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TYPE I, OF A VON NEUMANN ALGEBRA ALGZL

JonGg GEON KiM

ABSTRACT What we will be concerned with 1s, first, the question of
the condition about £ that gives Algl a von Neumann algebra, that
15, the question of the condition about £ that will give Algl a self-
adjoint algebra Secondly, if AlgL 1s a von Neumann algebra, we want
to find out what type 1t 1s.

1. Introduction

The study of sclf-adjoint operator algebras on Hilbert space is well
established, with a long history including some of the strongest mathe-
maticians of the twentieth century. By contrast, non-self-adjoint alge-
bras, particularly reflexive algebras, are only beginning to be studied ;
the seminar paper of W. B. Arveson ([1]) in 1974 represents the begin-
ning of widespread terest in reflexive algebras. More recently, such
algebras have been found to be of use in physics, in electrical engineer-
ing, and in general system theory.

Of particular interest to mathematicians are reflexive algebras with
commutative lattices of invariant subspaces. One of the most impor-
tant classes of such algebras is the sequence Algls, Algly, ..., Algl
of “tridiagonal” algebras, discovered by Gilfeather and Larson ({2.4,5]).

We will introduce the terminology which is used in this paper. Let
B{H) be the set of all bounded operators acting on a Hilbert space H
and let V be a subset of B(H). V 1s called self-adjoint if A™ is in V for
every A in V (A* 1s the adjoint of A). If V is a vector space over a field
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K and if V is closed under the composition of maps, then V is called an
algebra. Vis called a self-adjoint algebra provided A* is in V for every A
in V.Otherwise V is called a non-self-adjoint algebra. V is a C*-algebra
if V is a self-adjoint algebra which contains the identity operator I and
is closed mn the norm topology. V 1s a von Neumann algebraif V is a
C”-algebra which is closed in the weak operator topology.

For any subset V of B(H), we shall denote by V' the commutant of
V:

V' ={Be€B(H): BA= AB for any A € V}.

For any subset V of B(H), V' is an algebra which contains I in B(H).
If V is self-adjoint, then V' is a von Neumann algebra. In particular,
if V is a von Neumann algebra, then V' is a von Neumann algebra
([8]). Let V ¢ B(H) be a von Neumann algebra and V' C B(H) its
commutant. Then VNV’ is the common center of the algebras V and
V'. Tt is obvious that VNV’ C B(H) is a {commutative) von Neumann
algebra.

Let H be a complex Hilbert space. A linear manifold in H is a subset
of H which is closed under vector addition and under multiplication by
complex numbers. A subspace of H is a linear manifold which is closed
in the norm topology. We shall often disregard the distinction between
an orthogonal projection and its range space. Thus we consider a
subspace lattice as consisting of orthogonal projections or subspaces
and we may use the same notation to indicate either.

Given any family {X,} of subspaces of a Hilbert space H, there is
a greatest subspace AX, that is contaned in each X, and a smallest
subspace VX, that contains each X,. Specially, AX, = NX,, while
VX, is the subspace [UX,] generated by UX, [7,11].

Let £ be a subset of all orthogonal projections acting on a Hilbert
space H. Then L is called a lattice if £ is closed under the operators
“A" and “V", where E A F' is the orthogonal projection whose range
is (rangeE) N (rangeF} and E V F is the orthogonal projection whose
range is {(range E)U(rangeF)]. If £ 1s a lattice of orthogonal projections
acting on ‘H, AlgL denctes the algebra of all bounded operators acting
on H that leave invariant every orthogonal projection in £, that is,

AlgL = {AeB(H): AE =FEAF forany F € L}.
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A subspace lattice £ is a strongly closed lattice of orthogonal projec-
tions acting on a Hilbert space H, containing the zero operator 0 and
I. Dually, if V is a subalgebra of the set of all bounded operators acting
on H, then LatV is the lattice of all orthogonal projections which leave
mvariant for each operator in V.

An algebra V is reflexive if V = AlgLatV. A lattice £ 1s reflexive if
L = LatAlgLl. A lattice £ is commutative if each pair of orthogonal
projections in £ commutes. Subspace lattices need not be reflexive |
however, commutative ones are reflexive ([1})

Let £ be a family of orthogonal projections acting on a Hilbert space
H. Then

(a) AlgLl is an algebra containing I ;

{b) AlgL is closed in the norm topology ;

{c) AlgL is closed i the weak operator topology

Therefore in order to prove that AlgL is a von Neumann algebra, 1t
1s sufficient to show that Algl 1s self-adjoint.

2. Examples of Algl

ExaMPLE 1. Let H be a separable Hilbert space with an orthonor-
mal basis { €1, ez, ... } and let £ be the lattice generated by F = {
ler, e2l, [es, eals les, €6, ... } Then VF = H and AlgL consists of
matrices of the following form.

* *
* *
* *
* %
with respect to the basis { ey, ez, ... }, where all non-starred entries

are zeros. Since Algl s self-adjoint, AlgL is a von Neumann algebra

EXAMPLE 2. Let H be a separable Hilbert space with an orthonor-
mal basis { e1, e, ... } and let F = { [ey, e2], [ea, €4, €5), [es. €7, €5, €g],
... }. Let £ be the lattice generated by F. Since AlgL consists of ma-
trices of the following form:
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LR
* ® ¥
* ¥ ¥

o N
*  * X ¥
* * X ¥
* * ¥ *

\ )

with respect to the basis { e;, ez, ... }, where all non-starred entries
are zeros,

AlgL is a von Neumann algebra and Algl = AlgF.

EXAMPLE 3. Let H be a separable Hilbert space with an orthonor-
mal basis { e, : ¢ = 1, 2, ... } and let L be the subspace lattice
generated by F = { [e2,~1], [ea1—1, €21, €241 ] 1 e =1,2, ... }. Then
VF = H and AlgL, consists of matrices of the following form :

* ok
*
A
*
*
with respect to the basis { ey, ea, ... }, where all non-starred entries

are zeros. Because Algl,, is not self-adjoint, Algl., is not a von
Neumann algebra. We know that Algl., is a tridiagonal algebra

EXAMPLE 4. Let H be a separable Hilbert space with an orthonor-
mal basis { &1, e, ... Jandlet F={[e]:i=1,2,... }andlet £
be the lattice generated by F. If 4 1s in AlgL, then A is the matrix
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which has the form :

with respect to the basis { e;, e, ... }, where all non-starred entries
are zeros. Hence AlgLl is a von Neumann algebra. Let {E,} be a subset
of £, where E, is the orthogonal projection from H onto [ ey, ea, ...,
e;]. Then { E, } converges strongly to I. Since [ is not in £ and E,
isin £ {2 =1, 2,...), £ is not strongly closed In particular, £ is not
complete.

ExaMPLE 5. Let H be a separable Hilbert space with an orthonor-
mal basis { ej, €2, ... }. Let F = { [e1, ea], {es, ed], [e5, €], ... }
and £ be the lattice generated by F. Then VF = H and AlgL consists
of matrices of the following form:

* *
* *
* x
*
with respect to the basis { e, eq, . . }, where all non-starred entries

are zeros. If £, 1s the lattice generated by { [e,] : 2 =1,2,... }, then £
is a proper subset of £, and AlgL; consists of matrices of the following

form :
*

with respect to the basis { €, ea, ... }, where all non-starred entries
are zeros. Thus Algl, is a proper subset of Algl.
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EXAMPLE 6. Let H be a separable Hilbert space with an orthonor-
mal basis { €1, e2,.. }andlet F={[e,]:¢4=1,2,... }. Suppose
that £ is the complete lattice generated by F. Then there is not a
family G of mutually orthogonal projections in £ which generates L.

3. General Theorems

LEMMA 1. Let £, and Lo be families of orthogonal projections act-
wng on a Hilbert space H. If £y C Lq, then AlgLy C AlgL,.

PROOF. Let A be in Algly;. Then AE = EAE for all E in £,.
Since £, C Ly, AE = EAFE for all E in £,. Hence A is in AlgL;.

LEMMA 2 ([6]). Let F be a famuly of mutually orthogonal projec-
twons acting on ‘H. If L 15 the lattice generated by F, then Algl =
AlgF.

THEOREM 3. Let H be a separable Hilbert space let F be a famaly
of mutually orthogonal projections acting on H such that VF = 1. If
L 13 the lattice generated by F, then AlgL is a von Neumann algebra,

Proor. It is sufficient to show that Algl is self-adjoint. Let A be
an element 1n Algl. Suppose that F = { Ey, Fa, ... }, where E, is an
orthogonal projection acting on H for all ¢ = 1, 2, .... Since A is 1n
Algl, AE, = E,AF, for all 1 = 1,2,.. . Since AE! = E+AE} for all
2 =1,2,..., and hence E;"A* = E} A*E} forall: = 1,2,. .. Since
Ef =] ~E, foreach:=1,2,...,

ElA* = A* — E, A
== E)A*(I - E,)
=A"-FE,A"-A"E, + R A'E,.
Hence A*E, = E,A*E, for all i =1,2,... . Therefore by Lemma 2, A*
is in Algl, i.e. Algl is self-adjoint.

LEMMa 4 ([2]). Let H be a separable Hulbert space let L be a lattice
of orthogonal projections acting on H. If L 15 strongly closed, then L
is complete.

The converse of Lemma 4 is not true in general.
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LeMMA 5 ([3]). Let H be a Hilbert space let L be a complete lattice
of orthogonal projections acting on H If L need not be strongly closed.

LeMMA 6 ([2]}. Let H be a Hibert space. If £ 15 a commuta-
twe complete lattice of orthogonal projections acting on 'H, then L s
strongly closed.

LEMMA 7 Let H be a separable Hulbert space let F be a famuly of
mutually orthogonal projections acting on H. Let L be the complete
lattice generated by F. Then L is commutative.

LEMMA 8 ([2]). Let H be a Halbert space and let £ be a commutative
lattice of orthogonal projections acting on H. Then the strong closure
of L s utself a lattice.

LEMMA 9. Let F be a famauly of mutually orthogonal projections
acting on u separable Hilbert space H and let £ be the lattice gencrated
by F. If Ly 1s the complete lattice generated by F . then L1 1s the strong
closure of L and Algl = AlgL,.

PROOF. Since F is a family of mutually orthogonal projections act-
ing on a H, F is commutative and therefore £ 1s commutative. By
Lemmna 8, the strong closure of £ 1s a lattice and by Lemma 4 the
strong closure of £ is complete. By Lemmas 6 and 7, £, is strongly
closed. Hence £, contains the strong closure of £. Therefore £ is the
strong closurc of £. By Lemma 1, Algl, 1s contained in Algl. Let A
be in AlgL and E be in £;. Then there exists a family {E,} of £ such
that {£,} converges strongly to E. Since { E,} converges strongly to
E, {AE,} and {E,AE,} converge strongly to AE and EAFE, respec-
tively. Since AE, = FE,AE, for each a, AE = FAFE. Therefore A 15
in Algﬁl

If £ and F are orthogenal projections from a Hilbert space ‘H onto
subspaces Y and Z, respectively, the following conditions are equivalent

(I6]) -

(a) X CY,
(b) FE=E,
{c) EF = E,

(d) E<F.
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THEOREM 10. Let £ be a lattice of orthogonal projections acting on
a separable Hulbert space H and let F = {F : F 15 a nonzero minumal
element i L}. Then F 1s a mutually orthogonal family.

PrROOF. Let E and F be elements of . Suppose that EA F # 0
and E # F. Since EA F < F and F is mimmmal, EA F = F. Hence
F < E. Since F and F are minimal, F = F. So EAF=0o0r E=F.
Hence F is a mutually orthogonal family.

THEOREM 11. Let £ be a family of orthogonal projections acting on
a Hibert space H. Then AlgL is a von Neumann algebra +f and only +f
AlgL = L.

Proor. Necessity : If A is in £/, then AEF = EAfor all E in £
Since AE = AEE = FAF for all E in £, A is in Algl. Since Algl
is a von Neumann algebra, A* is in AlgL for all A in Algl. If Aisin
Algl, then AE = EAF and A*E = EA*FE for all E in Algl. Hence
AE = EA for all F in Algl. Thus Aisin £'.

Sufficiency : It is sufficient to show that Algl is self-adjoint. Sup-
pose that A is in Algl. Since Algl = L', AE = FAE and AE = FA
for all E in £. Hence for all Ein L EA = FAF, thatis, A*E = EA*E
for all £ in £. Therefore A* 1s in Algl

LEMMA 12 ([2]). Let H be a Hulbert space and let £ be a commu-
tative subspace lattice of orthogonal projections acting on H. Then L
18 reflexive.

LEMMA 13. Let H be a separable Hilbert space and let L be a com-
plete latirce of orthogonal projections acting on H. Let F = {F :
Fis a nonzero mimimal element in L}. If E 15 a nonzero elernent n
L, then there ensts Eg in F such that By < E.

PROOF. Since E is a nonzero element in £, E contains a unit vector
eofH. Let S={F, € L. E,<E, e€ E,}. Then S is a nonempty set
and it is a partially ordered set by set inclusion C. In order to apply
the Zorn’s Lemma we must show that every chain in S has a lower
bound in §. Let M = {C, :i € I'} be a chain in § and C' = A,erC,.
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Then e € C and C < E. Since L is complete, C' is in &, C 1s a lower
bound in §. Therefore there exists a minimal element Eqy in S.

THEOREM 14. Let £ be commutative subspace lattice of orthogonal
projections acting on o separable Hulbert space H. If Algl s a von
Neumann algebra, then there exists a faruly F of mutually orthogonal
projections in L which generates completely L.

PROOF. Let F = {F: F is a nonzero minimal element in £}. Then
F is a mutually orthogonal family by Theorem 10. We shall show that
L = G(F), where G(F) is the complete lattice gencrated by F. Let
E be a nonzero element in £. Suppose that F is not in G(F). If
EF = ( for all Fin F, then E(VF) = 0. Since F is in £, there
exists an element Fy in F such that £y < E by Lemma 13. Since
Eo(VF) #0, E(VF) #0. Tt is a contradiction.

Suppose that EF # 0 for some F in F. Simce EA Fisin £ and F
is minimal, EAF =F. Hence F < E. Put /i ={D e F.D < E}.
Then VF; < E. Suppose that VF; = E. Smce G(F) is complete, V.F,
is in G(F). 1t is a contradiction.

If VF, is a proper subprojection of E, then E — VJF is in £. For
each A in AlgC, by Theorem 11

A(E —VF) = AE — A(VFA)
= EA— (VF)A
= (E — VF A

Hence £ — VF) is in LatAlgﬁ Since £ = LatAlgl by Lemma 12.
E-VvF isin £. By Lemma 13, there exists a nonzero minimal element

Fyin L such that B} < E—VF,. It s a contradiction. Since £ contains
G(F), L = G(F).

THEOREM 15([8]). Let H be a Hulbert space and let ¥V C B(H) be a
von Neumann algebra. V 1s of type I +f and only +f any nonzero orthog-
onal projection mn V contains an abelian nonzero orthogonal projection

LEMMA 16([9]). Let H be a Hulbert space. Then B(H) s of type L
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LEMMA 17([10]). Let H be a separable Hilbert space and let ¥V C
B(H) be a von Neumann algebra. Then V s finite if and only 1of
dimH < oo.

LEMMA 18. Let H be a separable infinmte dimensional Hulbert space
with an orthonormal basis { ey, ey, ... }andlet F ={[e)) : 1 =1, 2,
... }. If L 1s the lattice generated by F, then AlgL s of type L.

PROOF. By Lemma 2, Algl = AlgF. Let A be in Algl. Then
A is diagonal. If F is a nonzero orthogonal projection in AlgL, then
each diagonal element of F is 0 or 1. So E contains a nonzero abelian
orthogonal projection F,, in AlgL for some i, where E,, is the matrix
whose (7, 1)-component is 1 and all other components are 0. By The-
orem 15, Algl is of type I and hence Algl is of type I by Lemma
17.

THEOREM 19. Let H be a separable winfinite dimensional Hilbert
space and let F be a family of mutually orthogonel projections act-
g on H such that VF = I. If L s the lattice generated by F, then
AlgL s of type Io.

PROOF. Suppose that F = { Ey, E5... } and H, is the subspace of
H such that E,(H) = H, forall2 = 1.2, ... Let Abein AlgL. Since
Algl = AlgF by Lemma 2, A1s in AlgF. Hence A has the following
matrix form on &2, 'H,

H, Ho Hs
An
Asg
0

where A,, : H, — H, 15 the operator such that A,, = A |y, for all
1=12,....

Let F be a nonzero orthogonal projection in Algl. Then £ has the
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following matrix form on ®{2,H, :

Eyno 0 0 0

where F,, is the orthogonal projection acting on H, such that F,, =
E |y, foralle = 1,2, ... and Ey is nonzero for some k. If Fg is a
nonzero orthogonal projection acting on H; for some k, Eg; contains
a subprojection Fyj of rank one. Let F be the orthogonal projection
acting on @72, M, such that ExF |3, = Fir and B, F |3, =01f 2 £ k
or j # k. Then F isn Algl and F is a nonzero abelian subprojection
of E. Hence Algl is of type I by Theorem 15 By Lemma 17, Algl is
of type .
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