TOEPLITZ OPERATORS ON BERGMAN SPACES DEFINED ON UPPER PLANES

SI HO KANG AND JA YOUNG KIM

ABSTRACT. We study some properties of Toeplitz operators on the Bergman spaces $B^p(H_r)$, where $H_r = \{x + iy : y > r\}$. We consider the pseudo-hyperbolic disk and the covering property. We also obtain some characterizations of compact Toeplitz operators.

1. Introduction

For any $r \in \mathbb{R}$, let $H_r = \{x + iy \in \mathbb{C} : y > r\}$. Then H_r is an upper plane in \mathbb{C} and invariant under horizontal translations. For $1 \le p < \infty$, we define $B^p = \{f \in L^p(H_r) : f \text{ is a holomorphic function on } H_r\}$ which is called a Bergman space. Some properties on Bergman spaces of the unit disk have been well studied; see [1],[2],[5]. Then a point evaluation is a bounded linear functional on B^p . For each fixed $w \in H_r$, there is a unique function $K(\cdot, w) \in B^2$ such that $f(w) = \langle f, K(\cdot, w) \rangle = \int_{H_r} f(z) \overline{K(z, w)} \, dz$ for all $f \in B^2$. In fact, $K(z, w) = \frac{1}{\pi(2r + (z - \overline{w})i)^2}$.

Since B^2 is a closed subspace of L^2 , there is a unique orthogonal projection $P:L^2\longrightarrow B^2$ defined by $Pf(w)=\int_{H_r}f(z)\overline{K(z,w)}\,dz$ for all $f\in L^2$. Moreover, for any $f\in B^p$, Pf=f. If p=1 then the projection P is not bounded but for $1< p<\infty$, P is bounded and hence we get that the dual of B^p is B^q , where $\frac{1}{p}+\frac{1}{q}=1$. Much information about Bergman space defined on H_r is in [4].

Received July 16, 1998. Revised September 21, 1998.

¹⁹⁹¹ Mathematics Subject Classification: Primary 47B35, 47B38; Secondary 31B10, 30D55.

Key words and phrases: Toeplitz operators, Bergman spaces, upper plane, pseudo-hyperbolic disk.

This paper deals with the pseudo-hyperbolic distance and the compactness of Toeplitz operators on $B^p(H_r)$. We find the connection between pseudo-hyperbolic disks and Euclidean disks and the covering property (see [1],[3]). This implies two quantities are equivalent. For $f \in L^{\infty}(H_r, dA)$, we define $T_f(g) = P(fg)$. Then T_f is bounded. Under some conditions, we show that T_f is compact iff $f \in C_0(H_r)$.

2. Toeplitz operators on B^p

Let $w=x+iy\in H_r$. We define $\varphi_w:H_r\longrightarrow H_r$ by $\varphi_w(z)=\frac{s-x}{y-r}+i(\frac{t-r}{y-r}+r)$, where z=s+it. Then φ_w is 1-1, onto and holomorphic on H_r and we define the pseudo-hyperbolic distance d(w,z) by $d(w,z)=\frac{|z-w|}{|z-\bar{w}|}$, where $\tilde{w}=x+i(2r-y)$ and φ_w preserves pseudo-hyperbolic distance. For 0< R<1 and $w\in H_r$, the pseudo-hyperbolic disk $D(w,R)=\{z\in H_r:d(w,z)< R\}$.

PROPOSITION 2.1. For 0 < R < 1 and $w = x + iy \in H_r$, D(w,R) is the Euclidean disk with center $(x, \frac{1+R^2}{1-R^2}(y-r)+r)$ and radius $\frac{2R(y-r)}{1-R^2}$ which is denoted by $B\left((x, \frac{1+R^2}{1-R^2}(y-r)+r), \frac{2R(y-r)}{1-R^2}\right)$ and $\varphi_w\left(D(w,R)\right) = D\left((r+1)i,R\right)$.

PROOF. Let $\rho(z,w)$ denote the pseudo-hyperbolic distance on H between z and w. Then $z \in D(w,R)$ iff $\rho(z-ri,w-ri) < R$ iff $z-ri \in B\left((x,\frac{1+R^2}{1-R^2}(y-r)),\frac{2R(y-r)}{1-R^2}\right)$ iff $z \in B\left((x,\frac{1+R^2}{1-R^2}(y-r)+r),\frac{2R(y-r)}{1-R^2}\right)$. Moreover, $z \in \varphi_w(D(w,R))$ iff $z = \varphi_w(u)$ for some $u \in D(w,R)$. If u = s + it then $\varphi_w(u) = \frac{s-x}{y-r} + i(\frac{t-r}{y-r}+r)$ and hence $z \in \varphi_w(D(w,R))$ iff $z \in D\left((r+1)i,R\right)$.

COROLLARY 2.2. For $w = x + iy \in H_r$ and 0 < R < 1, $|D(w, R)| = \frac{4\pi R^2(y-r)^2}{(1-R^2)^2}$.

Suppose w = x + iy. Since $\varphi_w^{-1}\Big(D\big((r+1)i,R\big)\Big) = D(w,R)$, $\inf\{|K_w(z)|: z \in D(w,R)\} = \inf\{|K_w(z)|: z \in \varphi_w^{-1}\Big(D\big((r+1)i,R\big)\Big)\} = \frac{1}{\pi(y-r)^2} \inf\{\frac{1}{s^2 + (t-r+1)^2}: z = s + it \in D\big((r+1)i,R\big)\} = \frac{1}{\pi(y-r)^2}(\frac{1-R}{2})^2$. Then one has the following:

Lemma 2.3. If $w \in H_r$ and 0 < R < 1 then $\inf\{|K_w(z)| : z \in D(w,R)\} = \frac{(1-R)^2}{4\pi(y-r)^2}$ and $\sup\{|K_w(z)| : z \in D(w,R)\} = \frac{(1+R)^2}{4\pi(y-r)^2}$.

LEMMA 2.4. Let 0 < R < t < 1 and $1 \le p < \infty$. Then for any $w \in H_r$, $z \in D(w,R)$ and any holomorphic function f on H_r , there is C > 0 such that $|f(z)|^p \le \frac{C}{|D(w,t)|} \int_{D(w,t)} |f|^p dA$.

PROOF. Let f be holomorphic on H_r and let $w \in H_r$. Since $D(w,R) = \varphi_w^{-1}\Big(D\big((r+1)i,R\big)\Big)$, for $z \in D(w,R)$, there is $\lambda \in D\big((r+1)i,R\big)$ such that $z = \varphi_w^{-1}(\lambda)$. Put $R_0 = d\Big(\partial D\big((r+1)i,R\big), \partial D\big((r+1)i,t\big)\Big)$. Then $B\big(\varphi_w(z),R_0\big) \subseteq D\big((r+1)i,t\big)$ and $f(z) = f \circ \varphi_w^{-1}(\lambda) = \frac{1}{\left|B(\varphi_w(z),R_0)\right|}$ $\int_{B\big(\varphi_w(z),R_0\big)} f \circ \varphi_w^{-1} dA. \text{ Hence } \left|f(z)\right|^p \leq \frac{1}{\pi R_0^2} \int_{B\big(\varphi_w(z),R_0\big)} \left|f \circ \varphi_w^{-1}\right|^p dA \leq \frac{1}{\pi R_0^2} \int_{D\big((r+1)i,t\big)} \left|f \circ \varphi_w^{-1}\right|^p dA = \frac{1}{\pi R_0^2} \int_{D(w,t)} \left|f \circ \varphi_w^{-1}(\varphi_w(u))\right|^p \left|\varphi_w'(u)\right|^2 dA(u) = \frac{1}{\pi R_0^2(y-r)^2} \int_{D(w,t)} |f|^p dA \triangleq \frac{C}{|D(w,t)|} \int_{D(w,t)} |f|^p dA, \text{ where } C = \frac{4t^2}{R_0^2(1-t^2)^2}.$

Let 0 < R < 1 and let $\{B_n\}$ be a sequence of pseudo-hyperbolic disks in H_r of radius $\frac{R}{3}$ such that $\bigcup_{n=1}^{\infty} B_n = H_r$. Put $D_1 = B_1$. For $n \geq 2$, let $i = \text{first}\{k \in \mathbb{N} : B_k \cap (\bigcup_{j=1}^{n-1} D_j = \emptyset\}$. Put $D_n = B_i$. Let w_n be the pseudo-hyperbolic center of D_n . Then $\bigcup_{n=1}^{\infty} D(w_n, R) = H_r$. If $z = x + iy \in H_r$ then $\pi R^2(y-r)^2 < |D(z,R)| = \frac{4\pi R^2(y-r)^2}{(1-R^2)^2} < \frac{4\pi R^2(y-r)^2}{(1-R)^2}$ and hence $R^2\pi < \frac{|D(z,R)|}{(y-r)^2} < \frac{4\pi R^2}{(1-R)^2}$. Let $J_z = \{m : d(w_m,z) < \frac{2R+1}{3}\}$. Since $\lim_{l\to\infty} \frac{2\cdot 3^{l-1}}{2\cdot 3^{l-1}+1} = 1$, there is $k \in \mathbb{N}$ such that $R < \frac{2\cdot 3^{k-1}}{2\cdot 3^{k-1}+1}$. Then $D(w_n, \frac{R}{3^k}) \subseteq D(z, \frac{(2\cdot 3^{k-1}+1)R+3^{k-1}}{3^k})$ whenever $n \in J_z$. Since for each $m \in J_z$, $\frac{1-\frac{2R+1}{3}}{1+\frac{2R+1}{3}} < \frac{\lim_{m\to -r}}{\lim_{z\to r}}, \sum_{m\in J_z} \left(\frac{R}{3^k}\right)^2\pi \left(\operatorname{Im} w_m - r\right)^2 \leq \sum_{m\in J_z} \left|D(w_m, \frac{R}{3^k})\right| \leq |D(z, \frac{(2\cdot 3^{k-1}+1)R+3^{k-1}}{3^k})| \leq 4\pi \left(\frac{(2\cdot 3^{k-1}+1)R+3^{k-1}}{3^k}\right)^2 \left(\operatorname{Im} z - r\right)^2$, and hence $|J_z|$ is bounded by some constant which is depend on k and k. Summarizing this observation:

LEMMA 2.5. For 0 < R < 1, there is a sequence $\{w_n\}$ in H_r and a positive integer M such that $\bigcup_{n=1}^{\infty} D(w_n, R) = H_r$ and for each $z \in H_r$, $|\{n : z \in D(w_n, \frac{2R+1}{3})\}| \leq M$.

PROPOSITION 2.6. Let 0 < R < 1, $1 \le p < \infty$ and μ a positive Borel measure on H_r . Then there are constants C and D such that $\sup_{w \in H_r} \frac{\mu\left(D(w,R)\right)}{\left|D(w,R)\right|} \le C \sup_{f \in B^p} \frac{\int_{H_r} |f|^p \, d\mu}{\int_{H_r} |f|^p \, dA} \le D \sup_{w \in H_r} \frac{\mu\left(D(w,R)\right)}{\left|D(w,R)\right|}$.

PROOF. Take any $w = x + iy \in H_r$. If $g(z) = \frac{1}{\pi^{\frac{2}{p}} \left(2r + (z - \overline{w})i\right)^{\frac{4}{p}}}$ then $g \in B^p$ and $\int_{H_r} |g(z)|^p dA(z) = \frac{1}{\pi^2} \int_{H_r} \frac{1}{|2r + (z - \overline{w})i|^4} dA(z) = \frac{1}{4\pi (y - r)^2}$ and hence $\int_{H_r} |g|^p d\mu \ge \int_{D(w,R)} |g|^p d\mu \ge \inf\{|K_w(z)|^2 : z \in D(w,R)\} \mu(D(w,R)) = \left(\frac{(1-R)^2}{4\pi (y - r)^2}\right)^2 \mu(D(w,R))$. This implies that $\int_{H_r} |g|^p d\mu \ge C' \frac{\mu(D(w,R))}{|D(w,R)|}$ for some C'. Let $\{w_n\}$ be the sequence in Lemma 2.5 and let $f \in B^p$ be such that $f \ne 0$. Then

$$\begin{split} \int_{H_{r}} |f|^{p} d\mu & \leq \sum_{n=1}^{\infty} \int_{D(w_{n},R)} |f|^{p} d\mu \\ & \leq \sum_{n=1}^{\infty} \sup_{z \in D(w_{n},R)} |f(z)|^{p} \mu \big(D(w_{n},R) \big) \\ & \leq C \sum_{n=1}^{\infty} \frac{\mu \big(D(w_{n},R) \big)}{|D(w_{n},\frac{2R+1}{3})|} \int_{D(w_{n},\frac{2R+1}{3})} |f|^{p} dA \\ & \text{for some } C \text{ by Lemma 2.4} \\ & \leq C \sum_{n=1}^{\infty} \sup_{w \in H_{r}} \frac{\mu \big(D(w,R) \big)}{|D(w,R)|} \int_{D(w_{n},\frac{2R+1}{3})} |f|^{p} dA \\ & \leq CM \sup_{w \in H_{r}} \frac{\mu \big(D(w,R) \big)}{|D(w,R)|} \int_{H_{r}} |f|^{p} dA \\ & \text{for some } M \text{ by Lemma 2.5.} \end{split}$$

Let $P: L^2(H_r, dA) \longrightarrow B^2$ be the orthogonal projection. For $f \in L^\infty(H_r, dA)$, we define $T_f: B^2 \longrightarrow B^2$ by $T_f(g) = P(fg)$ for all $g \in B^2$. Then $\|T_f(g)\|^2 = \int_{H_r} |T_f(g)|^2 dA \le \|f\|_\infty^2 \|g\|_2^2$ and hence T_f is bounded.

PROPOSITION 2.7. Let K be a compact subset of H_r and let $f \in L^{\infty}(H_r, dA)$ be such that f = 0 on $H_r \setminus K$. Then T_f is compact.

PROOF. Let $\{g_n\}$ be a norm bounded sequence in B^2 . Then for each $w = x + iy \in K$, $|g_n(w)| = \left| \int_{H_r} g_n(z) \overline{K_w(z)} \right| dA(z) \leq ||g_n||_2 ||K_w||_2 \leq$

 $\frac{\|g_n\|_2}{2\sqrt{\pi d(\partial K,\partial H_r)}}$ and hence $\{g_n\}$ is a normal family. Then there is a subsequence $\{g_{n_k}\}$ which converges uniformly on K to a holomorphic function g. Since $\int_{H_r} |g_{n_k} f - g f|^2 dA = \int_K |g_{n_k} - g|^2 |f|^2 dA \le ||f||_{\infty}^2 ||g_{n_k} - g||_2^2, \ \{T_f(g_{n_k})\}$ converges to P(gf) in B^2 . Thus T_f is a compact operator.

LEMMA 2.8. $B^2 \cap H^{\infty}$ is dense in B^2 .

PROOF. Since $C_C(H_r)$ is dense in $L^2(H_r)$, for each $f \in B^2$ and $\varepsilon > 0$, there is $g \in C_C(H_r)$ such that $||g - f||_2 < \varepsilon$. For each $\delta > 0$, let $f_{\delta}(z) =$ $f(z+i\delta)$. Then $f_{\delta} \in B^2$, $||f_{\delta} - f||_2 \le ||f_{\delta} - g_{\delta}||_2 + ||g_{\delta} - g||_2 + ||g - f||_2$ and f_{δ} is bounded. Since $\lim_{\delta \to 0} ||f_{\delta} - g_{\delta}||_2 = 0$, $\lim_{\delta \to 0} ||f_{\delta} - f||_2 = 0$ and hence $B^2 \cap H^{\infty}$ is dense in B^2 .

PROPOSITION 2.9. $\frac{K_w}{\|K_w\|_2}$ tends weakly to 0 in B^2 as $\text{Im} w \to r$.

PROOF. For any $f \in B^2$, $\langle f, \frac{K_w}{\|K_w\|_2} \rangle = \frac{1}{\|K_w\|_2} f(w) = 2\sqrt{\pi}(y-r)f(w)$, where $w = x + iy \in H_r$. Since $B^2 \cap H^{\infty}$ is dense in B^2 , $\lim_{\text{Im} w \to r} \langle f, \frac{K_w}{\|K_w\|_2} \rangle =$

THEOREM 2.10. Let f be a nonnegative function in $L^{\infty}(H_r, dA)$. Then the following are equivalent:

- (1) T_f is compact
- (2) for any $R \in (0,1)$, $\frac{1}{|D(w,R)|} \int_{D(w,R)} f \, dA \to 0$ as $\text{Im} w \to r$ (3) there is $R \in (0,1)$ such that $\frac{1}{|D(w,R)|} \int_{D(w,R)} f \, dA \to 0$ as $\text{Im} w \to r$.

PROOF. For any $R \in (0,1)$, $\frac{1}{|D(w,R)|} \int_{D(w,R)} f \, dA = \frac{(1-R^2)^2}{4\pi R^2 (y-r)^2} \int_{D(w,R)} f \, dA$ $= \inf_{z \in D(w,R)} \frac{|K_w(z)|^2}{\|K_w\|_2^2} \frac{(1-R^2)^2}{(1-R)^4 R^2} \int_{D(w,R)} f \, dA \leq \frac{(1+R)^2}{R^2 (1-R)^2} \int_{D(w,R)} f \frac{|K_w(z)|^2}{\|K_w\|_2^2} \, dA \leq$ $\frac{(1+R)^2}{R^2(1-R)^2} \left\langle \frac{T_f K_w}{\|K_w\|_2}, \frac{K_w}{\|K_w\|_2} \right\rangle$. Then $\frac{1}{|D(w,R)|} \int_{D(w,R)} f \, dA \to 0$ as $\text{Im} w \to r$. Hence one has (2). Clearly (2) implies (3). Suppose (3) is true. For each $n \in \mathbb{N}$, let $K_n = \{(x,y) \in \mathbb{C} : -n \leq x \leq n, \text{ and } \frac{1}{n} + r \leq y \leq n + r\}$. Then $T_{f \cdot \chi_{K_n}}$ is compact and $\|T_f - T_{f \cdot \chi_{K_n}}\|^2 \leq \sup_{\|g\|_2 = 1} \int_{H_r \setminus K_n} f^2 |g|^2 dA \leq \sum_{k=1}^{n} \frac{1}{n} \int_{H_r \setminus K_n} f^2 |g|^2 dA \leq \sum_{k=1}^{n} \frac{1}{n} \int_{H_r \setminus K_n} f^2 |g|^2 dA \leq \sum_{k=1}^{n} \frac{1}{n} \int_{H_r \setminus K_n} f^2 |g|^2 dA \leq \sum_{k=1}^{n} \frac{1}{n} \int_{H_r \setminus K_n} f^2 |g|^2 dA \leq \sum_{k=1}^{n} \frac{1}{n} \int_{H_r \setminus K_n} f^2 |g|^2 dA \leq \sum_{k=1}^{n} \frac{1}{n} \int_{H_r \setminus K_n} f^2 |g|^2 dA \leq \sum_{k=1}^{n} \frac{1}{n} \int_{H_r \setminus K_n} f^2 |g|^2 dA \leq \sum_{k=1}^{n} \frac{1}{n} \int_{H_r \setminus K_n} f^2 |g|^2 dA \leq \sum_{k=1}^{n} \frac{1}{n} \int_{H_r \setminus K_n} f^2 |g|^2 dA \leq \sum_{k=1}^{n} \frac{1}{n} \int_{H_r \setminus K_n} f^2 |g|^2 dA \leq \sum_{k=1}^{n} \frac{1}{n} \int_{H_r \setminus K_n} f^2 |g|^2 dA \leq \sum_{k=1}^{n} \frac{1}{n} \int_{H_r \setminus K_n} f^2 |g|^2 dA \leq \sum_{k=1}^{n} \frac{1}{n} \int_{H_r \setminus K_n} f^2 |g|^2 dA \leq \sum_{k=1}^{n} \frac{1}{n} \int_{H_r \setminus K_n} f^2 |g|^2 dA \leq \sum_{k=1}^{n} \frac{1}{n} \int_{H_r \setminus K_n} f^2 |g|^2 dA \leq \sum_{k=1}^{n} \frac{1}{n} \int_{H_r \setminus K_n} f^2 |g|^2 dA \leq \sum_{k=1}^{n} \frac{1}{n} \int_{H_r \setminus K_n} f^2 |g|^2 dA \leq \sum_{k=1}^{n} \frac{1}{n} \int_{H_r \setminus K_n} f^2 |g|^2 dA \leq \sum_{k=1}^{n} \frac{1}{n} \int_{H_r \setminus K_n} f^2 |g|^2 dA \leq \sum_{k=1}^{n} \frac{1}{n} \int_{H_r \setminus K_n} f^2 |g|^2 dA \leq \sum_{k=1}^{n} \frac{1}{n} \int_{H_r \setminus K_n} f^2 |g|^2 dA \leq \sum_{k=1}^{n} \frac{1}{n} \int_{H_r \setminus K_n} f^2 |g|^2 dA \leq \sum_{k=1}^{n} \frac{1}{n} \int_{H_r \setminus K_n} f^2 |g|^2 dA \leq \sum_{k=1}^{n} \frac{1}{n} \int_{H_r \setminus K_n} f^2 |g|^2 dA \leq \sum_{k=1}^{n} \frac{1}{n} \int_{H_r \setminus K_n} f^2 |g|^2 dA \leq \sum_{k=1}^{n} \frac{1}{n} \int_{H_r \setminus K_n} f^2 |g|^2 dA \leq \sum_{k=1}^{n} \frac{1}{n} \int_{H_r \setminus K_n} f^2 |g|^2 dA \leq \sum_{k=1}^{n} \frac{1}{n} \int_{H_r \setminus K_n} f^2 |g|^2 dA \leq \sum_{k=1}^{n} \frac{1}{n} \int_{H_r \setminus K_n} f^2 |g|^2 dA \leq \sum_{k=1}^{n} \frac{1}{n} \int_{H_r \setminus K_n} f^2 |g|^2 dA \leq \sum_{k=1}^{n} \frac{1}{n} \int_{H_r \setminus K_n} f^2 |g|^2 dA \leq \sum_{k=1}^{n} \frac{1}{n} \int_{H_r \setminus K_n} f^2 |g|^2 dA \leq \sum_{k=1}^{n} \frac{1}{n} \int_{H_r \setminus K_n} f^2 |g|^2 dA \leq \sum_{k=1}^{n} \frac{1}{n} \int_{H_r \setminus K_n} f^2 |g|^2 dA \leq \sum_{k=1}^{n} \frac{1}{n} \int_{H_r \setminus K_n} f^2 |g|^2 dA \leq \sum_{k=1}^{n} \frac{1}{n} \int_{H_r \setminus K_n} f^2 |g|^2 dA \leq \sum_{k=1}^{n} \frac{1}$ $C \sup_{w \in H_r} \frac{1}{|D(w,R)|} \int_{(H_r \setminus K_n) \cap D(w,R)} f^2 dA$ and hence $\lim_{n \to \infty} \|T_f - T_{f \cdot \chi_{K_n}}\| = 0$. Since $T_{f : \chi_{K_n}}$ is compact, T_f is compact.

Let H^{∞} be the set of all bounded holomorphic functions on H_r and let $\mathcal U$ be the norm closed subalgebra of $L^\infty(H_r,dA)$ generated by H^∞ and the complex conjugates of all the functions in H^{∞} . For any $f = u + iv \in H^{\infty}$, u and v are bounded harmonic functions. If u is a real-valued bounded harmonic function on H_r then $e^{u+i\overline{u}}\in H^\infty$. Since $0\notin\{e^{2u(z)}:z\in H_r\}$, $loge^{2u}=2u\in\mathcal{U}$ and hence \mathcal{U} is the norm closed subalgebra of $L^{\infty}(H_r,dA)$ generated by bounded harmonic functions. Let $\Phi(z)=\frac{f(z)-f(w)}{(z-w)(z-\bar{w})^{-1}}$. Then Φ is holomorphic on H_r and $|\Phi(z)|\leq 2\|f\|_{\infty}$ for all $z\in H_r$. Thus one has the following:

LEMMA 2.11. For $f \in H^{\infty}$, $|f(w) - f(z)| \le 2||f||_{\infty} d(w, z)$.

LEMMA 2.12. For $R \in (0,1)$ and $w \in H_r$, $\int_{D(w,R)} |K_w|^2 dA = R^2 ||K_w||_2^2$.

PROOF. For $R \in (0,1)$ and $w = x + iy \in H_r$, $|K_w(z)| = \frac{|\rho_w'(z)|}{2\pi(y-r)}$, where $\rho_w(z) = \frac{z-w}{z-\bar{w}}$ and hence $\int_{D(w,R)} |K_w(z)|^2 dA(z) = \frac{1}{4\pi^2(y-r)^2} \int_{D(w,R)} |\rho_w'(z)|^2 dA(z) = \frac{1}{4\pi^2(y-r)^2} |B(0,R)| = \frac{R^2}{4\pi(y-r)^2} = R^2 ||K_w||_2^2$.

Suppose $f \in L^{\infty}(H_r, dA)$, $g \in H^{\infty}$ and $h \in B^2$. Since $gh \in B^2$, $T_fT_g(h) = T_f(P(gh)) = T_f(gh) = P(fgh) = T_{fg}(h)$ and hence $T_fT_g = T_{fg}$. Since $\int_{D(w,R)} \int_H |g(u)|^2 K_w(u) K_u(z) \overline{K_w(z)} |dzdu \leq ||g||_{\infty}^2 ||K_w||_2 \int_{D(w,R)} |K_w(u)| ||K_w||_2 du < \infty$, one has the following property:

THEOREM 2.13. Suppose $f \in H^{\infty}$ and $\lim_{z\to\infty} f(z) = 0$. Then T_f is compact iff $f \in C_0(H_r)$.

PROOF. By Proposition 2.7, if $f \in C_0(H_r)$ then T_f is compact. Suppose that there is $\delta > 0$ and a sequence $\{w_n\}$ in H_r such that $\lim_{n \to \infty} \operatorname{Im} w_n = r$ and $|f(w_n)|^2 \ge \frac{\delta}{2}$ for all n. Then there is R > 0 such that $|f(z)|^2 \ge \frac{\delta}{2}$ for all $z \in D(w_n, R)$ and $\left\langle \frac{T_{|f|^2}K_{w_n}}{\|K_{w_n}\|_2}, \frac{K_{w_n}}{\|K_{w_n}\|_2} \right\rangle \ge \int_{D(w_n, R)} \frac{|f|^2 |K_{w_n}|^2}{\|K_{w_n}\|_2^2} dA \ge \frac{\delta}{2} \int_{D(w_n, R)} \frac{|K_{w_n}|^2}{\|K_{w_n}\|_2^2} dA = \frac{\delta}{2} R^2$. This contradicts to the fact that $T_{|f|^2}$ is compact and Proposition 2.9.

References

- [1] S. Axler, Bergman Spaces and Their Operators, Surveys of Some Recent Results in Operator Theory, Vol. 1, Potman Research Notes in Math. 171, 1-50, 1988.
- [2] S. Axler, P. Bourden and W. Ramey, Harmonic Function Theory, Springer-Verlag, New York, 1992.
- [3] J. Miao, Toeplitz Operators on Harmonic Bergman Spaces, Integral Equations and Operator Theory 27 (1997), 426-438.
- [4] S. H. Kang, J. Y. Kim, Bergman Functions on Upper Planes, J. Nat. Sci. Sookmyung Women's Univ. 8 (1997), 79-84.

[5] K. Zhu, Operator Theory in Function Spaces, Marcel Dekker, Inc., New York and Basel, 1990.

Department of Mathmatics Sookmyung Women's University Seoul 190-242, Korea