ON THE STUDY OF AFFINE DIFFERENTIAL GEOMETRY OF SURFACE S_{2} IN A_{4}

E. T. Ivlev, O. V. Rozhkova and Hai Gon Je

Abstract

In this paper, we investigate the existence of a two dimensional surface in a four dimensional equiaffine space and characterize that surface

1. Introduction

A two-dimensional surface S_{2} is viewed in a four-dimensional equiaffine space A_{4}. We shall mark through L_{2} is a tangent plane to S_{2} in the current point A, l_{1} and l_{2} are focus lines of plane $L_{2} ; \Gamma_{3}^{1}$ and Γ_{3}^{2} are the focal (tangent) 3 -planes in meaning [1]: $\rho_{1}\left(\rho_{2}\right)$ is the characteristic element of 3 -plane $\Gamma_{3}^{1}\left(\Gamma_{3}^{2}\right)$ in the direction $l_{2}\left(l_{1}\right)$ Let's constder points $X \in A_{4}$ and $X_{1}=\operatorname{Pr}_{\Gamma_{1}^{3}} \mathrm{X}, X_{2}=\operatorname{Pr}_{\Gamma_{3}^{2}} X$

The totality of all points $X \in A_{4}$, which are satisfied the point $A \in$ S_{2}, so that corresponding points X_{1} and X_{2} lic inside corresponding characteristics hyperplanes Γ_{3}^{1} and Γ_{3}^{2}, forms a second order hypercone K_{2}^{0} in A_{4} with the vertex at the point A

Let Γ_{2} be the plane polary associated with the plane L_{2} and hypercone $K_{2}^{0}: l_{3}=\rho_{1} \bigcap \Gamma_{2}, l_{4}=\rho_{2} \bigcap \Gamma_{2}$. Then the plane $P_{2}=l_{3} \bigcup l_{4}$ is clothings plane of surface S_{2} at the point $A: P_{2} \cap L_{2}=A, P_{2} \cup L_{2}=$ A_{4}. In conformity with [2], centre-affinity transformation $\Pi(z)$ of the plane L_{2} in itself with center A rephes of each point $z \in \Gamma_{2}$. Noneigen points of the straight lines l_{3} and l_{4} correspond centre-affinities transformations \prod_{3} and \prod_{4}, accordingly

As remarked here affine-invariant geometric images take the possibility to construct the canonical frame of surface S_{2} in A_{4}, with the help which succeed to separate and geometrically to characterize some private classes of surfaces. One of such classes, which is characterized from the following properties:
a) the hypercone K_{2}^{0} on a surface S_{2} degenerated in two 3 -planes are going through a two-dimensional plane Γ_{2},
b) the straight line $l_{1}\left(l_{2}\right)$ at the centre-affinty transfomation $\Pi_{3}\left(\Pi_{4}\right)$ transfers in itself.

It's found that the indicated class of a surface S_{2} in A_{4} exists and is determined with arbitrariness of six functions of one argument.

2. Invariant rationing of vectors \vec{e}_{3} and \vec{e}_{4}

The equation of a tangent hyperquadric Q_{2} in the local coordinates can be expressed in the form

$$
\begin{equation*}
a_{23} x^{2} x^{3}+2 a_{02} x^{2}+a_{00}=0 \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{\imath \jmath}=\left(\vec{e}_{\imath} * \vec{e}_{j}\right), a_{0 \imath}=\left(\vec{r} * \vec{e}_{\imath}\right), \quad \vec{a}_{00}=(\vec{r} * \vec{r}) \tag{2.2}
\end{equation*}
$$

A condition for a point to belong to the hyperquadric surface will give

$$
\begin{equation*}
a_{00}=(\vec{r} * \vec{r})=0 . \tag{2.3}
\end{equation*}
$$

A condition for all points to belong to the first differential vicinity (that is a first-order tangency) can be accomplished by differentiating (2.3) and reducing coefficients of independent forms ω^{1} and ω^{2} to zero.

We obtain $(d \vec{r} * \vec{r})=0 \Longleftrightarrow \omega^{1}\left(\vec{e}_{1} * \vec{r}\right)+\omega^{2}\left(\vec{e}_{2} * \vec{r}\right)=0$. Hence

$$
\begin{equation*}
a_{01} \equiv\left(\vec{r} * \vec{e}_{1}\right)=0, a_{02} \equiv\left(\vec{r} * \vec{e}_{2}\right)=0 \tag{2.4}
\end{equation*}
$$

To support a second-order tangency, one should differentiate (2.4). We obtain

$$
\left(d \vec{r} * \vec{e}_{1}\right)+\left(\vec{r} * d \vec{e}_{1}\right)=0,\left(d \vec{r} * \vec{e}_{2}\right)+\left(\vec{r} * d \vec{e}_{2}\right)=0 .
$$

Inserting expressions $d \vec{r}$ and $d \vec{e}_{\alpha}$ with using of (3),(4),(8) and (13) in [4], we can find equating coefficients by ω^{1} and ω^{2} :

$$
\begin{array}{r}
\left(\vec{A} * \vec{e}_{3}\right)+\left(\vec{e}_{1} * \vec{e}_{1}\right)=0,\left(\vec{e}_{1} * \vec{e}_{2}\right)=0 \\
\left(\vec{A} * \vec{e}_{4}\right)+\left(\vec{e}_{2} * \vec{e}_{2}\right)=0 \Longleftrightarrow \tag{2.5}
\end{array}
$$

$$
\begin{equation*}
a_{03}+a_{11}=0, a_{12}=0, a_{04}+a_{22}=0 \tag{2.6}
\end{equation*}
$$

To support a third-order tangency, we differentiate (2.5). Taking into consideration

$$
\begin{align*}
& 3\left(\vec{e}_{1} * \vec{e}_{3}\right)+E^{*}\left(\vec{A} * \vec{e}_{4}\right)=0,3\left(\vec{e}_{2} * \vec{e}_{4}\right)+E\left(\vec{A} * \vec{e}_{3}\right)=0 \\
& \quad\left(\vec{e}_{2} * \vec{e}_{3}\right)+\left(\vec{e}_{1} * \vec{e}_{1}\right)=0,\left(\vec{e}_{1} * \vec{e}_{4}\right)+\left(\vec{e}_{2} * \vec{e}_{2}\right)=0 \Longleftrightarrow \tag{2.7}
\end{align*}
$$

$$
\begin{array}{r}
3 a_{13}+E^{*} a_{04}=0,3 a_{24}+E a_{03}=0 \\
a_{23}+a_{11}=0, a_{14}+a_{22}=0 \tag{2.8}
\end{array}
$$

On supposing

$$
\begin{equation*}
a_{11}=\alpha, a_{22}=\alpha^{*} \tag{2.9}
\end{equation*}
$$

we can find from (2.6) and (2.7)

$$
a_{03}=-\alpha_{,}, a_{04}=-\alpha^{*}, a_{23}=-\alpha, a_{14}=-\alpha^{*}
$$

$$
\begin{equation*}
a_{13}=\frac{E^{*} \alpha^{*}}{3}, a_{24}=\frac{E \alpha}{3} \tag{2.10}
\end{equation*}
$$

Substituting values of some coefficients $a_{t k}$ found from (3), (4), (8) and (10) in [4], we obtain that all hyperquadrics in A_{4}. which have a third-oder tangency with the surface S_{2}, are defined by the equation:

$$
\begin{array}{r}
\alpha\left(x^{1}\right)^{2}+\alpha^{*}\left(x^{2}\right)^{2}-2 \alpha^{*} x^{1} x^{4}-2 \alpha x^{2} x^{3}-2 \alpha x^{3}-2 \alpha^{*} x^{4} \\
+\frac{2}{3} E^{*} \alpha x^{1} x^{3}+\frac{2}{3} E \alpha x^{2} x^{4}+a_{\hat{\alpha} \hat{\beta}} x^{\hat{\alpha}} x^{\hat{\beta}}=0 . \tag{2.11}
\end{array}
$$

In view of (32) in [4], it is seen that polars of points t_{1} and τ_{1} in (2.10) are defined by equations respectively:

$$
\begin{gather*}
t_{1}: \alpha x^{1}+\frac{1}{3} E^{*} \alpha^{*} x^{3}-\alpha^{*} x^{4}=0 \\
\tau_{1}: \alpha^{*} x^{2}+\frac{1}{3} E \alpha x^{4}-\alpha x^{3}=0 \tag{2.12}
\end{gather*}
$$

If this system is considered regarding to α and α^{*}, then we can obtain that it will have non-trivial solutions according to α and α^{*} if and only if

$$
\begin{equation*}
Q_{2}: x^{1} x^{2}-\left(1+\frac{E E^{*}}{9}\right) x^{3} x^{4}+\frac{E^{*}}{3}\left(x^{3}\right)^{2}+\frac{E}{3}\left(x^{4}\right)^{2}=0 . \tag{2.13}
\end{equation*}
$$

We call Q_{2} the aggregate of all points (36) in [4] in A_{4}, to each of them corresponds the aggregate of such hyperquadric (2.10), according to which points \vec{t}_{1} and $\vec{\tau}_{1}$ have the same polar. It follows from (2.11) and (2.12) that Q_{2} is the hyperquadric in A_{4}, defined by equation (2.13).

Points with radius vectors

$$
\begin{aligned}
& \vec{t}_{1}^{*}=\vec{A}+\vec{e}_{1}, \\
& \vec{\tau}_{1}^{*}=\vec{A}+\vec{e}_{2},
\end{aligned}
$$

which are symmetrical to points (32) in [4] on the corresponding straight lines, are taken up. The point with the radus vector

$$
V=\vec{A}+\frac{1}{2}\left(\vec{e}_{1}+\vec{e}_{2}\right)
$$

is the middle of the segment $\left[\vec{t}_{1}^{*}, \vec{\tau}_{1}^{*}\right]$ In view of (17) in [4], it is seen that the curve

$$
K \cdot \omega^{2}=\omega^{1}, \omega^{\hat{\alpha}}=0
$$

on the surface S_{2} is geometrically characterized, because the point \vec{A} describes a line with the tangent along the curve, which parallels to the straight line $A_{V}=\left(\vec{A}, \vec{e}_{1}+\vec{e}_{2}\right)$. From

$$
\begin{align*}
d\left(\vec{e}_{1}+\vec{e}_{2}\right) & =(\ldots)^{1} \vec{e}_{1}+(\ldots)^{2} \vec{e}_{2}+\omega_{1}^{3} \vec{e}_{3}+\omega_{2}^{4} \vec{e}_{4} \\
& =(\ldots)^{1} \vec{e}_{1}+(\ldots)^{2} \vec{e}_{2}+\omega^{1} \vec{e}_{3}+\omega^{2} \vec{e}_{4}, \tag{2.14}
\end{align*}
$$

we notice that the straight line $A_{V^{*}}=\left(\vec{A}, \vec{e}_{3}+\vec{e}_{4}\right)$ is the intersection of the plane $\Gamma_{2}=\left(\vec{A}, \vec{e}_{3}, \vec{e}_{4}\right)$ with 3-dimensional plane passing through $L_{2}=\left(\vec{A}, \vec{e}_{1}, \vec{e}_{2}\right)$ and the tangent linear subspace to the aggregate of straight lines A_{V} along the curve K.

Let us consider the point on the straight line $l_{3}=\left(\vec{A}, \vec{e}_{3}\right)$

$$
\vec{T}_{3}=\vec{A}+t \vec{e}_{3},
$$

which is in direction $A_{V *}$ projected at the point $\vec{T}_{4}=\vec{A}+t \vec{e}_{4}$ on the straight line $l_{4}=\left(\vec{A}, \vec{e}_{4}\right)$

Let points T_{3} and T_{4} be such points that $\left(\vec{t}_{1}, \vec{T}_{1}, \vec{T}_{3}, \vec{T}_{4}\right)=1$, then $t^{2}=1$. Consequently, on lines l_{3} and l_{4} points

$$
\begin{aligned}
& \vec{\varepsilon}_{3}=\vec{A}+\vec{e}_{3}, \vec{\varepsilon}_{3}^{*}=\vec{A}-\vec{e}_{3}, \\
& \vec{\varepsilon}_{4}=\vec{A}+\vec{e}_{4}, \vec{\varepsilon}_{4}^{*}=\vec{A}-\vec{e}_{4},
\end{aligned}
$$

give the geometrical meanng of rationng of vectors \vec{e}_{3} and \vec{e}_{4}. It follows from (2.13) that the hyperplane $\Gamma_{2}=\left(\vec{A}, \vec{e}_{3}, \vec{e}_{4}\right)$ and the hyperquadric Q_{2} intersect in two straight lines:

$$
\vec{u}_{4}=\left(\vec{A}, E^{*} \vec{e}_{4}+3 \vec{e}_{3}\right), \vec{u}_{3}=\left(\vec{A}, E \vec{e}_{3}+3 \vec{e}_{4}\right)
$$

Hence, invariants E and E^{*} are geometrically characterized in following manner $E=3 \omega, E^{*}=3 \omega^{*}$

Here formulas

$$
\begin{aligned}
& \omega=\left\{\left(\vec{A}, \vec{e}_{3}\right), \vec{u}_{3} ;\left(\vec{A}, \vec{e}_{3}+\vec{e}_{4}\right) ;\left(\vec{A}, \vec{e}_{4}\right)\right\} \\
& \omega^{*}=\left\{\left(\vec{A}, \vec{e}_{3}\right),\left(\vec{A}, \vec{e}_{3}+\vec{e}_{4}\right) ; \vec{u}_{4} ;\left(\vec{A}, \vec{e}_{4}\right)\right\}
\end{aligned}
$$

are complex connections of the corresponding four stratght lines passing through the point $\vec{A} \in S_{2}$ in the plane Γ_{2}

3. Some affine-invariant geometrical images

For geometrical interpretation of some special classes of the surface S_{2} in A_{4}, which are to be discussed in the next section, in this section let us consider some affine-invariant geometrical mages associated with the surface S_{2} in A_{4} We shall conduct a research of these images, using terms of the canonical frame built analytically in [4] and geometrically in the preceding section.

3.1. The diversity $\left\{L_{2}, \Gamma_{2}\right\}$ is a two dimensional diversity of pairs of planes L_{2} and Γ_{2}

3.1.1. Some affinities of the tangent plane L_{2}.

Let us take up the point in $\Gamma_{2}: \vec{Z}=\vec{A}+z^{\dot{\alpha}} \vec{e}_{\hat{\alpha}} \in \Gamma_{2}$.
We have: $d \vec{Z}=(\ldots)^{\hat{\alpha}} \vec{e}_{\hat{\alpha}}+x^{\dot{\alpha}} A_{\dot{\alpha} \beta}^{\alpha} \omega^{\beta} \vec{e}_{\alpha}$.
Therefore, to each point $\vec{Z} \in \Gamma_{2}$ corresponds the centre-affine intotransformation of the plane L_{2} with the vector $\vec{A}((7)$ in [2]):

$$
\begin{equation*}
\Pi(z)=\left\{\delta_{\beta}^{\alpha}+z^{\hat{\alpha}} A_{\hat{\alpha} \beta}^{\alpha}\right\} \tag{3.1}
\end{equation*}
$$

This affinor transfers each direction

$$
\begin{equation*}
x=\left(\vec{A}, \vec{e}_{\beta}\right) \cdot x^{\beta} \in L_{2} \tag{3.2}
\end{equation*}
$$

to the following direction

$$
\begin{array}{r}
y=\left(\vec{A}, \vec{e}_{\alpha}\right) y^{\alpha} \in L_{2}, y=(z) x, \\
y^{\alpha}=\left\{\delta_{\beta}^{\alpha}+z^{\alpha} A_{\dot{\alpha} \beta}^{\alpha}\right\} x^{\beta}, \tag{3.3}
\end{array}
$$

thus $y=L_{2} \bigcap\left\{\Gamma_{2} \cap T(z, x)\right\}$.
Here, $T(z, x)$ means the line described by the point $\vec{Z} \in \Gamma_{2}$ in the direction of x. It follows from (15) and (41) in [4] that there are two invariant affinors Π_{3} and Π_{4} of the plane L_{2}, which are the affinor $\Pi(z)$, responding with non-eggen points of straight lines l_{3} and l_{4}

$$
\begin{equation*}
\Pi_{3}=\left\{A_{3 \beta}^{\alpha}\right\}, \Pi_{4}=\left\{A_{4 \beta}^{\alpha}\right\} \tag{3.4}
\end{equation*}
$$

We shall put the following geometrical images.
1.) The straight line $l^{*}=\left\{Z \in \Gamma_{2} \mid\right.$ ter $\left.\Pi(z)=0\right\}$,
2.) The conic $\psi_{1}^{1}=\left\{Z \in \Gamma_{2} \mid\right.$ ter $\left.\Pi^{2}(z)=0\right\}$,
3.) The focus conic $\psi_{1}^{2}=\left\{Z \in \Gamma_{2} \mid \operatorname{det} \Pi(z)=0\right\}$.

It follows from (3.1) that each of these geometrical images in Γ_{2} is defined by equations respectively:

$$
\begin{equation*}
l_{1}^{*}: 1+2 a_{0 \dot{\alpha}} z^{\dot{\alpha}}=0, z^{\alpha}=0 \tag{3.5}
\end{equation*}
$$

$$
\begin{equation*}
\psi_{1}^{1}: 1+2 a_{0 \hat{\alpha}} z^{\hat{\alpha}}+a_{\hat{\alpha} \hat{\beta}} z^{\hat{\alpha}} z^{\hat{\beta}}=0, z^{\alpha}=0 \tag{3.6}
\end{equation*}
$$

$$
\begin{equation*}
\psi_{1}^{2}: 1+2 a_{0 \hat{\alpha}} z^{\hat{\alpha}}+b_{\hat{\alpha} \hat{\beta}} z^{\hat{\alpha}} z^{\hat{\beta}}=0, z^{\alpha}=0 \tag{3.7}
\end{equation*}
$$

where

$$
\begin{align*}
& a_{0 \dot{\alpha}}=\frac{1}{2} A_{\hat{\alpha} \alpha}^{\alpha}, a_{\hat{\alpha} \hat{\beta}}=\frac{1}{2} A_{\hat{\alpha} \beta}^{\alpha} A_{\hat{\beta} \alpha}^{\beta} \\
& b_{\hat{\alpha} \hat{\beta}}=\frac{1}{2}\left(A_{\hat{\alpha} 1}^{1} A_{\hat{\hat{\beta}} 1}^{1}+A_{\hat{\alpha} 2}^{2} A_{\hat{\beta} 2}^{2}-A_{\hat{\alpha} 2}^{1} A_{\hat{\beta} 1}^{2}-A_{\hat{\alpha} 1}^{2} A_{\tilde{\hat{\beta}} 2}^{1}\right) \tag{3.8}
\end{align*}
$$

It follows from (3.5)-(3.7) that the straight line l^{*} is a polar of the point \vec{A} in the conic ψ_{1}^{1} or ψ_{1}^{2}. Thus, to each point $\vec{Z} \in \Gamma_{2}$ correspond centre-affinities Π_{3} and Π_{4}

3.1.2. Affine connections C_{12} and C_{34}

1). By analogy with [2] we shall consider the comection C_{12}, which is the mapping of the adjoinng plane L_{2}^{\prime} onto the mitial L_{2} in the direction of plane Γ_{2}.

This mapping is defined by forms ω^{α} and ω_{α}^{β}, which, by virtue of (2) and (3) in [4], satisfy structural equations

$$
\begin{gathered}
D \omega^{\alpha}=\omega^{\beta} \wedge \omega_{\beta}^{\alpha} \\
D \omega_{\alpha}^{\beta}=\omega_{\alpha}^{\gamma} \wedge \omega_{\gamma}^{\beta}+R_{\alpha 12}^{\beta} \omega^{1} \wedge \omega^{2}
\end{gathered}
$$

where curvature tensor components are defined by formulas, by virtue of (8) and (14) in [4]:

$$
\begin{align*}
& R_{112}^{1}=\frac{1}{2} A_{32}^{1}, R_{212}^{2}=-\frac{1}{2} A_{41}^{2} \\
& R_{112}^{2}=\frac{1}{2} A_{32}^{2}, R_{212}^{1}=-\frac{1}{2} A_{41}^{1} \tag{3.9}
\end{align*}
$$

We shall call

$$
\begin{equation*}
R_{1}=\left\{R_{\alpha 12}^{\beta}\right\} \tag{3.10}
\end{equation*}
$$

the affine into-transformation of curvature of the plane L_{2} in the meaning [3].
2). The connection C_{34} is the mapping of the adjoining plane Γ_{2}^{1} onto the initial. Γ_{2} in the direction of L_{2} [2].

This mapping is defined by forms $\omega_{\hat{\alpha}}^{\hat{\beta}}$, which, by virtue of (2) and (3) in [4], satisfy structural equations

$$
D \omega_{\hat{\alpha}}^{\hat{\beta}}=\omega_{\hat{\alpha}}^{\hat{\gamma}} \wedge \omega_{\hat{\gamma}}^{\hat{\beta}}+R_{\hat{\alpha} 12}^{\hat{\beta}} \omega^{1} \wedge \omega^{2}
$$

where curvature tensor components are defined, by virtue of (8) and (14) in [4], in formulas:

$$
\begin{align*}
& R_{312}^{3}=-\frac{1}{2} A_{32}^{1}, R_{412}^{4}=\frac{1}{2} A_{41}^{2} \\
& R_{312}^{4}=\frac{1}{2} A_{31}^{2}, \quad R_{412}^{3}=-\frac{1}{2} A_{42}^{1} \tag{3.11}
\end{align*}
$$

We shall call

$$
\begin{equation*}
R_{2}=\left\{R_{\dot{\alpha} 12}^{\dot{\beta}}\right\} \tag{3.12}
\end{equation*}
$$

the into-affinor of curvature of the plane Γ_{2} in the meaning [3]
3.2. The diversity $\left\{\rho_{1}, \rho_{2}\right\}$ is a two-dimensional diversity of pairs of planes $\rho_{1}=\left(\vec{A}, \vec{e}_{1}, \vec{e}_{3}\right)$ and $\rho_{2}=\left(\vec{A}, \vec{e}_{2}, \vec{e}_{4}\right)$
1). The connection C_{13} is the mapping of the adjoining plane ρ_{1}^{\prime} onto the initial plane ρ_{1} in the direction of ρ_{2}. This mapping is defined by forms $\omega_{a}^{b}(a, b, c=1,3, \hat{a}, \hat{b}=2,4)$, which satısfy structural equations

$$
D \omega^{a}=\omega^{b} \wedge \omega_{b}^{a}+\breve{R}_{012}^{a} \omega^{3} \wedge \omega^{2}
$$

$$
D \omega_{a}^{b}=\omega_{a}^{c} \wedge \omega_{b}^{c}+\breve{R}_{a 12}^{b} \omega^{1} \wedge \omega^{2}
$$

where torsion curvature tensor components are defined by formulas:

$$
\begin{array}{r}
\breve{R}_{012}^{3}=0, \breve{R}_{012}^{1}=-\frac{1}{2}, \breve{R}_{112}^{1}=-\frac{1}{2}, \breve{R}_{312}^{3}=\frac{E E^{*}}{2}, \\
\breve{R}_{112}^{3}=0, \breve{R}_{312}^{1}=-\frac{1}{2}\left(A_{32}^{2}-E^{*} A_{42}^{1}\right) . \tag{3.13}
\end{array}
$$

we shall call

$$
\begin{equation*}
\breve{R}_{1}=\left\{\breve{R}_{012}^{\beta}, \breve{R}_{012}^{b}\right\} \tag{3.14}
\end{equation*}
$$

the affine into-transformation of curvature of the plane ρ_{1}.
2). The connection C_{24} is the mapping of the adjoining plane ρ_{2}^{\prime} onto the initial plane ρ_{2} in the direction of ρ_{1}.

This mapping is defined by forms $\omega_{\hat{a}}^{\dot{b}}$, which satısfy structural equations

$$
\begin{aligned}
& D \omega^{\hat{a}}=\omega^{\bar{b}} \wedge \omega_{\hat{b}}^{\hat{a}}+\breve{R}_{012}^{\hat{a}} \omega^{1} \wedge \omega^{2}, \\
& D \omega_{\grave{a}}^{\hat{b}}=\omega_{\tilde{a}}^{\hat{c}} \wedge \omega_{\hat{\tilde{b}}}^{\hat{c}}+\breve{R}_{\hat{a} 12}^{\hat{b}} \omega^{1} \wedge \omega^{2},
\end{aligned}
$$

where torsion curvature tensor components are defined in formulas :

$$
\begin{array}{r}
\breve{R}_{012}^{4}=0, \breve{R}_{012}^{2}=\frac{1}{2}, \breve{R}_{212}^{2}=\frac{1}{2}, \breve{R}_{412}^{4}=-\frac{E E^{*}}{2} \\
\breve{R}_{212}^{4}=0, \breve{R}_{412}^{2}=\frac{1}{2}\left(A_{11}^{1}-E A_{31}^{2}\right) . \tag{3.15}
\end{array}
$$

We shall call

$$
\begin{equation*}
\breve{R}_{2}=\left\{\breve{R}_{012}^{\dot{a}}, \breve{R}_{\hat{a} 12}^{\dot{b}}\right\} \tag{3.16}
\end{equation*}
$$

the affine into-transformation of curvature of the plane ρ_{2}.

3.3. The diversity $\left\{\rho_{1}^{*}, \rho_{2}^{*}\right\}$ is the two-dimensional diversity

 of pairs of planes $\rho_{\mathbf{1}}^{*}=\left(\vec{A}, \vec{e}_{1}, \vec{e}_{4}\right)$ and $\rho_{2}^{*}=\left(\vec{A}, \vec{e}_{2}, \vec{e}_{3}\right)$
3.3.1. Affine connections C_{14} and C_{23}

1). The connection C_{14} is the mapping of the adjoing plane $\rho_{1}^{*^{\prime}}$ onto the initial plane ρ_{1}^{*} in the direction of ρ_{2}^{*}. This mapping is defined by forms $\omega_{p}^{q}(p, q, r=1,4 ; \hat{p}, \hat{q}, \hat{r}=2,3)$, which satisfy structural equations:

$$
\begin{aligned}
& D \omega^{p}=\omega^{q} \wedge \omega_{q}^{p}+\tilde{R}_{012}^{p} \omega^{1} \wedge \omega^{2} \\
& D \omega_{p}^{q}=\omega_{p}^{r} \wedge \omega_{r}^{q}+\tilde{R}_{p 12}^{q} \omega^{1} \wedge \omega^{2}
\end{aligned}
$$

where torsion curvature tensor components are defined in formulas :

$$
\begin{array}{r}
\tilde{R}_{012}^{4}=0, \tilde{R}_{012}^{1}=-\frac{1}{2}, \tilde{R}_{112}^{1}=-\frac{1}{2}\left(1-A_{32}^{1}\right), \quad \tilde{R}_{112}^{4}=0 ; \\
\tilde{R}_{412}^{4}=\frac{1}{2}\left(A_{41}^{2}-E E^{*}\right), \tilde{R}_{412}^{1}=-\frac{1}{2}\left(A_{42}^{2}+E A_{31}^{\mathrm{l}}\right) . \tag{3.17}
\end{array}
$$

We shall call

$$
\begin{equation*}
\tilde{R}_{1}=\left\{\tilde{R}_{012}^{p}, \tilde{R}_{p 12}^{q}\right\} \tag{3.18}
\end{equation*}
$$

the (linear) affine into-transformation of the plane ρ_{1}^{*}.
2). The connection C_{23} is the mapping of the adjoning plane $\rho_{2}^{*^{\prime}}$ onto the initial plane ρ_{2}^{*} in the direction of ρ_{1}^{*}. This mapping is defined by forms $\omega_{\hat{p}}^{\hat{q}}$, which satisfy structural equations

$$
\begin{aligned}
& D \omega^{\hat{p}}=\omega^{\hat{q}} \wedge \omega_{\hat{q}}^{\hat{p}}+\tilde{R}_{012}^{\hat{p}} \omega^{1} \wedge \omega^{2} \\
& D \omega_{\hat{p}}^{\hat{q}}=\omega_{\hat{p}}^{\hat{p}} \wedge \omega_{\hat{q}}^{\hat{q}}+\tilde{R}_{\hat{p} 12}^{\hat{q}} \omega^{l} \wedge \omega^{2}
\end{aligned}
$$

where torsion curvature tensor components are defined in the following formulas :

$$
\tilde{R}_{012}^{3}=0, \tilde{R}_{012}^{2}=\frac{1}{2}, \tilde{R}_{212}^{2}=\frac{1}{2}\left(1-A_{41}^{2}\right), \tilde{R}_{212}^{3}=0
$$

$$
\begin{equation*}
\tilde{R}_{312}^{3}=-\frac{1}{2}\left(A_{32}^{1}-E E^{*}\right), \tilde{R}_{312}^{2}=\frac{1}{2}\left(A_{31}^{1}+E^{*} A_{42}^{2}\right) \tag{3.19}
\end{equation*}
$$

We shall call

$$
\begin{equation*}
\tilde{R}_{2}=\left\{\tilde{R}_{012}^{\hat{p}}, \tilde{R}_{\tilde{p} 12}^{\hat{q}}\right\} \tag{3.20}
\end{equation*}
$$

the (linear) affine into-trasformation of the plane ρ_{2}^{*}.

3.3.2. Focus conics φ_{1}^{*} and φ_{2}^{*} of the planes ρ_{1}^{*} and ρ_{2}^{*}

Focus conics φ_{1}^{*} and φ_{2}^{*} of the planes ρ_{1}^{*} and ρ_{2}^{*} are defined by the equations

$$
\begin{equation*}
\varphi_{1}^{*}:\left(x^{1}\right)^{2}+x^{1}+A_{42}^{2} x^{1} x^{4}-A_{41}^{2} E\left(x^{4}\right)^{2}=0, x^{2}=0, x^{3}=0 \tag{3.21}
\end{equation*}
$$

$$
\varphi_{2}^{*}:\left(x^{2}\right)^{2}+x^{2}+A_{31}^{1} x^{2} x^{3}-A_{32}^{1} E^{*}\left(x^{3}\right)^{2}=0, x^{1}=0, x^{4}=0
$$

The centres of these conics are points:

$$
\begin{equation*}
\bar{V}_{14}=\vec{A}-\frac{2 E A_{41}^{1}}{4 E A_{41}^{1}+\left(A_{42}^{2}\right)^{2}} \vec{e}_{1}-\frac{A_{42}^{2}}{4 E A_{41}^{1}+\left(A_{42}^{2}\right)^{2}} \vec{e}_{4} \tag{3.22}
\end{equation*}
$$

$$
\bar{V}_{23}=\vec{A}-\frac{2 E^{*} A_{32}^{1}}{4 E^{*} A_{32}^{1}+\left(A_{31}^{1}\right)^{2}} \vec{e}_{2}-\frac{A_{31}^{1}}{4 E^{*} A_{32}^{1}+\left(A_{31}^{1}\right)^{2}} \vec{e}_{3} .
$$

4. Invariant classes of the two dimensional surfaces S_{2} in A_{4}

With equaffine-invariant geometrical images and connections taken up in the preceding items let analytically characterize invariant classes of the two-dimensional surfaces in A_{4}. We point out some of them:
1). Consider the class

$$
\begin{equation*}
E=0, E^{*}=0 \tag{4.1}
\end{equation*}
$$

In view of (13) ni [4], it is seen that

$$
\omega_{3}^{4}=0, \omega_{4}^{3}=0
$$

Differentiating equations externally, we have convinced that along the surface of class (4.1) m (13) from [4] correlations

$$
\begin{equation*}
A_{31}^{2}=0, A_{42}^{1}=0 \tag{4.2}
\end{equation*}
$$

are accomplished.

Theorem 1. The surface S_{2} in A_{4} of class (4.1) is sumultaneously characterzzed by the following properties.
a) The conic φ_{1}^{*} in the plane $\left(\vec{A}, \vec{e}_{1}, \vec{e}_{4}\right)$ disintegrates into two straight lines

$$
\left(\vec{A}, \vec{e}_{4}\right) x^{1}+A_{42}^{2} x^{4}+1=0, x^{2}=0, x^{3}=0,
$$

b) The conic φ_{2}^{*} in the plane $\left(\vec{A}, \vec{e}_{2}, \vec{e}_{3}\right)$ dusintegrates into two stranght lines

$$
\left(\vec{A}, \vec{e}_{3}\right) x^{2}+A_{31}^{\mathrm{L}} x^{3}+1=0, x^{1}=0, x^{4}=0 .
$$

The proof of this theorem is immediately from (35), (18), (26) and (38) in [4] with making allowance for (4.1).

From (42), taking into consideration (3.17), (3.24), (3.26)-(3.34), we conclude that the surface S_{2} in A_{4} of class (4.1) has the following properties:
a) The straight line $\left(\vec{A}, \vec{e}_{1}\right)$ under the affinity Π_{3} transfers into the line $\left(\vec{A}, \vec{e}_{1}\right)$ and the stralght line $\left(\vec{A}, \vec{e}_{2}\right)$ under the affinity Π_{3} transfers into the line $\left(\vec{A}, \vec{e}_{2}\right)$.
b) Vectors \vec{e}_{3} and \vec{e}_{4} are main directions under the affinity R_{2}.
c) The plane ρ_{1} under the affinity \breve{R}_{1} transfers into the straight line, which parallels to the straight line $\left(\vec{A}, \vec{e}_{1}+A_{32}^{2} \vec{e}_{3}\right)$,
and the straight line $\left(\vec{A}, \vec{e}_{2}+A_{41}^{1} \vec{e}_{4}\right)$ parallels to an image of the plane ρ_{2} under the affinity \breve{R}_{2}.
d) The hypercone K_{2}^{9} disintegrates into two hyperplanes L_{3}^{1} and L_{3}^{2}.

Theorem 2. The surface S_{2} in A_{4} of class (4.1) exists and as defined with the arbitrariness of six functions of one argument.

Proof. From (15) and (16) in [4] and by virtue of (4.1) and (4.2),
we obtain

$$
\begin{aligned}
& A_{22}^{2}+A_{41}^{1}=1, A_{11}^{1}+A_{32}^{2}=1, A_{32}^{3}=2 A_{12}^{1}-1, A_{41}^{4}=2 A_{21}^{2}-1 \\
& -3 A_{32}^{1}-A_{21}^{2}+3=0,-3 A_{41}^{2}+3-A_{12}^{1}=0 \\
& d A_{31}^{1} \wedge \omega^{1}+d A_{32}^{1} \wedge \omega^{2}= \\
& \quad\left(2 A_{31}^{1}-A_{32}^{2}-2 A_{21}^{2} A_{32}^{1}-2 A_{11}^{1} A_{32}^{1}-2 A_{12}^{1} A_{31}^{1}\right) \omega^{1} \wedge \omega^{2} \\
& d A_{41}^{2} \wedge \omega^{1}+d A_{42}^{2} \wedge \omega^{2}= \\
& \quad\left(2 A_{42}^{2}-A_{41}^{1}-2 A_{12}^{1} A_{41}^{2}-2 A_{22}^{2} A_{41}^{2}-2 A_{21}^{2} A_{42}^{2}\right) \omega^{2} \wedge \omega^{1} \\
& d A_{32}^{2} \wedge \omega^{2}=\left(1-2 A_{12}^{1}+2 A_{12}^{1} A_{21}^{2}+A_{32}^{2}\left(1-A_{11}^{1}-4 A_{21}^{2}\right)\right. \\
& \left.\quad-A_{21}^{2}+A_{31}^{1}\right) \omega^{1} \wedge \omega^{2} \\
& d A_{41}^{1} \wedge \omega^{1}=\left(A_{42}^{2}-A_{41}^{1}\left(3 A_{12}^{1}+A_{22}^{2}\right)\right) \omega^{2} \wedge \omega^{1} \\
& d A_{11}^{1} \wedge \omega^{1}+d A_{12}^{1} \wedge \omega^{2}= \\
& \quad\left(-1+A_{32}^{1}+A_{11}^{1}-A_{12}^{1}-A_{11}^{1} A_{12}^{1}+A_{21}^{2} A_{12}^{1}\right) \\
& d A_{21}^{2} \wedge \omega^{1}+d A_{22}^{2} \wedge \omega^{2}= \\
& \quad\left(-1+A_{22}^{2}-A_{21}^{2}+A_{41}^{2}-A_{22}^{2} A_{21}^{2}+A_{21}^{2} A_{12}^{1}\right) \omega^{2} \wedge \omega^{1}
\end{aligned}
$$

Applying Bachvalov's theorem to the above system, we obtain

$$
r=10-4=6, s_{1}=6 \Longrightarrow r=s_{1}=6
$$

Thus, the arbitrarmess of the solution is equal to six functions of one argument.

References

[1] M A Akivis, Focal Images of Surfaces of Rank r News of Instatute of Higher Education, Mathematsc, (1957 No 2), 9-19.
[2] E T Ivlev, About Invariant Stratifications and Their Connections on Rigged Surface of Projective Space Differentzal Geometry of Fugures' Diversity, InterInstit Higher Educ collection of scientific. works Kalıningr. University, Kaliningrad (1992, sssue 23,), 41-45
[3] E T Ivlev, About Parrs' Diversty of the Linear Subspaces which are Dual to Each Other in the n-dimensional Projecting Space, Mathematics collection Works of the TSU, v I (1974)
[4] E.T. Ivlev, O.V. Rozhkova, Haı Gon Je, A Note on the two Dimensional Surface in four Dimensional equaffine Space, East Asıan Math J 14(2) (1998), 329341
E. T. Ivlev, O. V. Rozhkova

Department of Higher Mathematics
Tomsk Polytechnic University
Tomsk,634034, Russia

Hai Gon Je
Department of Mathematics
Unıversity of Ulsan
Ulsan 680-749, Korea

