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ORTHOGONALIZATION PROCESS USING SYSTEMS

SUCHEOL Yl

Abstract Orthogonalization can be done by the well known Gram- 

Schmidt process or by using Householder t r ans format ions. In this 

paper, we introduced an alternative process using linear systems

1. Introduction
A given set of linearly independent vectors can be replaced by an 

orthonormal basis that spans the same space. One of 난xe well known 
algorithm for this purpose is the Gram-Schmidt process and it is widely 
used in algorithms for solving linear systems. We first consider iterative 
methods for solving large linear systems that use orthogonalization 
process to generate basis vectors for some spaces The GMRES method 
[8] given by Saad and Schultz is a Krylov subspace method for solving 
a linear system

(1) Ax 二二 6, where A e J?nXn is nonsmgular.

The fcth iterate of GMRES is defined as Xk — for a given initial 
guess xq £ Rn and the correction Zk is chosen to minimize the norm of 
the residual vector 厂(z)=尸。一 Az1 where = b — Axq^ over the kth 
Krylov subspace 三 span｛質o,厶厂o,…,at the kth
step, i e,

(2) ||r0 - Azk\\2 = mm ||r0 - Az\\2.
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In the GMRES me아lod, the Hh correction 硃 is determined by 
maintaining an orthonormal basis for the space A) toge나ler with 
a (k + 1) x & upper Hessenberg matrix H*. An orthonormal basis 
for K* (丁s A) can be obtained by the Arnoldi process and it can be 
summarized as follows:

ALGORITHM 1.1 Arnoldi Process
Initialize： Choose an initial vector with ||幻迪2 = 1.
Iterate: For fc = 1,2,... , do:

Avjc,2 — 1,2,... , fc,
讯+1 = Avk 一 Uh

Set，块= Il'Cfc+i|(2-
If 打左+1仿 =0? stop, otherwise,

= ‘祈c+l/服+l,k
For convenience, classical Gram-Schmidt orthogonalization is used 

in the algorithm above. In practice, it is usual to implement ArnoldiJs 
method using the modified Grani'Schmidt process [6], which has supe­
rior computational properties. Even if the classical Gram-Schmidt pro­
cess were replaced by 나le modified Gram-Schmidt process it is known 
that it may fail to perform well if the vectors on which it operates are 
not fairly independent as measured by the condition number. Bjorck 
[1] has shown that orthogonalization based on Householder transforma­
tions has great reliability and Walker [9] suggested an implementation 
using Householder transformations m the Arnoldi process.

The essential difficulty with the GMRES method is increasing stor­
age and cost per iteration m applying the Arnoldi process due to the 
cal이뇌ati。口s of inner products and other computations in the long re­
cursion formula when k gets larger. Restarting the Arnoldi process 
periodically every m iterations for some suitable value of m could be a 
possible remedy. The resulting restarted version of GMRES is denoted 
by GMRES(m). If A is symmetric m Arnoldiks method, 나len we have 
a short recursion formula In this symmetric case, Arnoldik method 
with 아lort recursion is often called the symmetric Lanczos process. 
MINRES [7] can be viewed as a specialization of the usual GMRES 
approach to the symmetric case, in which the short recurrence sym- 
nietric Lanczos process is used to generate an orthonormal basis for
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Kk(r0,A).
For the nonsymmetric Lanczos method, one starts with two nonzero 

vectors 如 and wi and then generates basis vectors {灼} for K"如"4) 
and (wj} for Kk(wi^ A1'} such that the bi-o호thogonahty condition

T f 关 0 if k =顶

W3 % = ¥ 0 otherwise

holds. The point is that the two bases can be built with just three-term 
recurrences, but we will lose the orthogonality of the basis elements. 
The BCG method given by Fletcher [2] is a typical example of applying 
the nonsymmetric Lanczos process The QMR method introduced by 
Freund and Nachtigal [3] is another Krylov subspace method for solving 
linear systems, which is based on the nonsymmetric Lanczos process. 
The solutions of QMR can be obtained by solving a quasi-minimization 
problem. In the symmetric indefinite case without preconditioning, 
symmetric QMR [4] is obtained using the same approach as MINRES. 
However, in solving the systems of the preconditioned system

Ay = I" x — A頌以 where A! = and

symmetric QMR is also implemented by solving a quasi-mimmization 
problem and it is clear that symmetric QMR is equivalent to MINRES 
with no preconditioning.

The GMRES method is the most widely used for solving general lin­
ear systems and symmetric QMR is a very effective method for solving 
symmetric indefinite linear systems In section 2, we establish a theo­
retical result about Ritz values. In section 3, we give a new approach 
of orthogonalization process by solving linear systems and we present 
numerical experiments in section 4

2. On theoretical behavior
In the standard GMRES implementation, the Arnoldi process start­

ing with Vi = ro/!!ro|j2 is applied and it can be readily seen that the 
vectors …that are generated by Arnoldik method form an or­
thonormal basis for the space K"厂("4). The following relation

(3) AVk = Vk+iHk
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is also obtained from the Arnoldi process, where Vk =(如〉...，陽) 

and Hk is a (fc + 1) x A; upper Hessenberg matrix constructed by 
the orthonormalizing scalars h나＞ Any vector z G 秩(尸o,4) can be 
parametrized as z = V^y for some y E Rk and then the least-squares 
problem (2) is equivalent to

⑷ m觇||||商2者+1 - H湖|2
yeRk

by the equation (3), where is the first column of the identity ma­
trix This upper Hessenberg4east・squares problem can be solved 
by using Givens rotations because of the form of

Definition 2.1. Suppose that S G 7?nxn is symmetric and U G 
Rnxk is such that UTU = L If

ZT QjT SU)Z = diag (Ai,... ,Afc)

is the Schur decomposition of UT SUthen the are called Ritz values 
and 饥,the zth column of UZy are called Ritz vectors.

We can see that F% = *卩？ is the unique orthogonal projection onto 
A) and it is clear that V^P^AVk = V?F%APkVk is symmetric if 

A is symmetric. Then it follows that there exists an orthogonal matrix 
Qk such that

⑸ PkAVQQk = diag (色，...，％) =玖.

On the other hand, we have

V?P^AVk = V?PkVk+'Hk by the relation (3)

⑹ =V^VkV^Vk+1Hk

= Hk,

where is the k x k upper Hessenberg matrix that is obtained by 
deleting the last row of Hk- In fact, it can be easily shown that Hk is 
a tridiagonal symmetric matrix if A is symmetric. Then the equation 
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Q^HkQk = Dk is satisfied by the equations (5) and (6), which implies 
that the are also eigenvalues of Hk.

On the subspace ^4) of we also have

⑺ PkA = PkAPk^VkHkV^.

Any vector z in K&e A) can be written as z = VkV for some y E Rk. 
Then we can see that the equation P^Az = Xz is equivalent to the 
equation H^y = Xy and it also follows that Ritz values are eigenvalues 
of RM if we consider eigenvectors only over the A;-dimensional subspace 
Kk (ro. ^-) of We summarize this result m the following theorem.

Theorem 2.2 If A is symmetric and the columns of 14 are the 
Arnold% basis vectors wzth 如=ro/||ro|12 for 硃(7%\ then the Ritz 
values (eigenvalues of PkA that we consider eigenvectors of that 
n x n matrix only over the k-dimensional subspace (厂(),厶)丿 are the 
same as the eigenvalues of H^.

3. On orthogonalization
Suppose that we have linearly independent vectors vi,... , which 

are all in For a given vector v to be orthogonalized against the 
k -

vectors 如〉... , 程〉we set w = v — 僉气 and fin션 a = (ai,... ,(y.k)T

such that = 0 for z = 1,... , /c, i.e., we need to find vectors w and 
a such that (i) v =糾+ where =(如)...,Vk) and (li) V^w = Q
where 9 is the zero vector in Rk. Then the orthogonalization process 
is equivalent to solving the following symmetric linear system 

(8)
In Vk\一 fv\ 
理‘ 以八如티

where In is the identity matrix of dimension n x n and 0人；is the zero 
matrix of dimension fc x fc.

Suppose that we have an n x n real matrix A and partition A as 
A = ( M" ^12 I . If An is nonsingular, then it is known that the 
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partitioned matrix A can be factorized as

A _ ( I 0A (An &2 
a~[a21a~^ IJ\Q S

where S = A22 一 厶2「4看七412 is called the Schur complement of An in 
A and we assume that the sizes of all matrices in the factorization are 
appropriate for matrix multiplication. Then the coefficient matrix in 
(8) can be factorized as

(L" ^4 A _ A In 0k\ f In 
3?皈丿=3? 4丿顷

* )

-%邛丿'

where the size of the zero matrix 0^ is n x k. Therefore, solving the 
symmetric linear system (8) is equivalent to solving the following non- 
symnietric linear system

Then solving equations (8) and (9) may offer a new approach to or­
thogonalization.

4. Numerical experiments
We present numerical experiments that show the performance of or­

thogonalization by solving linear systems. We used MATLAB and used 
double precision on Sun Microsystems workstations in all experiments.

Tb generate a matrix V having 100 linearly independent columns, we 
set V = rand(4000,100) and then V is 나le matrix of dimension 4000 x 
100 with random entries chosen from a uniform distribution on the 
interval (0.1). For a vector v to be orthogonalized against the columns 
of the matrix V, we set v — u Vay where u ：= eps(rand(4000,1)— 
0 5ones(4000,1)), a； = rand(100,1), eps is the machine epsilon, and 
ones(4000,1) is the vector having 4000 components which are all ones. 
The vector v is then nearly in the space span(fz|z = 1,... , 100}, where 
切 is the ith column of V. Then the resulting systems have dimensions 
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4100 x 4100. We also used 난le vector x = ones(4100,1) for the initial 
guess in applying the symmetric QMR and GMRES methods to solve 
equations (8) and (9) with no preconditioning. In all experiments, we 
used solid and dashdot curves for the true residual norms generated by 
symmetric QMR and GMRES when they are applied to linear systems 
(8) and (9) with * = V, respectively. Figure 1 shows that both 
symmetric QMR and GMRES solve the linear systems (8) and (9) 
successfully up to approximately 1O~10 level of residual norm reduction

Figure 1: Logw of the true residual norms vs, iterations. Solid curve* 
GMRES applied to (9); dashdot curve, symmetric QMR applied to 
(8)

In the following Figure 2, we plotted the residual norm reductions 
versus floating-point operation counts for symmetric QMR and GM­
RES. As shown in Figure 2, symmetric QMR and GMRES need about 
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the same number of operations to reach around IO-10 level of residual 
norm reduction, although GMRES needs fewer operations than the 
symmetric QMR method does.

Figure 2- Logic of the true residual norms vs. the number of floating­
point operations. Solid curve: GMRES applied to (9); dashdot curve: 
symmetric QMR applied to (8).

However, solving equation (8) can be preferred, since the condition 
numbe호 of the coefficient matrix in equation (9) might be larger than 
that of the coefficient matrix in equation (8) because of 나旅 matrix 

and roundoff errors can be arisen in the calculation of that ma­
trix. Here, the condition number is defined as the ratio of the largest 
and smallest singular values. As we can see, the linear system (9) can 
be solved block wise, i.e., we solve the following equation for a
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(10) V^Vka = V^v

and set w = v — Vka. Since the coefficient matrix 吁* in equation 
(10) is symmetric positive definite, we can use the Cholesky decom­
position to solve equation (10), which is a direct method, because the 
dimension of the coefficient matrix in (10) is small in our test example 
We investigated condition nuinbers of the matrices A = and 
B = (V, vc), where vs and vc are vectors obtained by solving (8) and 
(10) using the symmetric QMR method with stopping tolerance 10~10 
for residual norm reductions and Cholesky decomposition, respectively. 
We found that the condition numbers of matrices A and B are ap­
proximately 6.7941e+12 and 5.3300e+14, respectively. We also found 
that Euclidean norms of the vectors V^vs and V^vc are approximately 
4.1369e-ll and 8 4901e-10, respectively. The above observation implies 
that we may have a better accuracy by solving equation (8) using sym­
metric QMR, even though the symmetric QMR method needs about 
40% more operations to reach around 10-10 level of true residual norm 
reduction than living equation (10) with Cholesky decomposition In 
our experiments, we could find that solving equation (9) with GMRES 
gives only almost the same amount of accuracy that solving the nor­
mal equation (10) with Cholesky decompositon produces. We think 
this phenomenon can be explained by condition numbers, the condi­
tion number of the coefficient matrix m (8) is about 1 8654e+4, whereas 
that of the coefficient matrix in (9) is approximately 1 0484e+5； i.e.? 
the linear system (8) is better conditioned than the linear system (9) 
is.

5. Conclusion
In this paper, we have considered Krylov subspace methods for solv­

ing large linear systems and have introduced a new approach for or­
thogonalization that use linear systems. Our orthogonalization may 
be useful when we orthogonalize a vector against a given set of lin­
early independent vectors for a better accuracy, even though solving 
linear systems (8) by iterative linear solvers require more floating-point 
operations than solving the normal equation (10) by direct methods.
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