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A NOTE ON CONNECTEDNESS
OF QUASI-RANDOM GRAPHS

CHANGWOO LEE

ABSTRACT. Every quasi-random graph G(n) on n vertices consists of
a giant component plus o(n) vertices, and every quasi-random graph
G(n) with minimum degree (1 + o(1))7 is connected.

1. Introduction and preliminaries

Let us consider the random graph model for graphs with n vertices
and edge probability p = 1/2. Thus the probability space {2(n) consists
of all labeled graphs G of order n, and the probability of G is given by

Pr(G) = 2-(3). For a graph property P, it may happen that
Pr{G € Q(n) | G satisfies P} — 1 as n — oo.

In this case, a typical graph in £2(n), which we denote by Gy/2(n), will
have property P with overwhelming probability as n becomes large. We
abbreviate this by saying that a random graph Gy/3(n) has property P
almost surely. For details of these concepts, see [1] or [6].

One would like to construct graphs that behave just like a random
graph Gy/2(n). Of course, it is logically impossible to construct a truly
random graph. Thus Chung, Graham, and Wilson defined in [4] quasi-
random graphs, which simulate G /2(n) without much deviation. Among
many equivalent quasi-random properties studied in [4] and [3], we list
only three needed in this paper. Let G(n) denote a graph on n vertices.
A family {G(n)} of graphs (or for brevity, a graph G = G(n)) is quasi-
random if it satisfies any one of and hence all of the following.

Py(s): For fixed s, each labeled graph M(s) on s vertices occurs (1 +

o(1))n®/ 2(2) times as an induced subgraph of G.
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Py: For each subset S C V(G), the number ¢(S) of edges in G[S]
is e(S) = 1|S|2 + o(n?). Here, G[S] denotes the subgraph of G
induced by S.

Q: For each subset S C V(G), the number e(S, S) of edges between
S and S satisfies (S, S) = 1|5||S|+ o(n?), where S = V(G) - S.

Another property of G(n), which is weaker than quasi-randomness, is
the following.

Fy: All but o(n) vertices have degree (1+0(1))%. In this case we say
that G(n) is almost-regular.

Note that the Paley graph Q, on p vertices is quasi-random ([4]) and
strongly regular with parameters ((p — 1)/2,(p — 5)/4,(p — 1)/4) ([1]).

In this paper, we show how much quasi-random graphs deviate from
G1/2(n) in connectedness. All definitions and notation are the same as
in [4] and (3.

Two corollaries of the theorem of Chung, Graham, and Wilson which
asserts the equivalence of P;(s), Py, and Q are stated next. They follow
immediately from property Q.

COROLLARY 1 ([4]). Let € > 0 and suppose G = G(n) is quasi-
random. Then for any X C V(G) with |X| > en, the subgraph G[X] of
G induced by X is quasi-random.

COROLLARY 2. Let G = G(n) be a quasi-random graph. Then the
complement G of G is also quasi-random.

From a given quasi-random graph, we can construct another quasi-
random graph using the following lemma.

LEMMA. Let G = G(n) be a graph on n vertices constructed as fol-
lows. The vertex set of G consists of two disjoint sets Vi and V5 with
[Vi| = o(n). On Vi we place any graph while on V2 a quasi-random
graph. Between Vi and V, we place any bipartite graph. Then the
graph G is quasi-random.

PROOF. We want to show that G satisfies property Py. Let S be a
subset of vertices of G and let S; = SNV; and S; = SN V,. Then we
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have

e(Sl) = O(nz) since 0< 6(5’1) < (l‘iﬂ) - O(nZ)’

e(82) = 715al? +o(1V3P%) = 5181 + o(m))? + o)
= 315+ o(n?),

e(S1,82) = o(n?) since e(S1,S2) < [51|S2| = o(n?).

Therefore we have
e(8) = e(S1) + e(82) + e($1,82) = 5|8 + o(n?).

This completes the proof. O

2. Main results

In this section, we investigate the connectedness of quasi-random
graphs. We know that G1/(n) is connected almost surely. But quasi-
random graphs need not be connected as we can see in the case of a
quasi-random graph consisting of the union of the Paley graph and an
added isolated vertex. For quasi-random graphs, we have the following
weaker result.

THEOREM. Every quasi-random graph G = G(n) on n vertices con-
sists of a giant component and at most o(n) vertices outside the giant.

PROOF. Let G = G(n) be a quasi-random graph on n vertices and let
H = H(m) be the subgraph of G induced by S = {v € V(G) | degs(v) >
(1+ o(1))%}, where m = |V(H)|. Then, since G is almost-regular,
m = (14 0(1))n and degy (v) > (1+0(1)) % for allv € V(H). Moreover,
every component of H(m) contains at least (14 0(1))F vertices.

First, we want to show that H(m) consists of at most two components
of order at least (1+0(1))%Z. Let 0 < € < . Then there exists a number
mo = mo(€) such that degy (v) > (1 —€)F > 18@ for all m > mgp and all
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v € V(H). Suppose that for some m > my, there exist three components
Ly, Ly, and L3 of H(m). Then we have

m 2 [V(L)| + [V(L2)| + [V (Ls)|

m Im
> — ) — puddid
>3(1 e)2>38
_om

8’

which is a contradiction. Therefore H has at most two components of
order at least (1 + o(1))%.

Next, we want to show that H(m) is connected for sufficiently large
m. Suppose that H(m) is not connected for infinitely many m. Then for
such m’s, H(m) consists of two components L; and Ly of order at least
(1+0(1))%. Now it is easy to see that e(Li, L2) = 0 for infinitely many
m. On the other hand, H(m) itself is quasi-random from Corollary 1,
and hence, from property (), we have

e(L1, L) = 3|V (L2)IV(La)]| + o(m?)

> 2 () + o(m?)

for infinitely many m. This contradicts the fact that e(L;,Ls) = 0
for infinitely many m. Thus H(m) consists of only one component for
sufficiently large m, and the theorem follows. a

But if we give degree restrictions to G, then we can conclude that G
is connected.

COROLLARY 3. Let G = G(n) be a quasi-random graph on n vertices.
If6(G) = (14 o(1)) %, then G is connected.

EXAMPLES. (1) The Paley graph Q, on p vertices is quasi-random
and (p — 1)/2-regular. Hence by Corollary 3, both @, and the com-
plement @, are connected for sufficiently large p. Of course, it follows
immediately from its definition that @, is connected for all p.

(2) Let F), be a field with n elements and let AP(F,) be the affine
plane of order n. Let S be a subset of “slopes” of the n + 1 parallel
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classes of lines such that |S| ~ 2. We define a graph G(n?) = (V,E)
as follows. Let V be the set of all points in AP(F,) and let zy € E iff
the slope of the line in AP(F},) containing = and y belongs to S. Then
G(n?) is a quasi-random graph of order n? [4], and every vertex of G(n?)
has degree (n — 1)|S| ~ "2—3 Hence by Corollary 3, both G(n?) and the
complement G(n?) are connected for sufficiently large n.

(3) We define a graph G,, = (V, E) as follows. Let V be the set of all
n-subsets of a fixed 2n-set and let zy € E iff |z Ny| =0 (mod 2). Then
G, is a quasi-random graph of order (2:) (see [4] or [2]). Every vertex
v of G, has degree
(™) if n is odd

n

1

2

deg(v) = n
8() {%(271)_*_&—_12&(“72)_1 if n is even

n

and hence deg(v) ~ %(2:) Therefore both G,, and the complement G,
are connected for sufficiently large n. Of course, it follows immediately
from Dirac’s theorem ([5]) that G,, is connected when n is odd or when
n/2 is even. However, it seems to be difficult to show without using
quasi-randomness that G, is connected when n/2 is a sufficiently large
odd integer.
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