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Abstract In this paper, we prove that any A-firmiy nonexpansive 

mapping (0<A<l)T C—has a fixed point in C whenever C 

is a finite union of nonempty, bounded, closed and convex subsets of 

a metric space of hyperbolic type

고. Introduction
We suppose that (、M> d) is a metric space containing a family L of 

metric lines such that distinct points x.y Q M lie on exactly one num

ber l(x^y) of L. This metric line determines a unique metric segment 

joining x and y. We denote this segment by S[x, y]. For each ol E [0,1] 

there is a unique point z m y] for which

d(皿 z) = ad(x. y) and d(z, g) = (1 — a)d(x. y)

Adopting the notation of [8] or [17], we shall denote this point by 

(1 一 a)x ® ay.

We shall say that M、or more precisely (Al, d, £), is a hyperbolic 

space if
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for all 工,y and z in M.

In section 2 of this paper, we propose the various classes of metric 

spaces, especially, metric spaces of pre-hyperbolic type. We shall find 

the equivalent convexity condition for a complete metric spa<。of pre- 

hyperbolic type (see Proposition 2.1). In section 3, we prove that any 

A-firmly nonexpansive mapping (0 < A < 1) T : C t C has a fixed 

point in C whenever C is a finite union of nonempty, bounded, closed 

and convex subsets of a complete metric space of pre-hyperbolic type 

(see Theorem 3.2).

2. Spaces of hyperbolic type
Definition 2.1. A metric space M is said to be of pre-hyperbohc 

type if for each x,y E M there is a specified metric segment S\x^ y] 

joining x and y, which has the property that if p G Af and if m is the 

point of 5[x, y] which satisfies m) = ad(x, ?/), then

(A) d(p, m) < (1 - a)d(p, x) + ad(jp, y).

Definition 2.2. A metric space M is said to be of hype호bohc type 

if for each x,y e M there is a specified metric segment S[x, y] joining 

x and y for which the following property holds: Let p, q,r G M and 

a G (0,1), and suppose mi and are points of 5[p, r] and S[p, q\ 

respectively, which satisfy

d(m15p) = ad(p, r) and d(rrt2^P)= ad(饱 q).

Then

(H) 』(皿如2)v Qd(r,q).

Obviously, (H) implies (A) (cf [13]). There is an important con

sequence of condition (H). If M is of hyperbolic type and if mi = 

(1 一 ct)p ® ag and m2 = (1 — a)s © ar, for p,q,r,s E M and a € (0,1), 

then (H) in fact implies

(H‘) 涉(皿如2)< (1 -- a)rf(p, s) + ad(q, r).

The following lemma was mentioned in [1이.
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Lemma 2.1. Let (M,d) be a metric space of hyperbolic type Then 

(H) is equivalent to the following property

(Ho)
乙 L 厶 Z- 厶

for all p, r and q tn M.

We remark that the term hyperbolic type' is used in the above 

context because condition (H) with strict inequality is characteristic of 

hyperbolic geometry (see [2이). At the same time, all normed linear 

spaces are of hyperbolic type. (As a matter of fact, if equality always 

holds in (H), then the resulting condition characterizes normed linear 

spaces among an appropriate class of metric spaces ([1])). So are all 

Hadamard manifolds, that is, all finite-dimensional connected, simply 

connected, complete Riemannian manifolds of nonpositive curvature 

(cf., [4, pp. 30티). An infinite-dimensional example is provided by the 

Hilbert ball equipped with the hyperbolic metric (see [8, pp, 104]). For 

other results in this setting we refer, for example, to Reich [18] (and 

citations therein), Shafrir [20] and Reich and Shafir [17].

Definition 2.3. A metric space M is strongly convex provided that 

for any two points x.y E M there is only one point z E M su사] that

d{x, z) = d(y,z) = -d(x,y).

Such a z will be called a strong midpoint of x and y

Obviously, every strongly convex complete metric space (虬 d) yields 

a unique metric segment S[x, y] for each x.y E M. Therefore, every 

hyperbolic metric space is strongly convex. For a characterization of 

the metric space of pre-hyperbolic type, we need the following stronger 

concept.

Definition 2.4 A metric space is said to have strongly 

convex ball intersections if for each x,y E M

B(u; + |d(7/,w)) 0.

厶 z
uEM
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It is easy to see that all z E + are strong

midpoints of x and y. Also, every metric space of pre-hyperbolic type 

has strongly convex ball intersections. It is natural to ask whether the 

converse holds or not. The following gives an affirmative answer if M 

is complete.

Proposition 2.1. Let be a complete metric space. Then M 

has strongly convex ball intersections if and only if it is of pre-hyperbohc 

type.

Proof. It suffices to 아iow "only if”. Let G 虬 xq 丰 xi， 

Since M has strongly convex ball intersections, xq and Xi have a strong 

midpoint , i.e.,

I ]
Zg €B(u, -d(x0, u) + -d{xi, «)).

2 1 1 L L
uEM

Similarly, there exists points ^1/4,^374 which are respective strong mid

points of (xo,xi) and (xi ,tj). Note that if p G A/ and if z = 1,3 then

z z
d(0,%/4)< (1 - -)d(p,a；o) + ~d{p,xi).

The idea is proceed by induction. Letting p = d(以)，Xi) and mimicking 

the proof of [7; pp.25—26] (only replaced d by p in [7]), we know that 

the closure of the set

8
U {xk/2n ： 1 < < 2n — 1} 

n=l

is the desired metric segment S[xq^Xi] joining xq and which clearly 

satisfies (A).

3. Fixed point theorems
Let (A/, d) be a metric space of hyperbolic type. The modulus of 

convexity 6 : (0, oo) x (0,2] —> [0,1] of M is defined by setting
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where the infimum is taken over all points a, x and y satisfying rf(a, x) < 

r, d(a、g) < r and d(气g) > re. We say that M is uniformly convex 

if 8 is always positive. Several examples of uniformly convex metric 

spaces of hyperbolic type are given in [8] and [17]. In particular the 

infinite dimensional complex Hilbert unit ball is a uniformly convex 

metric spaces of hyperbolic type. In this space, we know [8, pp.107] 

that

&(如=]_ 丄 taiL [sinh(r(l + q/2))smh(r(l — "2))卩〃

1 r coshr

Therefore, 5(r, e) is continuous on (0,8)x (0,2]. For out argument 

of the general metric space of pre-hyperbolic type, throughout this 

section, we assume that(5(r, e) is also continuous on (0, oo) x (0,2]. 

The fixed point theory on metric spaces of hyperbolic type have been 

studied wid이y (see [8],[12],[13]). We will say that a subset C of a 

metric space M of pre-hyperbolic type is convex if S[x, y] C C whenever 

x.y € C.

Let (xn} be a bounded sequence in a metric space (Af, d), and let C 

be a closed convex subset of M. Consider the functional / : C —> [0, oo) 

defined by

(3.1) /(x) = limsupd(:如,双)
n—»oo

for all x e M.

The infimum of over C is called the asymptotic radius of (xn) 

with respect to C. A point z in C is called the asymptotic center of 

{xn} with respect to C if

f(z) = inf(/(a;) : x eC}

The set of all asymptotic center is denoted by A(C. {xn})

We can obtain the following lemma with a similar manner of uni

formly convex Banach space (see Theorem 4.1 and Proposition 18.1 of 

[8])-
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Lemma 3.1. Let (Af, d) be a uniformly convex complete metric space 

M of pre-hyperbohc type. Then every bounded sequence in M has a 

unique asymptotic center with respect to any closed convex subset of 

M, ze 4(G {氣}) = {z).

The following useful result is a direct consequence of Lemma 3.1. 

This is a natural hyperbolic metric version of Corollary 1 of [1 이 in a 

uniformly convex Banach space.

Lemma 3.2. Let (Af, d) be a uniformly convex complete metric space 

M of pre-hyperbohc type. Let {xn} be a bounded sequence m a closed 

convex subset C of M and A(C, {私}) = {z}. Then

{ym} C C and hm f(ym) = f(C, {xn})。lim ym = z, 
m—>oo m—»oo

where /(C, (rrn}) means the asymptotic radius of {xn} with respect to 

C.

Let (M, d) be a metric space and C C M. Let T : (7 —» C be a 

self-mapping of C. There appear in the literature two definitions of 

an asymptotically nonexpansive mapping. The weaker definition (cf., 

Kirk [15]) requires that for each x E C 血岛一8 cn(x) = 0, where

cn(x) := max{0, sup[d(7叫饥 7개勺) — ?/)]}.
yec

Such a mapping is later said to be of asymptotically nonexpansive 

type. The stronger definition (briefly called asymptotzcally nonexpan

sive as in [5]) requires each iterate Tn to be Lips사litzian with Lipschitz 

constants —> 1 as n exo. Every nonexpansive mapping is asymp

totically nonexpansive. All asymptotically nonexpansive mappings are 

Lipschitzian, but mappings of asymptotically nonexpansive type is not 

Lipschitzian.

We obtain the following theorems with the similar manner. The fol

lowing results are well-known facts in uniformly convex Banach spaces. 

Compare Theorem 5.2 of [8] for nonexpansive mappings, and Theorem 

1 of [10] for asymptotically nonexpansive mappings.
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Theorem 3.1. Let C be a closed and convex subset of a uniformly 

convex complete metric space (M, d) of pre-hyperbohc type. If T : C t 

C is a continuous mapping of asymptotically nonexpansive type. Then 

T has a fixed point if and only 寸 there exists a point x E C such that 

the sequence of iterates {Tnx} is bounded.

Proof. The proof is mimicking the lines of the proof of [1 이 by 

using Lemma 3.1 and 3.2. Since the necessity follows easily, it suffices 

to show ”if5'. Assume rr()G C is such that the sequence {xn = Tnx()} is 

bounded, and let A(C, {a;n}) = {z). Let (ym = Tm^}. We shall show

= hmsupd(rrn,ym) — f(C,{xn}) r as m oo. 
n—>8

By lemma 3.2, this would imply z as m oo, and because T is 

continuous

Tz = T( lim Tmz) = hm Tm+lz = z. 
m—>8 771―>CQ

For two integers n > m > 1 we have

d(^Xn, ?/m) = d{T m, T Z)M(恥(2)+ d(x n—m? 2).

Taking hm sup as n —> oc on both sides, this implies r < /(ym) < 

Cm(z) + /(Z)= Cm(z) + r and so hmm^oo f(jjm)=仁

The following is a natural partial metric version of [10,Theorem 1] 

in a Banach space.

COROLLARY 3.1 Let C be a closed and convex subset of a umformly 

convex complete metric space (M,d) of pre-hyperbohc type. 7/T : C —> 

C zs a asymptotically nonexpansive mapping Then the following are 

equivalent

(a) T has a fixed point.

(b) There exists a point x E C such that the sequence of iterates 

{Tnx} is bounded.

(c) There exists a bounded approximating sequence {xn} for T.
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Definition 3.1. Let C be a nonempty subset of a metric space 

(M, d) of hyperbolic type, and let A G (0,1). Then T : C M is said 

to be X-firmly nonexpanszve if

d(Tx,Ty) < d((l — X)x ® XTx, (1 — X)y ㊉ XTy)

for all x^y EC.

See [8] in a Banach space case. It is easily seen that A-firmly nonex- 

pansive is nonexpansive. Conversely, to each nonexpansive T : C — C 

one can associate a firmly nonexpansive mapping with the same fixed 

point set whenever C is closed and convex (cf., see [8,pp. 124] in the 

Hilbert ball with the hyperbolic metric) Moreover, from the point 

of view of fixed point theory for the class of all closed convex subsets 

C, firmly nonexpansive mappings T : C C do not exhibit better 

behavior than nonexpansive mappings in general [7]. However, this 

behavior is completely different in the class of nonconnected subsets C 

in a Banach space setting (cf.,[21]).

For our further argument, we suppose M satisfies the following prop

erty:

(S) If d(a> x) = g) ：= 了〉0 and if a 6 for some A 6 (0,1),

then either a E S[皿 y] or x — g, where u\ := (1 — 시q ® Xx and 

v\ := Aa © (1 — X)y.

It is easy to see that if X is a strictly convex Banach space, the 

above property (S) is easily satisfied.

Theorem 3.2. Let (M, d) be a uniformly convex complete metric 

space of hyperbolic type with the property (S). Let C = UR=]CL be a 

union of nonempty bounded, closed convex subsets Ck of M. Suppose 

T : C 一，C as X-firmly nonexpansive for some A € (0,1). Then T has 

a fixed point m C.

Proof. The idea follows the proof of [21]. Let z & G and let Xk be 

the asymptotic center of sequence \Tlz} with respect to the bounded, 

시osed)convex subsets Ck (1 < k < n). From Lemma 3.1, the point Xk 



FIXED POINT THEOREMS FOR A-FIRMLY NONEXPANSIVE 333

is uniquely determined by the identity 

(3.2) f(E乙旣/(以

where the functional / : Af [0, oo) defined by /(x) = limsup d(T?z, x).
Z—>8

Since T is nonexpansive, we have d(T< d(xk, Tlz). Hence

(3-3) f(Txk) < /(E，

for all k. Now, if Tx^ € for some fc, 나the uniqueness of asymp

totic center of in conjunction with (3.2) and (3.3) yields Txk =:们、 

which completes the proof. Otherwise, Tx^ 牛 Ck for all fc, then there 

exist integers …,nm} C (1,2, ••- , n} (m > 2) such that

Txnk € (fc = 1,2, • • • m — 1) and Txnm G C\ Clearly, with

out loss of generality, one can rearrange the sequence Ck in such a way 

that nk = k for all k. Then we have Tx^ G 功+i (fc — 1? 2, • • • m — 1) 

and Txm E C\ and % G Ck for all k. Hence , one can combine (3.2) 

and (3.3) in order to get

了31) < f(Txm) < fg) < f(TXmT)

< < ■■ < f(^2)< f(TX!)<

Thus we have f(Txk) = /(z%+i) which, in view of the uniqueness of 

asymptotic center 以 yield

(3.4) xk+i = Txk (A; — 1,2,•• - ,m),

where we have denoted for 나le latter simplicity. Hence we

readily derive

⑦m) = d(7次m, 7以m—1) V d(⑦⑦m —1 )

=d(Txm-i,Txm^2') < dSmTAm-2)= •- < d(:电,中)

=d(Trri,Txm) < d(xi,xm),

and

(3 5) (1(X\ , ^2)= Z3) — • * • — d(工m—1〉工 1) 牛 
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Clearly, if 7 = 0, then 中 = 旺 = Txi by (3.4). Hence the proof 

is complete. On the other hand, since T is A-firmly nonexpansive it 

follows from (3.4) that

7 = d(xk+i,Xk) = d(Txk,Txk_i)

< d((l - 시:々: © XTxk, (1 - X)xk-i © ATxfc-i)

< d((l ~ ® Axk+i, (1 — X)x/e—i ® 人:以;)

< (1 - 시4- Xd{xk+]_,xk) = 7

for k = 2,3,…,m.

Let u\ := (1 — ㊉ and v〉、:= (1 — X)xk-i © Since

d{xk,u\) = Xd(ux,vx) and d(xk.vx) = (1-X)d(ux,vx), xk e S也站 

By property (S), either xk G S[；아:一“ xk+l] or

Case 1. Xk 6 Sp아:一In this case, since d(xk^k-i) = 妇日」)：

琛 is a midpoint of S[:硃_1, %+山 Le., xk = *£ 加一1 ® t (2 k < 

m, xm+1 = Xi). Note that e 이⑦‘⑦打 for k = 2,3, • — 1

and (3.5) again yields 7 = d(^i, xm) = d(中 H-----_ 1, %)=

(m — 1)7，Since m > 2, this yields 7 = 0 and also x\ = to = Tx\ by 

(3.4).

Case 2. Xk-i = Xfc+1. We 이aim 나}at — 시% ® 人%一1) =

0. Then 払 =(1一 一人)欧 ® 人的」」and so this with (3.5) gives =

= rrfc+i = Txfc. Hence T is a fixed point x^. Suppose that 

d(xk, (1 — 시% ㊉ 人*一 i) > 0. Since

d{xk^,xk) = d(xfc-i,(l 一 A)xfc-i ®\xk)

+ d((l — 1 ffi A^/c, (1 — X)xk ® Xxk—i)

+ d((l 一 시吹: © 人公一m%),

we have

d(Q - 시Wt ® 一 시払 © 畑一1) < d(欧_i,a가)

Since T is 入-fkmly nonexpansive, this implies

d(zfc,rrfc-i) = d(xk,xk^i) = d(Txk-i,Txk)

V d((l - X)xk~i ® XTxk—1-)(1 — X)：히c ffi XTxk)

< d((l 一 시瓦一i ® (1 - X)xk © Ax^-i) < d(外,%_i).
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This is a contradiction. This contradiction proves our 이aim.

As a direct consequence of Theorem 3.2, we have the following.

Corollary 3.2 [21]. Let X be a uniformly convex Banach space, 

let C 二 be a union of nonempty bounded, closed convex subsets

Ck of X. Suppose T : C t C is X-firmly nonexpansive for some 

X G (0,1). Then T has a fixed point m C.
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