — ; u; — ediv(¢pVe)| dz

where oy = kf, ap = k" and ag = k”. Observe that V' is well defined for
t > 0, since u; > 0. Let F; = d; (Vu; + 2;u; V@), which is the negative of
the flux of species :.

By differentiating V with respect to t, integrating by parts and using
the boundary conditions for ¢, after some manipulations we obtain
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V(t)=— /Q; ! |F;|* dz — /Qr [log(k’ u1) — log(k" ug ug)] dz.

di U;
With

/r [log(kf uy) — log(k" u, u3)] dz > 0,
Q

the above estimate yields

3
. 1
. < - |2 < 0.
(2.1) Vi) < /n,.; T |Fi|*dz <0

Consequently, V'(t) is a Lyapunov functional for equation (1.1)-(1.10).
Furthermore, we show that V is bounded below, which leads to the
following lemma:
LEMMA 2.1.

t—o00

PROOF. Guided by the ideas contained in (3, pp. 3-4], we shall prove
the lemma. In exactly the same way as in [3, p. 3], one can show that

€
e [V-(699) do <kt SIVOLE
where k; is a positive constant.

We observe from (1.3)-(1.5) that p [, ui(z,t) dz + [, us(z,t) de = Cy
and g fQ uy(z,t) dz + fQ usz(z,t) dez = Cjs, where C, and Cj are positive
constants which depend only on the initial conditions. Hence

(2.2) /u,-(z,t) dr < C =max{Cy, C3}, i=1,23.
Q

Using equation (2.1)-(2.2) and the two facts: V(¢t) < V(0) and the
function u logu is bounded below for u € [0,00), we conclude that
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(2.3) /Q Vé(z, B dz < M,

(2.4) /Qui(a:,t) log(a; u;(z, t)) de < My,

where M, is a positive constant independent of ¢ as long as u; and ¢ exist.
From (2.1), (2.3) and (2.4), V(t) is bounded below. Since V is a decreasing

function in ¢, lim;_,, V(t) = [; exists. O
LEMMA 2.2. F; converges to zero uniformly on  ast — oo for
i=1,2,3.

PROOF. By Theorem 1.2 we define |lu;|l;» < M* and d* = ma.x{d} for
all i. From (2.1), let W(¢) be defined fort > 1 by W(t) = — [, 3, =4~
|Fi[? dz and W(1) = V(1). W(¢) is then nonincreasing in ¢ and V(t) <

W (t) for t > 1, from which it follows that lim;_.., W(t) = I, exists.

Furthermore it follows from Theorem 1.2 that |W(t)] is bounded for
t > 1. Hence we can conclude that lim,_,. W(t) = 0, which yields

(2.5) tlim |Fi|> dz =0 for all i.
—00 [

By Theorem 1.2, the Arzela-Ascoli theorem and (2.5), we have lim;_,., F; =
0 in L* norm. (]

Now we are ready to prove the main theorem.

PROOF OF THEOREM 1.1. Let {#;} be a sequence with limy_,, t; = 00
There exists a subsequence from Theorem 1.2, which is also denoted by
{tx}, such that

klim ui(z, t) = Ui(z) in C*) norm,
lim ¢(z,t) = &(z) in C*) norm.

From Lemma 2.2 and the definition of F;, U; and ® satisfy the following
equations
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d,' V. (VU, + 2z Ui V(I)) =0 forall 'I:,
eAD = - (22 U2 + 23 U3),

which show along with Lemma 1.1 that U; and & are steady-state solutions
to the steady-state problem (1.11)-(1.18). It follows from Lemma 1.2 that
u; = U; and $ = &, for i = 1, 2, 3. In summary, we have shown that
for every sequence {t;} such that t; — oo as k — oo, there exists a
subsequence, denoted by {¢;}, such that u;(z,t;) and ¢(z,t;) converge to
the unique steady-state solutions ; and ¢ as k — 0. O

3. Proof of the Theorem 1.2

In this section we shall outline the proof of Theorem 1.2. It should be
pointed out that an idea of proving which is similar to the one in our proof
below was employed by Choi and Lui (see [2]-[3]) to obtain L?(2)-norm
and Hoélder norm bounds on u; and ¢. However, Choi and Lui’s proof
required the assumption (1.1) on the coefficients of differential equations,
which is not used in this section.

3.1. LP-estimates for u;

To prove that the LP(2)-norm of the solutions u; (i = 1, 2, 3) is bounded
independently of ¢ for 1 < p < oo when N = 2, one can employ an ar-
gument similar to the one given in [3, pp.7-12]. For example, one can
first show that the L?(2)-norm of ; is bounded independently of ¢. Sec-
ond, using L*(Q2)-norm bounds, one can prove time-independent bounds
of L*(2)-norm of u;, which Choi and Lui’ proof didn’t require. One can
then bootstrap the results to obtain higher LP-norm bounds. Since the
proof of Lemma 3.1 (see below) is quite technical and routine, we skip it.

LEMMA 3.1. Letp=q =1, N = 2 and T > 0 be the maximal
time of existence of solutions to equation (1.1)-(1.10). Then there exists a
constant M > 0, which may depend on the initial data u?, but which!may
be independent of t for t € (0, T), such that ||u;||z~ is bounded above by

M fori=1,2, 3.
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3.2. Hoélder norm bound for u;

Before proceeding with our derivation of time-independent a priori
bounds in Holder norms for solutions to equation (1.1)-(1.10), we first
let v; = u; €5% for i = 2, 3, which is guided by the ideas contained in {3].
Then v; satisfies the equation

%t"ﬁ = d;Av;— d; 2, V- Vv, + z drvi + (K wy — K upug) €52,
Wi o oon 89, t>0.
On

From now on we shall work with v; rather than u; (¢ = 2, 3) because it
satisfies the zero-Neumann boundary condition.

LEMMA 3.2. Suppose that the hypotheses of Lemma 3.1 are satisfied.
| Vvil| 2y is bounded above by M, where M > 0 may depend on the
initial data v (i = 2, 3), but it may be independent of t for t € (0, T).

PROOF.

o 1 9
B-t/QEIV'U,I dz

= / [-— di (A’U,‘)2 + di zZ; V¢ . V’U,’ A’U.,' - Z; ¢t Vi A'Ui] dx
Q

- /Avi [(kf uy — k" ugus) ez“”] dz.
Q

In exactly the same way as in [3, p. 14], one can prove that

/ [— d,'(A’U,')2 + d, Z; Vd) . V’U,'A’U,’ -z ¢t V; A] dz
Q
<~k |IVul + k.

Lemmas 3.1 and 1.3 allow us to estimate the following inequality:
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‘—- /.A’Uz [(kful — kTUQU3)ezi¢] dx S k‘3 “A'Uillz.
Q

Thus the result follows. O

Now we are ready to bootstrap the LP(£2)-norm bound on u; to obtain
a Holder norm bound on u; and ¢.

PROOF OF THE THEOREM 1.2. The first step is to obtain estimates
for u;, for ¢ = 2, 3. The proof for v, is similar and simpler. Finally we
combine these estimates to prove Theorem 1.2.

Consider the sequence of overlapping cylinders Qy = Q x [N, N + 2],
where N =0, 1, 2, ---. In Qp, let a and bY satisfy the partial differential
equations (3.1)-(3.3) and (3.4)-(3.6), respectively:

(3.1) 8al’ /0t = d;Adl(z,t)+ I(z, t+ N),
(3.2) 8aY¥/dn = 0 on 09,

(3.3) al(z,0) = 0,

(3.4) obY /ot = d; AbY,

(3.5) aY/én = 0 on 9Q,

(3.6) ¥ (z,0) = vz, N)

where

I(z,t+ N)= [~d; 2, V- Vv, + z e v; + (K uy — K ugug) €] |z, 1)-

We then decompose

vi(z, t+ N) =al(z, t) + b (z,t) for 0 <t<2.

Let Qy = Q x [N +1/2, N +2]. From (3.4)-(3.6),

(3.7 16N N grn GGy < Kija

where j is any positive integer, 0 < A < 1, and k; , > 0 is independent of
N, because ||v;(-, N)||co is bounded independently of N.
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We now estimate a’ and its higher derivatives. In the following argu-
ment, k;, ¢ = 1, 2, --- will denote positive constants independent of N.
Let us consider the nonhomogeneous term I'(z, t + N) in (3.1). By Lem-
mas 1.3 and 3.2, it can be checked that ||I'(z, ¢ + N)||12(q,) is bounded in-
dependently of N. Therefore, using Agmon-Douglas-Nirenberg type esti-
mates and Sobolev imbedding theorem (see [5, p. 80]), we see that equation
(3.1)-(3.3) has a unique solution a¥ € W2'(Qo) and ||Val|lz1qy < ki-
Combining this with (3.7) yields [|Vv;||z2(q;) < k2. Repeating the same
argument with these improved estimates on v;, one can check that problem
(3.1)-(3.3) has a unique solution a}’ € W2'(Qo) and ||afV||W;,x(Q0) < k, for
any p > 1. Thus, for any A € (0, 1), by increasing p if necessary (see (5,
p. 80]) the Sobolev imbedding theorem implies that there exists a constant
k) such that ’

(3-8) llal | s aenre gy < K

where k) > 0 is independent of N.

From (3.7)-(3.8) we have {|vi||giaconngyy < My, where My > 0 is
independent of N. Since u; = v; e~ %%, Lemma 1.4 implies that the above
estimate on v; is also valid with v; replaced by u; and a different M,.

Because Q%, N = 1, 2, --- overlap one another, there exists a constant
M, ) > 0, which is independent of N and satisfies

Nwsll gros conngs ) < Ma,a

Using the same argument, one can show that ||u1|| gr+r 0072y ) is bounded.
Repeating the above bootstrap argument with new estimates on u; (% =
1, 2, 3), we can obtain a priori bounds on ||@|| greren2@x(s, 00 20d

[l || green a2 @ax s, 00)) £ any desired order k. The above estimates imply
that solutions u; and ¢ exist for all time so that T = oco. O
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