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ORTHOGONALIZATION PROCESS USING SYSTEMS

SUCHEOL Y1

ApesTrACT Orthogonalization can be done by the well known Gram-
Schmidt process or by usmg Householder transformations. In thus
paper. we introduced an alternative process usmg linear systems

1. Introduction

A given set of linecarly independent vectors can be replaced by an
orthonormal basis that spans the same space. One of the well known
algorithm for this purpose is the Gram-Schmidt process and it is widely
used in algorithms for solving linear systems. We first consider iterative
methods for solving large linear systems that use orthogonalization
process to generate basis vectors for some spaces The GMRES method
[8] given by Saad and Schultz is a Krylov subspace method for solving
a linear system

(1) Axr =b, where A€ R™™ is nonsingular.

The kth iterate of GMRES is defined as z;. = 29 + 21 for a given initial
guess g € R™ and the correction zi is chosen to minimize the norm of
the residual vector r(z) = ro — Az, where rq = b — Axg, over the kth
Krylov subspace Kjy(rg, A) = span{rg, Arg,... ,A*"lrg} at the kth
step, i1 e,

2 ro — Az = min o — Azlls.
(2) Iro |2 zEKk(ro,A}“ 0 Il2
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In the GMRES method, the kth correction 2; is determined by
maintaining an orthonormal basis for the space K (rq, A) together with
a (k4 1) x k upper Hessenberg matrix Hy. An orthonormal basis
for Kr(rp, A} can be obtained by the Arnoldi process and it can be
summarized as follows:

ALGORITHM 1.1 Arnoldi Process

Initialize: Choose an initial vector v; with {|vy]2 = 1.
Iterate: For k =1,2,... , do:
he k :U?A’Uk,i =1,2,... ,k,

Tet1 = Avi — Yo byt
Set Atk = {|ks1l2.

If hyy16 = 0, stop, otherwise,
Vktt = Ot/ Ptk

For convenience, classical Gram-Schmidt orthogonalization is used
in the algorithm above. In practice, it is usual to implement Arnoldi’s
method using the modified Gram-Schmidt process [6], which has supe-
rior computational properties. Even if the classical Gram-Schmidt pro-
cess were replaced by the modified Gram-Schmidt process it is known
that it may fail to perform well if the vectors on which it operates are
not fairly independent as measured by the condition number. Bjorck
[1} has shown that orthogonahzation based on Householder transforma-
tions has great rehability and Walker (9] suggested an implementation
using Householder transformations in the Arnold) process.

The essential difficulty with the GMRES method 1s increasing stor-
age and cost per iteration in applying the Arnoldi process due to the
calculations of inner products and other computations in the long re-
cursion formula when k gets larger. Restarting the Arnoldi process
periodically every m iterations for some suitable value of m could be a
possible remedy. The resulting restarted version of GMRES is denoted
by GMRES(m). If A is symmetric 1n Arnoldi’s method, then we have
a short recursion formula In this symmetric case, Arnoldi’s method
with short recursion is often called the symmetric Lanczos process.
MINRES [7] can be viewed as a specialization of the usual GMRES
approach to the symmetric case, in which the short recurrence sym-
metric Lanczos process is used to generate an orthonormal basis for
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K k (T‘O, A) .

For the nonsyminetric Lanczos method, one starts with two nonzero
vectors v, and w; and then generates basis vectors {v,} for Ky(v1, A)
and {w,} for Ki(wy, AT) such that the bi-orthogonality condition

. 6,5 #0ifk =]
Wy Yk = 0 otherwise

holds. The point is that the two bases can be built with just three-term
recurrences, but we will lose the orthogonality of the basis elements.
The BCG method given by Fletcher 2] is a typical example of applying
the nonsymmetric Lanczos process The QMR method introduced by
Freund and Nachtigal [3] is another Krylov subspace method for solving
hnear systems, which is bascd on the nonsynmunetric Lanczos process.
The solutions of QMR can be obtained by solving a quasi-minimization
problem. In the symmetric indefinite case without preconditioning,
symmetric QMR [4] is obtained using the same approach as MINRES.
However, in solving the systems of the preconditioned system

Ay =¥, z=M;'y, where A’ = M7 'AM;! and & = M{'b,

symmetric QMR is also implemented by solviug a quasi-minimization
problem and 1t 1s clear that symmetric QMR is equivalent to MINRES
with no preconditioning.

The GMRES method 1s the most widely used for solving general lin-
ear systems and symmetric QMR is a very effective method for solving
symmetric indefinite lincar systems In section 2, we establish a theo-
retical result about Rutz values. In section 3, we give a new approach
of orthogonalization process by solving lineat systems and we present
numerical experiments in scction 4

2. On theoretical behavior

In the standard GMRES implementation, the Arnoldi process start-
g with v; = rg/||7pl)2 is applied and it can be readily seen that the
vectors vy, ..., Uk that are generated by Arnoldi's method form an or-
thonormal basis for the space Ki(rg, A). The following relation

(3) AVi = Viep1 H
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is also obtained from the Arnoldi process, where Vi = (vy,...,vg)
and Hy is a (kK + 1) x k upper Hessenberg matrix constructed by
the orthonormalizing scalars h, . Any vector z € Ki(rg, A} can be
parametrized as z = Viy for some ¥ € R* and then the lcast-squares
problem (2) is equivalent to

(4) Jgg}c (lirofl2es ™! — Hrylla

by the equation (3), where ¢¥™ is the first column of the identity ma-

trix Ix4+1. This upper Hessenberg-least-squares problem can be solved
by using Givens rotations because of the form of Hy.

DEFINITION 2.1. Suppose that .S € R™*™ is symmetric and U €
R™*k is such that UTU =1I. If

ZYWUTSsU)Z = diag (A, .-. ,Ae)
is the Schur decomposition of U7 SU, then the ), are called Ritz values

and y,, the ith column of UZ, are called Ritz vectors.

We can see that P, = Vi VT is the unique orthogonal projection onto
Ki(ro, A) and it is clear that V;I'PkAVk = VkTPkAPka is symmetric if
A is symmetric. Then it follows that there exists an orthogonal matrix
Qi such that

(5) QL (VI PLAVL)Qk = diag (61,... ,0x) = Dy
On the other hand, we have

VIP AV, = VIPWVis1 He by the relation (3)
(6) = VkTVkaTVk+1Hk
- gk)
where Hy is the k x & upper Hessenberg matrix that is obtained by

deleting the last row of Hy. In fact, it can be easily shown that H) is
a tridiagonal symmetric matrix if A is symmetric. Then the equation
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QT H.Qr = Dy, is satisfied by the equations (5) and (6), which implies
that the 0, are also eigenvalues of Hy.
On the subspace K (rg, A) of R™, we also have

(7) PeA = P AP, = Vi H VT

Any vector z in Kx(rg, A) can be written as z = Viy for some y € RF.
Then we can see that the equation PrAz = Az is equivalent to the
cquation Hiy = Ay and it also follows that Ritz values are eigenvalues
of P A if we consider eigenvectors only over the k-dimensional subspace
Ki(rg, A) of R™*. We summarize this result in the following theorem.

THEOREM 2.2 If A s symmetric and the columns of Vi are the
Arnoldi basws vectors with vy = ro/|\ro|l2 for Ki(ro, A); then the Ritz
values (ergenvalues of PrA wn that we consider eigenvectors of that
n X n matriz only over the k-dumensional subspace Ki(ro, A)) are the
same as the eigenvalues of Hy.

3. On orthogonalization

Suppose that we have linearly independent vectors vy, ..., v which

are all in R™. Yor a given vector » to be orthogonalized against th
k .

vectors vy,... , U5, we set w = v — Za,v, and find a = {(ay, ... ,ax)T
1=1

such that vTw =0 for 2 = 1,... |k, i.e., we need to find vectors w and

a such that (i) v = w+Via, where Vi = (v1,... ,vg) and (i) VI w =8,

where # is the zero vector in R*¥. Then the orthogonalization process

is equivalent to solving the following symmetric hinear system

() (5,’5" g)(ﬁ;’)=(9)

where [, is the 1dentity matrix of dimension n x n and 0 is the zero
matnix of dimension k& x k.

Suppose that we have an n x n real matrix A and partition A as

A= An Ap . If Ay; is nonsingular, then it is known that the
An Ao
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partitioned matrix A can be factorized as

A 1 0\ [An Ap
Apart 1)\ o0 s )

where S = Agy — AglAl_IlAlg is called the Schur complement of A;; in
A and we assume that the sizes of all matrices in the factorization are
appropriate for matrix multiplication. Then the coefficient matrix in
(8) can be factorized as

In_ ‘/k _ In Gk In. Vk
vIi o)  \VT I 0{ -VIv )’
where the size of the zero matrix 0y is n x k. Therefore, solving the

symmetric linear system {8} is equivalent to solving the following non-
symmetric linear system

o (5 ) ()= (o).

Then solving equations (8) and (9) may offer a new approach to or-
thogonalization.

4. Numerical experiments

We present numerical experiments that show the performance of or-
thogonalization by solving linear systems. We used MATLAB and used
double precision on Sun Microsystems workstations 1n all experiments.

To gencrate a matrix V having 100 Linearly independent columns, we
set V = rand(4000, 100) and then V 1s the matrix of dimension 4000 x
100 with random entries chosen from a uniform distribution on the
interval (0,1). For a vector v to be orthogonalized against the columns
of the matrix V, we set v = u + Vi, where u = eps{rand(4000,1) —
0 50ones{4000,1)),« = rand(100,1), eps is the machine epsilon, and
ones(4000,1) is the vector having 4000 components which are all ones.
The vector v 1s then nearly in the space span{v,|i = 1,..., 100}, where
v, 18 the ith column of V. Then the resulting systems have dimensions



ORTHOGONALIZATION PROCESS USING SYSTEMS 351

4100 x 4100. We also used the vector z = ones(4100,1) for the initial
guess 1n applying the symmetric QMR and GMRES methods to solve
equations {8) and (9) with no preconditioning. In all experiments, we
used solid and dashdot curves for the true residual norms generated by
symmetric QMR and GMRES when they are applied to linear systems
(8) and (9) with Vi = V, respectively. Figure 1 shows that both
symmetric QMR and GMRES solve the linear systems (8) and (9)
successfully up to approximately 10719 level of residual norm reduction

-14 1 1 1 i 1 1 1
0 10 20 30 40 50 60 70 80 _

Figure 1: Log,o of the true residual! norms vs. iterations. Solid curve
GMRES applied to (9); dashdot curve. symmetric QMR applied to
(8)

In the following Figure 2, we plotted the residual norm reductions
versus floating-point operation counts for symmetric QMR and GM-
RES. As shown in Figure 2, symmetric QMR and GMRES need about
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the same number of operations to reach around 10710 level of residual
norm reduction, although GMRES needs fewer operations than the
symmetric QMR method does.
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Figure 2- Log)o of the true residual norms vs. the number of floating-
point operations. Solid curve: GMRES applied to (9); dashdot curve:
symmetric QMR applied to (8).

However, solving equation (8) can be preferred, since the condition
number of the coefficient matrix in equation (9) might be larger than
that of the coefficient matrix in equation (8) because of the matrix
V,I' Vi and roundoff errors can be arisen in the calculation of that ma-
trix. Here, the condition number is defined as the ratio of the largest
and smallest singular values. As we can see, the linear system (9} can
be solved blockwise, i.e., we solve the following equation for o
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(10) ViVia = Vv

and set w = v ~ Via. Since the coefficient matrix V] Vi in equation
(10) 1s symmetric positive definite, we can use the Cholesky decom-
position to solve equation (10), which is a direct method, because the
dimension of the coefficient matrix in (10) is small in our test example
We investigated condition numbers of the matrices A = (V,v,) and
B = (V,v.), where vs and v, are vectors obtained by solving (8) and
(10} using the symmetric QMR method with stopping tolerance 1010
for residual norm reductions and Cholesky decompeosition, respectively.
We found that the condition numbers of matrices A and B are ap-
proximately 6.7941e+12 and 5.3300e-+14, respectively. We also found
that Euclidean norms of the vectors V7 vs and VT v, are approximately
4.1369¢-11 and 8 4901e-10, respectively. The above observation imples
that we may have a better accuracy by solving equation {8) using sym-
metric QMR, even though the symmetric QMR method needs about
40% more operations to reach around 10710 level of true residual norm
reduction than solving equation (10) with Cholesky decomposition In
our experiments, we could find that solving equation (9) with GMRES
gives only almost the same amount of accuracy that solving the nor-
mal equation {10) with Cholesky decompositon produces. We think
this phenomenon can be explained by condition numbers, the condi-
tion number of the coeflicient matrix in (8) 1s about 1 8654e+4, whereas
that of the coefficient matrix in {9) is approximately 1 0484e+3, 1.e.,
the linear system (8) is better conditioned than the linear system (9)
is.

5. Conclusian

In this paper, we have considered Krylov subspace methods for solv-
ing large linear systems and have introduced a new approach for or-
thogonalization that use linear systems. Qur orthogonalization may
be usefnl when we orthogonalize a vector against a given set of hn-
early independent vectors for a better accuracy, even though solving
linear systems {8} by iterative linear solvers require more floating-point
operations than solving the normal equation (10) by direct methods.
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