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HYPERBOLIC CONVOLUTION EQUATION
IN THE BEURLING’S GENERALIZED
DISTRIBUTION SPACE

DAE HYEON PAHK AND BYUNG KEUN SOHN

ABSTRACT. We found the characterizations for convolution operators
in the Beurling’s generalized distribution space to be hyperbolic.

In [4], L. Ehrenpreis defined the hyperbolic convolution operator S(t, z)
€ &(R x R™), the distribution space with compact support, in ¢~ (t*)
and showed that S is hyperbolic in t~(¢t*) if and only if there exists
C > 0 such that

Imt 2 —C(1+ [Imz| + log(1 + |7] + |2]))

(Imt < C(1 + |[Imz| +log(1 + |7| + |21))),
for (1,2) € V = {(r,2) € C x C*; §(r, ) = 0}.

Later, C. C. Chou (3] extended this result to S(t,z) € £'(M(;), R x
R"™), the Romieu’s ultradistribution space with compact support, by
showing that S is M(y)- hyperbolic in ¢t~ (t1) if and only if there exist
positive constants a and H such that

Imt > —a(H|Imz| + M(T, 2))

(Imr < a(H|{Imz| + M(7, z))),
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for (1,z) € V. Here M(r,z) is the associate function to a sequence
{My}. Also, in [5] D. H. Pahk and B. H. Kang studied the hyperbolic
differential equation in the Beurling’s generalized distribution space. In
this paper, we extend the L. Ehrenpreis and D. H. Pahk and B. H. Kang’s
results to hyperbolic convolution equation in the Beurling’s generalized
distribution space.

For the completeness, we briefly review the Beurling’s generalized
distribution space and related the results which we need in this paper.
For details, we refer to [2]. We denote M, the set of all real-valued
functions w on R™ satisfying the following conditions;

(@) 0=w(0) < w(+n) Sw(é)+w(n),éne R

()
D Je Ty <

(7) w(€) > a + blog(1 + |¢|) for some constants @ and b > 0

(8) w(&) = a(|¢]) for an increasing concave function & on [0, c0).

For example, w(§) = log(1 + |¢|) and w(¢) = |£|%,a > 1, satisfy all
conditions. Throughout this paper, w represents an element in M,. Let
D, (U) be the set of all ¢ in L(R™) such that ¢ has a compact support
in an open set U and

19157 = [ 1B(©)1eOdt < oo for any >0,

The topology on this space is given by the inductive limit topology of
the Fréchet spaces D, (K) = {¢ € D,; suppp C K} induced by the
above semi-norms where K is a compact set in U. We denote by &, (U)
the set of all complex-valued functions 9 in U such that ¢ is in D, (U)
for any ¢ € D, (U). The topology in &,(U) is given by the semi-norms
Y — || o ||§f") for any A > 0 and any ¢ € D, (U). The dual space of
D, (U) is denoted by D (U) whose elements are called the Beurling’s
generalized distributions because of D/,(U) D D’(U) by (v). The dual
space £,(U) of £&,(U) can be identified with the set of all elements of
D,,(U) which has a compact support in U. D/ (U) is equal to D'(U)
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when w(€) = log(1 + |{|) and &, (U) is related to the Gevery class when

w(€) = [¢]7, d> 1. v * §(x) = (v, 4~ v)) and (u*v, ) = (v, i * )
foru e &), ve D, and ¢ € D,, it can be easily seen that D *xD,, C &,
and &, * D/, C D!,. Because of the later fact, £, is called the space of
convolution operators in D.,.

LeEMMA 1 [2]. w(§) = O(|¢|/log |¢|) where || — oo for all w € M..

It follows from this Lemma 1 that there exists a constant M such that
w() < M(1+[¢]), £ € R™

LEMMA 2 [2]. Let w € M¢ and let K be a compact subset of
R". Then the family of semi-norms {¢ — || ¢ ||f\“’)})‘>0 on D,(K) is
equivalent to the family {¢ — supcecn|$|e(>“"(§)“UK(")_|"D}A>0, where
¢ = €+ in and Uk is the supporting function of K, i.e., Ux(n) =
maXze g (T, 7)-

LEMMA 3. There exists a function ¢. € &, whose value is 1 on the
set {t € R;|t| < b—¢€} x R™ and 0 on the set {t € R;|t| >b— 5§} x R"
for any b > 0.

PROOF. By [5], we can take ¢! € £, whose value is 1 on the set
{(t,z);t < b—€} x R™ and 0 on the set {(t,x);t > b— 5} x R™. Similarly,
we can also take p? € £, whose value is 1 on the set {(t,z);t > —(b—€)} x
R™ and 0 on the set {(t,z);t < —(b— )} x R™. Then ¢ = ¢} -9 € &,
by the definition of £, and ¢, satisfies the condition. O

LEMMA 4 [5]. Ifuec &, and p € &, thenux ¢ € &,,.

LEMMA 5 [2]. Let K be a compact convex set in R™ with a support
function H.

1. The Fourier-Lapalace transform of ¢ € D,,(K) is an entire function
U() in¢=&+1in = (1,2, - ,¢n) € C™ if and only if for each X and
for each € > 0 there exists a constant C) . such that

[U(€ + in)| < Cy ceHMteml=2w(@)
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2. The Fourier-Lapalace transform of u € £,(K) is an entire function
U)in¢=€&+in=((1,{2, - ,{n) € C™ if and only if for some real A
and all positive € there exists a constant C ¢ such that

[U(& + in] < Cy ceHMFenl+Aw(©),

LEMMA 6 [Levin’s Theorem]. Let g be a function of complex variable
¢ and holomorphic in a neighborhood of {{;|{| < 3eR} and not 0 in
I<] < %r. Then for all (o with |({o| = R,

l9(6o) D
3E(n)

?

l9(0) 2

2
SUP|¢|<3erl9(¢)] * 8UP|¢|< 2 [9(C)]

where R, and 7 are such that 16nR < r and E(n) = 2 + log -g—f; > 0.
We now state our main result.

DEFINITION 7. Let S € £.,. S is w-hyperbolic in ¢t~ (t*) if there exists
a fundamental solution H—(H ™) in D/, whose support is contained in a
properly convex cone in a half space t — tg < 0(> 0) for some tp € R.

THEOREM 8. Let S € &, be invertible, ie., S x D/, = D.,. The
following are equivalent;

(a) S is w-hyperbolic in t~(tT).

(b) There exists Cy > 0 such that for S(r,2) =0,

Imt > —Co(1 + |Imz| + w(Re(T, 2)))

(Imt < Co(1 + |Imz| + w(Re(T, 2)))).

(c) There exist positive constants B and D such that for all (1,2z) €
C x C™ with Im7m < —B(1 + |Imz| + w(Re(T, 2)))(ImT > B(1 + |Imz| +
w(Re(T, 2)))),

18(r, 2)| > % ¢~ Dw(Re(r,2)) o~ D(| Im|+|Imz])
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PROOF. (b) => (c). Since S is invertible, by [1], for some positive A
and C and (7,2) € C x C", if (t,z) is such that |Rer — t| + |Rez — x| <
Aw(Re(T,z)), then

|§(t, z)| > Ce——Aw(Re(-r,z)).

Without loss of generality, we may assume A > 1. For any (7,2) € CxC"
satisfying Imr < —B(1 + |Imt| + w(Re(T, 2))) where B will be chosen
later, we apply Levin’s theorem with R = 1,7 = i‘,n =57 A,Co =1and
the entire function

g =8(F + At —7),z+ Mz —2)), AeC,

where (t,z) € R x R™ satisfies |ReT —t| + |Rez — x| < Aw(Re(T,2)). For
|A| < le and ( = (T + A(t = 7),2 + Mz — 2)),
|Re¢| < |M|(|t — Ret| + |z — Rez|) + |Re(T, 2)|
< A|Mw(Re(T, 2)) + |Re(T, 2)|
< AIMM(1 + |Re(, 2)|) + | Re(7, 2)|
< T+ Ma|Re(r, ),
for M, sufficiently large such that M; > %’I— and %(V%-l < %,
[Im¢| < (1 + |ReA|)|Im(r, z)| + A|lImAw(Re(T, 2))
and so |
|§(C)| < cetow(ReQ)+(A'+1)|Im(|
< cle(aoM2+(A’+1)M4)w(Re(‘r,z)) . e(A'+1)M3(|ImT|+|Imz|),

for some constants c¢,c’ and ag. Here A’ is the radius of a ball at the
origin which contains the support of S. Using these estimations we have

3E 2
sup|xj<serl9(A)] ) - 8up|y|<2r|9(M)]

E
< sup|y<zelgV)[PFPF?

< AleAlw(Re(T,z)) . eAl(IIm‘r|+|Imz|),
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and

|15(7, 2)| = |g(0)]

> _c_e—Alw(Re(‘r,z)).e—Aw(Re(‘r;z)) . e~ Ar(IIm7|+|Imz|)
2 7

> L o-Du(Re(r2) . e~ DUITmr|+|Imal)

where D = max{(;fl-)_l, Aj + A}, which shows (c).

It remains to show that g()) # 0 for [A| < Z;. For any given ) =
A1+ idg with [N < 2 let us write T =7+ A(t —7),Z = z+ A(z — 2).
Then ImT = (1—A;)Im7+A2(t— Rez) and |ImZ| < |Az||z— Rez|+(1—
A1)[Imz|. Using I'm7 < —B(14 |Imz|+w(Re(T,2))), 1— A1 —A]Xg| < &
and |t — Ret| + |z — Rez| < Aw(Re(T, 2)), we can deduce

ImT < —B((1 — M) + [ImZ| + (1 = A\)w(Re(T, 2)))
+ B|A2|(|t — Ret| + |z — Rez|)
< —B((1 = M) + ImZ] + (1 — M — Aa])w(Re(r, 2)))
— g(l + |[ImZ| + w(Re(r, 2)).

Substituting |Re(T, Z)| < 4 + M;|Re(r,2)| and so w(Re(T, Z)) <
w(%) + Maw(Re(T, z)) into this inequality, we have

ImT < "g (1 +ImZ] + Miz <w(Re(T’ Z) - <%)>)

B 1 w(f)
< —— — -_—=
<-7 (1 +|ImZ| + Mzw(Re(T, Z)) M,

B /1 1
< —— [ — _
=77 (2 + | ImZ| + M2w(Re(T, Z)))

B
< - / T,Z
< 8]VI2(1+|ImZ|-1—a.J(Re( ,2Z)),

provided that B = max{8CyMa,1}. Then (b) implies S(T, Z) = g(\) #
0 for [A| < 5.
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(c) = (a). For any u € R™ and f € D,,, we define H~ on D, by

H(f) = (@)™ / N2 4,

Imz=u JT'; §(7’, Z)

where the z-integration is over Imz = u and I'; is the set of 7 satisfying
Imt = —B(1 + |Imz| + w(Re(7, 2))). Then H™(f) is well-defined for
any u € R™. Indeed, for n =1, let

_f FenDy e
F(2)= - 80 dr, z=§+ineC.

Then since f and S are entire with respect to (7,z), F(2) is also
analytic with respect to z. Hence by Cauchy’s theorem, [ y F(z)dz = 0.
Here v = 71 U2 U~y3 U4, where v1,%2,73 and 74 are the lines between
(_E, 0) and (5’0),(6,0) and (§a€ + Zu),(§’€ + Zu) and (-g, —§ + 7’“’) and
(—¢, ~€&+iu) and (—£,0), respectively. Using the Paley-Wiener Theorem
for f, the hypothesis for S and the property (v)for w(Re(r, 2)),

FE< [ o

< Dle(Al+D)(B+1)|u| / (1 + |R6(T, z)l)(—A+D+(A'+D)B)de
rs

f(_’ra —Z) dr

— 0 as |¢| = |Rez| — oo,

if A\> D+ (A’ + D)B. Hence [ F(z)dz= [ F(z)dz =0 when { —
+o00. Then since f'n F(z)dz = — f% F(z)dz when § — to0,

o0 —00
| F@de=- | Pl
+o0
[ R+

= / 172 g,
Imz=u JT; S(T,Z)
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Hence H—(f) is well-defined for any u € R. We can clearly extend the
result to n-dimension. Now, we will show that H~ is the fundamental
solution of S in D!, whose support is contained in the set {(t,z) : t >
-D; + } for some positive D;. For f € D, with suppf C K =
{(t,z) : I(t z)| < Ag for some Ay} and any A € R, by Lemma 2,

H(f) < fenoa)
Imz=uJI'; S(T Z)
/ / |f(_T1 z)l ,\w(Re( 7,—2))-Ux(Im(—7,—z)
Imz=u IS(T,

. g—lm(=r,—2)] ,e—Aw(Re(-—-r,—z)).{.UK([m(_r’_z))
celfm{=m=2lgrdy
<I£I5 / / _(PMD(Re(na)) Az +1+D)|Imr|
; ;r:;_:il+D)|Imz|dez

= ” f ||E\w)/ / e(—A+D)w(Re(-r,z))
Imz=u [‘z“

. e(A2+1+D)(B(1+|Imz|+w(Re(‘r,z)) . 6(A2+1+D)|Imz|d7'dz

=| f ||f\w) / / o= 3D+ B(As+1+D))w(Re(7,2))
Imz=u z ’
. e(A2+1+D)B | (A2 +1+D)(B+1)ug g,

=Gl I [ [ e pe s DR
Imz=u JT';

< Cunll FI8,if A > D + B(Az +1+ D).

Hence H~ € D.,. Now for f € D,,, from the Cauchy’s integral formula
we have,

(S*H™,f) = (H_,S*f(—é))

- B
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= /I . /1‘ ] ?(7-, z)drdz
= / / ?(T,z)d’rdz

= f(0,0) = (5’f>

Hence H™ is a fundamental solution of S. Lastly, we will prove that
there exists D; > 0 such that suppH~ C {(¢,z) : t < D; — '—%‘} D; will
be determined later. Suppose that n = 1. We wish to show that H~
vanishes above the linet = D; — & andt = D1 + %,z > 0. Suppose that
f € D,, and suppf is contained int > D1—%. Thenforr € I';,Imz <0,

F=r,—2) = (2]
< [emirion (e o) atd

_ / et(~B(+|Imal+w(Re(r2))+almz)| f(4 )| dtda

_ / o~ tB—tBw(Re(r2)+(tB+o)Imz| (1. o)|dtde.

Now on suppf, tB+z > BD1+ > 0 and tB > BD; — ¢ for some
¢ > 0. Since Imz < 0,

|f(__,r’ __z)| < Cfe—BDlee’ . e—BDl(w(Re(‘r,z)) . e(BDl)Imz.
On 7 € I';, since Imz <0,

1
S(r,2)

< De(D+BD)w(Re(‘r,z)) . e—D(B+1)Imz.

Hence
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o~

(=7, =2)

§( ) < CfDe—BDle e(D+BD~—.BD1)w(Re("r,z))

. e(BDl—D(B+1))Imz.

Then by letting Imz — —oo, H™(f) = 0 when D, is such that
BD; > BD + D. This show that H~ vanishes above t = D1 — §,z > 0,
since tB + x > BD; + 2x > BD; > 0 . The same method shows that
H~ vanishes above t = D1 + ¥, > 0.

This completes the proof in case n = 1. The proof for n > 1 proceeds
in a same manner that the lines t = D & % are replaced by a suitable
affine hyperplane.

(a) = (b). Let H™ be a fundamental solution of S in D], such that
suppH ~ is contained in the set {(t,z) : ¢ < D; — J%l} for some positive
D; and B. Let suppS be contained in a compact set in R"*! with
|t| < by for some by. We define £, = &,({R™ x t : |t| < b}) . The
topology of £ is given by the topology in &,. For any € > 0, we take
b with b > 2by + D; + € such that f € £ satisfies S * f = 0 for all
t with |¢| < b — bg. Such a function f will be constructed in the last
part of this implication. By Lemma 3, we can take ¢ € &, whose
value is 1 on the set {(t,z) : || < b—¢€, £ € R"} and 0 on the set
{t,z): |t] >b—§, £ € R} and let gc = fi.. Then g € £, and since
ge=fon|tj<b—by—¢€ Sxg.=S*f=0o0n|t| <b—by— e Since
suppge C |t| < b—§ < b and suppS C |t| < bo, suppS * ge C |t| < b+ bo.
Hence we can let S * g¢ = hl + h2, where supphl C |t —b| < by + €
and supph? C |t +b| < bp + €. Since S x ge € &, * £, C '€, by Lemma
4 and supphln supph? = @, hl ,h2? € £,. Moreover, since supph! and
supph2 have compact support in t-vanables H™ % h2 are in &. Define
f=ge— H™ +h2. Then f has the following three properties.

(1) clearly feé&..

(ii) f = f on |t| < b—byo—e€— D1, since suppH~ *h% C t € (—o00, —b+
bo+€+ Dl).

(i) Sxf=Sxge—S*(H +h2)

=Sxg.—(S*xH )*h2=hl

=0 on t€ (—00,b—by—e),
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where we use the associativity of convolution that is justified by the
compactness of suppH~ because of the compactness of supph? in t-
variable. That is,

(@) feé..
(i) f=f on |t| < bo.
(#43)'S* f =0 on t € (—00,0].

Now we will prove that such a function f, having three properties
(i)', (43)’, (443)’ is unique. It suffices to show that for h € &,,if Sxh =0
for t € (—00,0] and h = 0 on |t| < bp, then h = 0 for t € (—o0, —bg].
Since suppS C |t| < bg, supp(S *h) Ct < 0. Hence S xh =0 for all .
Then h = hxd = hx(SxH~) = (hxS)x H~ = 0, where the associativity
of the convolution equation is justified clearly by the support of A and
H~ in t-variable. We can also show that f — f is continuous from the
topology of £8 into the topology of £, by the continuity of a convolution
operator S and H ™ x. Now since the embedding £, — CZ° is continuous,
we can define a continuous linear form f — f(—2b,0) on £2(S) consisting
of f € £ which satisfies S * f = 0 on |t| < b — bp. Then there exists a
neighborhood of 0 in £5(S) on which f — f(—2b,0) is bounded. Hence
there exist d > 0 and a compact set K7 with K7 C {(t,z) : |z| <V, |t| <
b} for some b’ > 0 such that

|F(—2b,0)| < d| f ler (k).

We apply this result to k(t,z) = ei71%= with §(r,z) = 0. Clearly
k€&, and Sxk =0 for all ¢t and z. Hence if k(t,z) = e®7t* with
S(r,2) = 0 on |t| < b, there exists a unique k(t,z) = €7+ with
S (1,2) = 0 for all ¢ and z such that for some \g and ¢ € D, (K1),

exp(—2bImT) = |k(—2b,0)|
< dll kpo |15

- d” eitReT—-tIm-r+izRez—a:Imz (w)

Y0 ||,\o
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[1]
(2
(3]
(4]
(5]

~

S debIImTl‘l'b'lImz' / |eitRe‘r+izRez<p0(x, t)l

- ot dtdy

< deblfmr|+t'|Imz| / |@o(t — ReT,z — Rez)
. e)\ow(t—Re'r,a:—Rez) . e)\ow(Re(-r,z))dtdm
< d'exp(b|Imt| + b'|Imz| + Aw(Re(T, 2))).
Thus Imt > —Co(1 + |Imz| + w(Re(T, 2))). O
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