East Asian Math J 15(1999), No 2, pp. 277-290

ON THE STUDY OF AFFINE DIFFERENTIAL GEOMETRY OF SURFACE S_2 IN A_4

E. T. IVLEV, O. V. ROZHKOVA AND HAI GON JE

ABSTRACT In this paper, we investigate the existence of a two dimensional surface in a four dimensional equiaffine space and characterize that surface

1. Introduction

A two-dimensional surface S_2 is viewed in a four-dimensional equiaffine space A_4 . We shall mark through L_2 is a tangent plane to S_2 in the current point A, l_1 and l_2 are focus lines of plane L_2 ; Γ_3^1 and Γ_3^2 are the focal (tangent) 3-planes in meaning [1]; $\rho_1(\rho_2)$ is the characteristic element of 3-plane $\Gamma_3^1(\Gamma_3^2)$ in the direction $l_2(l_1)$ Let's consider points $X \in A_4$ and $X_1 = \Pr_{\Gamma_3^3} X, X_2 = \Pr_{\Gamma_3^2} X$

The totality of all points $X \in A_4$, which are satisfied the point $A \in S_2$, so that corresponding points X_1 and X_2 lie inside corresponding characteristics hyperplanes Γ_3^1 and Γ_3^2 , forms a second order hypercone K_2^0 in A_4 with the vertex at the point A

Let Γ_2 be the plane polary associated with the plane L_2 and hypercone $K_2^0: l_3 = \rho_1 \bigcap \Gamma_2, l_4 = \rho_2 \bigcap \Gamma_2$. Then the plane $P_2 = l_3 \bigcup l_4$ is clothings plane of surface S_2 at the point $A: P_2 \bigcap L_2 = A, P_2 \bigcup L_2 =$ A_4 . In conformity with [2], centre-affinity transformation $\prod(z)$ of the plane L_2 in itself with center A replies of each point $z \in \Gamma_2$. Noneigen points of the straight lines l_3 and l_4 correspond centre-affinities transformations \prod_3 and \prod_4 , accordingly

Received May 12, 1999 Revised June 2, 1999

As remarked here affine-invariant geometric images take the possibility to construct the canonical frame of surface S_2 in A_4 , with the help which succeed to separate and geometrically to characterize some private classes of surfaces. One of such classes, which is characterized from the following properties:

a) the hypercone K_2^0 on a surface S_2 degenerated in two 3-planes are going through a two-dimensional plane Γ_2 ,

b) the straight line $l_1(l_2)$ at the centre-affinity transformation $\prod_3(\prod_4)$ transfers in itself.

It's found that the indicated class of a surface S_2 in A_4 exists and is determined with arbitrariness of six functions of one argument.

2. Invariant rationing of vectors \vec{e}_3 and \vec{e}_4

The equation of a tangent hyperquadric Q_2 in the local coordinates can be expressed in the form

(2.1)
$$a_{ij}x^ix^j + 2a_{0i}x^i + a_{00} = 0,$$

where

(2.2)
$$a_{ij} = (\vec{e}_i * \vec{e}_j), \ a_{0i} = (\vec{r} * \vec{e}_i), \ \vec{a}_{00} = (\vec{r} * \vec{r}).$$

A condition for a point to belong to the hyperquadric surface will give

(2.3)
$$a_{00} = (\vec{r} * \vec{r}) = 0.$$

A condition for all points to belong to the first differential vicinity (that is a first-order tangency) can be accomplished by differentiating (2.3) and reducing coefficients of independent forms ω^1 and ω^2 to zero.

We obtain $(d\vec{r} * \vec{r}) = 0 \iff \omega^1(\vec{e_1} * \vec{r}) + \omega^2(\vec{e_2} * \vec{r}) = 0$. Hence

(2.4)
$$a_{01} \equiv (\vec{r} * \vec{e}_1) = 0, \ a_{02} \equiv (\vec{r} * \vec{e}_2) = 0.$$

To support a second-order tangency, one should differentiate (2.4). We obtain

$$(d\vec{r} * \vec{e}_1) + (\vec{r} * d\vec{e}_1) = 0, \ (d\vec{r} * \vec{e}_2) + (\vec{r} * d\vec{e}_2) = 0.$$

Inserting expressions $d\vec{r}$ and $d\vec{e}_{\alpha}$ with using of (3),(4),(8) and (13) in [4], we can find equating coefficients by ω^1 and ω^2 :

(2.5)
$$(\vec{A} * \vec{e}_3) + (\vec{e}_1 * \vec{e}_1) = 0, \ (\vec{e}_1 * \vec{e}_2) = 0, (\vec{A} * \vec{e}_4) + (\vec{e}_2 * \vec{e}_2) = 0 \iff$$

$$(2.6) a_{03} + a_{11} = 0, \ a_{12} = 0, \ a_{04} + a_{22} = 0.$$

To support a third-order tangency, we differentiate (2.5). Taking into consideration

$$\begin{aligned} 3(\vec{e_1} * \vec{e_3}) + E^*(\vec{A} * \vec{e_4}) &= 0, \\ 3(\vec{e_2} * \vec{e_4}) + E(\vec{A} * \vec{e_3}) &= 0, \\ (2.7) \qquad (\vec{e_2} * \vec{e_3}) + (\vec{e_1} * \vec{e_1}) &= 0, \\ (\vec{e_1} * \vec{e_4}) + (\vec{e_2} * \vec{e_2}) &= 0 \iff \end{aligned}$$

(2.8)
$$3a_{13} + E^*a_{04} = 0, \ 3a_{24} + Ea_{03} = 0, a_{23} + a_{11} = 0, \ a_{14} + a_{22} = 0.$$

On supposing

(2.9)
$$a_{11} = \alpha, \ a_{22} = \alpha^*,$$

we can find from (2.6) and (2.7)

(2.10)
$$a_{03} = -\alpha, \ a_{04} = -\alpha^*, \ a_{23} = -\alpha, \ a_{14} = -\alpha^*, \\ a_{13} = \frac{E^* \alpha^*}{3}, \ a_{24} = \frac{E\alpha}{3}.$$

Substituting values of some coefficients a_{ik} found from (3), (4), (8) and (10) in [4], we obtain that all hyperquadrics in A_4 , which have a third-oder tangency with the surface S_2 , are defined by the equation:

(2.11)
$$\begin{aligned} \alpha(x^{1})^{2} + \alpha^{*}(x^{2})^{2} - 2\alpha^{*}x^{1}x^{4} - 2\alpha x^{2}x^{3} - 2\alpha x^{3} - 2\alpha^{*}x^{4} \\ + \frac{2}{3}E^{*}\alpha x^{1}x^{3} + \frac{2}{3}E\alpha x^{2}x^{4} + a_{\hat{\alpha}\hat{\beta}}x^{\hat{\alpha}}x^{\hat{\beta}} = 0. \end{aligned}$$

In view of (32) in [4], it is seen that polars of points t_1 and τ_1 in (2.10) are defined by equations respectively:

(2.12)
$$t_1: \ \alpha x^1 + \frac{1}{3}E^*\alpha^*x^3 - \alpha^*x^4 = 0,$$
$$\tau_1: \ \alpha^*x^2 + \frac{1}{3}E\alpha x^4 - \alpha x^3 = 0.$$

If this system is considered regarding to α and α^* , then we can obtain that it will have non-trivial solutions according to α and α^* if and only if

(2.13)
$$Q_2: x^1x^2 - (1 + \frac{EE^*}{9})x^3x^4 + \frac{E^*}{3}(x^3)^2 + \frac{E}{3}(x^4)^2 = 0.$$

We call Q_2 the aggregate of all points (36) in [4] in A_4 , to each of them corresponds the aggregate of such hyperquadric (2.10), according to which points $\vec{t_1}$ and $\vec{\tau_1}$ have the same polar. It follows from (2.11) and (2.12) that Q_2 is the hyperquadric in A_4 , defined by equation (2.13).

Points with radius vectors

$$ec{t_1}^* = ec{A} + ec{e_1},$$

 $ec{ au_1}^* = ec{A} + ec{e_2},$

which are symmetrical to points (32) in [4] on the corresponding straight lines, are taken up. The point with the radius vector

$$V = \vec{A} + \frac{1}{2}(\vec{e}_1 + \vec{e}_2)$$

is the middle of the segment $[\vec{t_1}^*, \vec{\tau_1}^*]$ In view of (17) in [4], it is seen that the curve

$$K \, . \ \omega^2 = \omega^1, \ \omega^{\hat{\alpha}} = 0$$

on the surface S_2 is geometrically characterized, because the point \vec{A} describes a line with the tangent along the curve, which parallels to the straight line $A_V = (\vec{A}, \vec{e_1} + \vec{e_2})$. From

(2.14)
$$d(\vec{e}_1 + \vec{e}_2) = (...)^1 \vec{e}_1 + (...)^2 \vec{e}_2 + \omega_1^3 \vec{e}_3 + \omega_2^4 \vec{e}_4$$
$$= (...)^1 \vec{e}_1 + (...)^2 \vec{e}_2 + \omega^1 \vec{e}_3 + \omega^2 \vec{e}_4,$$

we notice that the straight line $A_{V^*} = (\vec{A}, \vec{e_3} + \vec{e_4})$ is the intersection of the plane $\Gamma_2 = (\vec{A}, \vec{e_3}, \vec{e_4})$ with 3-dimensional plane passing through $L_2 = (\vec{A}, \vec{e_1}, \vec{e_2})$ and the tangent linear subspace to the aggregate of straight lines A_V along the curve K.

Let us consider the point on the straight line $l_3 = (\vec{A}, \vec{e_3})$

$$\vec{T_3} = \vec{A} + t\vec{e_3},$$

which is in direction A_{V^*} projected at the point $\vec{T}_4 = \vec{A} + t\vec{e}_4$ on the straight line $l_4 = (\vec{A}, \vec{e}_4)$

Let points T_3 and T_4 be such points that $(\vec{t}_1, \vec{\tau}_1, \vec{T}_3, \vec{T}_4) = 1$, then $t^2 = 1$. Consequently, on lines l_3 and l_4 points

$$\vec{e_3} = \vec{A} + \vec{e_3}, \ \vec{e_3}^* = \vec{A} - \vec{e_3},$$

 $\vec{e_4} = \vec{A} + \vec{e_4}, \ \vec{e_4}^* = \vec{A} - \vec{e_4},$

give the geometrical meaning of rationing of vectors \vec{e}_3 and \vec{e}_4 . It follows from (2.13) that the hyperplane $\Gamma_2 = (\vec{A}, \vec{e}_3, \vec{e}_4)$ and the hyperquadric Q_2 intersect in two straight lines:

$$\vec{u}_4 = (\vec{A}, E^* \vec{e}_4 + 3 \vec{e}_3), \ \vec{u}_3 = (\vec{A}, E \vec{e}_3 + 3 \vec{e}_4).$$

Hence, invariants E and E^* are geometrically characterized in following manner: $E = 3\omega$, $E^* = 3\omega^*$

Here formulas

$$\begin{split} &\omega = \{(\vec{A}, \vec{e}_3), \vec{u}_3; (\vec{A}, \vec{e}_3 + \vec{e}_4); (\vec{A}, \vec{e}_4)\}, \\ &\omega^* = \{(\vec{A}, \vec{e}_3), (\vec{A}, \vec{e}_3 + \vec{e}_4); \vec{u}_4; (\vec{A}, \vec{e}_4)\}, \end{split}$$

are complex connections of the corresponding four straight lines passing through the point $\vec{A} \in S_2$ in the plane Γ_2

3. Some affine-invariant geometrical images

For geometrical interpretation of some special classes of the surface S_2 in A_4 , which are to be discussed in the next section, in this section let us consider some affine-invariant geometrical images associated with the surface S_2 in A_4 We shall conduct a research of these images, using terms of the canonical frame built analytically in [4] and geometrically in the preceding section.

3.1. The diversity $\{L_2, \Gamma_2\}$ is a two dimensional diversity of pairs of planes L_2 and Γ_2

3.1.1. Some affinities of the tangent plane L_2 .

Let us take up the point in Γ_2 : $\vec{Z} = \vec{A} + z^{\hat{\alpha}} \vec{e}_{\hat{\alpha}} \in \Gamma_2$. We have: $d\vec{Z} = (...)^{\hat{\alpha}} \vec{e}_{\hat{\alpha}} + x^{\hat{\alpha}} A^{\alpha}_{\hat{\alpha}\beta} \omega^{\beta} \vec{e}_{\alpha}$.

Therefore, to each point $\vec{Z} \in \Gamma_2$ corresponds the centre-affine intotransformation of the plane L_2 with the vector \vec{A} ((7) in [2]):

(3.1)
$$\Pi(z) = \{\delta^{\alpha}_{\beta} + z^{\hat{\alpha}} A^{\alpha}_{\hat{\alpha}\beta}\}.$$

This affinor transfers each direction

$$(3.2) x = (\vec{A}, \vec{e}_{\beta}) x^{\beta} \in L_2$$

to the following direction

282

(3.3)
$$y = (A, \vec{e}_{\alpha})y^{\alpha} \in L_{2}, \ y = (z)x,$$
$$y^{\alpha} = \{\delta^{\alpha}_{\beta} + z^{\hat{\alpha}}A^{\alpha}_{\hat{\alpha}\beta}\}x^{\beta},$$

thus $y = L_2 \bigcap \{ \Gamma_2 \bigcap T(z, x) \}.$

Here, T(z, x) means the line described by the point $\vec{Z} \in \Gamma_2$ in the direction of x. It follows from (15) and (41) in [4] that there are two invariant affinors Π_3 and Π_4 of the plane L_2 , which are the affinor $\Pi(z)$, responding with non-eigen points of straight lines l_3 and l_4

(3.4)
$$\Pi_3 = \{A_{3\beta}^{\alpha}\}, \ \Pi_4 = \{A_{4\beta}^{\alpha}\}.$$

We shall put the following geometrical images.

- 1.) The straight line $l^* = \{Z \in \Gamma_2 | ter \Pi(z) = 0\},\$
- 2.) The conic $\psi_1^1 = \{ Z \in \Gamma_2 | ter \Pi^2(z) = 0 \}$,
- 3.) The focus conic $\psi_1^2 = \{Z \in \Gamma_2 | det \Pi(z) = 0\}.$

It follows from (3.1) that each of these geometrical images in Γ_2 is defined by equations respectively:

(3.5)
$$l_1^*: \ 1 + 2a_{0\dot{\alpha}}z^{\dot{\alpha}} = 0, \ z^{\alpha} = 0,$$

(3.6)
$$\psi_1^1: 1 + 2a_{0\hat{\alpha}}z^{\hat{\alpha}} + a_{\hat{\alpha}\hat{\beta}}z^{\hat{\alpha}}z^{\hat{\beta}} = 0, \ z^{\alpha} = 0,$$

(5.7)
$$\psi_1^2: \ 1 + 2a_{0\hat{\alpha}}z^{\hat{\alpha}} + b_{\hat{\alpha}\hat{\beta}}z^{\hat{\alpha}}z^{\hat{\beta}} = 0, \ z^{\alpha} = 0,$$

where

$$a_{0\hat{\alpha}} = \frac{1}{2} A^{\alpha}_{\hat{\alpha}\alpha}, \ a_{\hat{\alpha}\hat{\beta}} = \frac{1}{2} A^{\alpha}_{\hat{\alpha}\beta} A^{\beta}_{\hat{\beta}\alpha},$$

(3.8)
$$b_{\hat{\alpha}\hat{\beta}} = \frac{1}{2} (A^{1}_{\hat{\alpha}1} A^{1}_{\hat{\beta}1} + A^{2}_{\hat{\alpha}2} A^{2}_{\hat{\beta}2} - A^{1}_{\hat{\alpha}2} A^{2}_{\hat{\beta}1} - A^{2}_{\hat{\alpha}1} A^{1}_{\hat{\beta}2}).$$

It follows from (3.5)–(3.7) that the straight line l^* is a polar of the point \vec{A} in the conic ψ_1^1 or ψ_1^2 . Thus, to each point $\vec{Z} \in \Gamma_2$ correspond centre-affinities Π_3 and Π_4

3.1.2. Affine connections C_{12} and C_{34}

1). By analogy with [2] we shall consider the connection C_{12} , which is the mapping of the adjoining plane L'_2 onto the initial L_2 in the direction of plane Γ_2 .

This mapping is defined by forms ω^{α} and ω^{β}_{α} , which, by virtue of (2) and (3) in [4], satisfy structural equations

$$D\omega^{\alpha} = \omega^{\beta} \wedge \omega^{\alpha}_{\beta},$$
$$D\omega^{\beta}_{\alpha} = \omega^{\gamma}_{\alpha} \wedge \omega^{\beta}_{\gamma} + R^{\beta}_{\alpha 1 2} \omega^{1} \wedge \omega^{2},$$

where curvature tensor components are defined by formulas, by virtue of (8) and (14) in [4]:

(3.9)
$$R_{112}^{1} = \frac{1}{2}A_{32}^{1}, \quad R_{212}^{2} = -\frac{1}{2}A_{41}^{2},$$
$$R_{112}^{2} = \frac{1}{2}A_{32}^{2}, \quad R_{212}^{1} = -\frac{1}{2}A_{41}^{1}.$$

We shall call

(3.10)
$$R_1 = \{R^{\beta}_{\alpha 12}\}$$

the affine into-transformation of curvature of the plane L_2 in the meaning [3].

2). The connection C_{34} is the mapping of the adjoining plane Γ_2^1 onto the initial Γ_2 in the direction of L_2 [2].

This mapping is defined by forms $\omega_{\hat{\alpha}}^{\hat{\beta}}$, which, by virtue of (2) and (3) in [4], satisfy structural equations

$$D\omega_{\hat{lpha}}^{\hat{eta}} = \omega_{\hat{lpha}}^{\hat{\gamma}} \wedge \omega_{\hat{\gamma}}^{\hat{eta}} + R_{\hat{lpha}12}^{\hat{eta}} \omega^1 \wedge \omega^2,$$

where curvature tensor components are defined, by virtue of (8) and (14) in [4], in formulas:

(3.11)
$$\begin{aligned} R_{312}^3 &= -\frac{1}{2}A_{32}^1, \ R_{412}^4 &= \frac{1}{2}A_{41}^2, \\ R_{312}^4 &= \frac{1}{2}A_{31}^2, \ R_{412}^3 &= -\frac{1}{2}A_{42}^1. \end{aligned}$$

We shall call

(3.12)
$$R_2 = \{R_{\hat{\alpha}12}^{\hat{\beta}}\}$$

the into-affinor of curvature of the plane Γ_2 in the meaning [3]

3.2. The diversity $\{\rho_1, \rho_2\}$ is a two-dimensional diversity of pairs of planes $\rho_1 = (\vec{A}, \vec{e_1}, \vec{e_3})$ and $\rho_2 = (\vec{A}, \vec{e_2}, \vec{e_4})$

1). The connection C_{13} is the mapping of the adjoining plane ρ'_1 onto the initial plane ρ_1 in the direction of ρ_2 . This mapping is defined by forms ω^b_a $(a, b, c = 1, 3, \ \hat{a}, \hat{b} = 2, 4)$, which satisfy structural equations

$$D\omega^a = \omega^b \wedge \omega^a_b + \breve{R}^a_{012} \omega^1 \wedge \omega^2.$$

$$D\omega_a^b = \omega_a^c \wedge \omega_b^c + \breve{R}_{a12}^b \omega^1 \wedge \omega^2,$$

where torsion curvature tensor components are defined by formulas:

(3.13)
$$\begin{split} \check{R}^{3}_{012} &= 0, \ \check{R}^{1}_{012} &= -\frac{1}{2}, \ \check{R}^{1}_{112} &= -\frac{1}{2}, \ \check{R}^{3}_{312} &= \frac{EE^{*}}{2}, \\ \check{R}^{3}_{112} &= 0, \ \check{R}^{3}_{312} &= -\frac{1}{2}(A^{2}_{32} - E^{*}A^{1}_{42}). \end{split}$$

we shall call

(3.14)
$$\breve{R}_1 = \{\breve{R}_{012}^\beta, \breve{R}_{012}^b\}$$

the affine into-transformation of curvature of the plane ρ_1 .

2). The connection C_{24} is the mapping of the adjoining plane ρ'_2 onto the initial plane ρ_2 in the direction of ρ_1 .

This mapping is defined by forms $\omega_{\hat{a}}^{\hat{b}}$, which satisfy structural equations

$$D\omega^{\hat{a}} = \omega^{b} \wedge \omega^{\hat{a}}_{\hat{b}} + \breve{R}^{\hat{a}}_{012}\omega^{1} \wedge \omega^{2},$$

 $D\omega^{\hat{b}}_{\hat{a}} = \omega^{\hat{c}}_{\hat{a}} \wedge \omega^{\hat{c}}_{\hat{b}} + \breve{R}^{\hat{b}}_{\hat{a}12}\omega^{1} \wedge \omega^{2},$

where torsion curvature tensor components are defined in formulas :

(3.15)
$$\breve{R}_{012}^4 = 0, \ \breve{R}_{012}^2 = \frac{1}{2}, \ \breve{R}_{212}^2 = \frac{1}{2}, \ \breve{R}_{412}^4 = -\frac{EE^*}{2}, \\
\breve{R}_{212}^4 = 0, \ \breve{R}_{412}^2 = \frac{1}{2}(A_{41}^1 - EA_{31}^2).$$

We shall call

(3.16)
$$\breve{R}_2 = \{\breve{R}^{\hat{a}}_{012}, \breve{R}^{\hat{b}}_{\hat{a}12}\}$$

the affine into-transformation of curvature of the plane ρ_2 .

3.3. The diversity $\{\rho_1^*, \rho_2^*\}$ is the two- dimensional diversity of pairs of planes $\rho_1^* = (\vec{A}, \vec{e_1}, \vec{e_4})$ and $\rho_2^* = (\vec{A}, \vec{e_2}, \vec{e_3})$

3.3.1. Affine connections C_{14} and C_{23}

1). The connection C_{14} is the mapping of the adjoing plane ρ_1^* onto the initial plane ρ_1^* in the direction of ρ_2^* . This mapping is defined by forms ω_p^q $(p, q, r = 1, 4; \hat{p}, \hat{q}, \hat{r} = 2, 3)$, which satisfy structural equations:

$$D\omega^{p} = \omega^{q} \wedge \omega^{p}_{q} + \tilde{R}^{p}_{012}\omega^{1} \wedge \omega^{2},$$
$$D\omega^{q}_{p} = \omega^{r}_{p} \wedge \omega^{q}_{r} + \tilde{R}^{q}_{p12}\omega^{1} \wedge \omega^{2},$$

where torsion curvature tensor components are defined in formulas :

$$\tilde{R}_{012}^4 = 0, \ \tilde{R}_{012}^1 = -\frac{1}{2}, \ \tilde{R}_{112}^1 = -\frac{1}{2}(1 - A_{32}^1), \ \tilde{R}_{112}^4 = 0;$$
(3.17)
$$\tilde{R}_{412}^4 = \frac{1}{2}(A_{41}^2 - EE^*), \ \tilde{R}_{412}^1 = -\frac{1}{2}(A_{42}^2 + EA_{31}^1).$$

We shall call

the (linear) affine into-transformation of the plane ρ_1^* .

2). The connection C_{23} is the mapping of the adjoiing plane ρ_2^{*} onto the initial plane ρ_2^{*} in the direction of ρ_1^{*} . This mapping is defined by forms $\omega_{\hat{p}}^{\hat{q}}$, which satisfy structural equations

$$\begin{split} D\omega^{\hat{p}} &= \omega^{\hat{q}} \wedge \omega^{\hat{p}}_{\hat{q}} + \tilde{R}^{\hat{p}}_{012}\omega^{1} \wedge \omega^{2}, \\ D\omega^{\hat{q}}_{\hat{p}} &= \omega^{\hat{r}}_{\hat{p}} \wedge \omega^{\hat{q}}_{\hat{r}} + \tilde{R}^{\hat{q}}_{\hat{p}12}\omega^{1} \wedge \omega^{2}, \end{split}$$

where torsion curvature tensor components are defined in the following formulas :

$$\tilde{R}^3_{012} = 0, \ \tilde{R}^2_{012} = \frac{1}{2}, \ \tilde{R}^2_{212} = \frac{1}{2}(1 - A^2_{41}), \ \tilde{R}^3_{212} = 0,$$

(3.19)

$$\tilde{R}^3_{312} = -\frac{1}{2}(A^1_{32} - EE^*), \ \tilde{R}^2_{312} = \frac{1}{2}(A^1_{31} + E^*A^2_{42}).$$

287

We shall call

(3.20)
$$\tilde{R}_2 = \{\tilde{R}^{\vec{p}}_{012}, \tilde{R}^{\vec{q}}_{\vec{p}12}\}$$

the (linear) affine into-trasformation of the plane ρ_2^* .

3.3.2. Focus conics φ_1^* and φ_2^* of the planes ρ_1^* and ρ_2^*

Focus conics φ_1^* and φ_2^* of the planes ρ_1^* and ρ_2^* are defined by the equations

$$\begin{split} \varphi_1^*: & (x^{\underline{1}})^2 + x^1 + A_{42}^2 x^1 x^4 - A_{41}^2 E(x^4)^2 = 0, \ x^2 = 0, \ x^3 = 0, \\ (3.21) \\ \varphi_2^*: & (x^2)^2 + x^2 + A_{31}^1 x^2 x^3 - A_{32}^1 E^*(x^3)^2 = 0, \ x^1 = 0, \ x^4 = 0. \end{split}$$

The centres of these comes are points:

$$\bar{V}_{14} = \vec{A} - \frac{2EA_{41}^1}{4EA_{41}^1 + (A_{42}^2)^2}\vec{e}_1 - \frac{A_{42}^2}{4EA_{41}^1 + (A_{42}^2)^2}\vec{e}_4,$$

(3.22)

$$\bar{V}_{23} = \vec{A} - \frac{2E^*A_{32}^1}{4E^*A_{32}^1 + (A_{31}^1)^2} \vec{e}_2 - \frac{A_{31}^1}{4E^*A_{32}^1 + (A_{31}^1)^2} \vec{e}_3.$$

4. Invariant classes of the two dimensional surfaces S_2 in A_4

With equiaffine-invariant geometrical images and connections taken up in the preceding items let analytically characterize invariant classes of the two-dimensional surfaces in A_4 . We point out some of them:

1). Consider the class

(4.1)
$$E = 0, E^* = 0.$$

In view of (13) in [4], it is seen that

$$\omega_3^4 = 0, \ \omega_4^3 = 0.$$

Differentiating equations externally, we have convinced that along the surface of class (4.1) in (13) from [4] correlations

are accomplished.

THEOREM 1. The surface S_2 in A_4 of class (4.1) is simultaneously characterized by the following properties.

a) The conic φ_1^* in the plane $(\vec{A}, \vec{e_1}, \vec{e_4})$ disintegrates into two straight lines

 $(\vec{A}, \vec{e_4}) \ x^1 + A_{42}^2 x^4 + 1 = 0, \ x^2 = 0, \ x^3 = 0,$

b) The conic φ_2^* in the plane $(\vec{A}, \vec{e_2}, \vec{e_3})$ disintegrates into two straight lines

$$(\vec{A}, \vec{e_3}) \ x^2 + A_{31}^1 x^3 + 1 = 0, \ x^1 = 0, \ x^4 = 0.$$

The proof of this theorem is immediately from (35), (18), (26) and (38) in [4] with making allowance for (4.1).

From (4 2), taking into consideration (3.17), (3.24), (3.26)–(3.34), we conclude that the surface S_2 in A_4 of class (4.1) has the following properties:

a) The straight line $(\vec{A}, \vec{e_1})$ under the affinity Π_3 transfers into the line $(\vec{A}, \vec{e_1})$ and the straight line $(\vec{A}, \vec{e_2})$ under the affinity Π_3 transfers into the line $(\vec{A}, \vec{e_2})$.

b) Vectors \vec{e}_3 and \vec{e}_4 are main directions under the affinity R_2 .

c) The plane ρ_1 under the affinity \ddot{R}_1 transfers into the straight line, which parallels to the straight line $(\vec{A}, \vec{e}_1 + A_{32}^2 \vec{e}_3)$,

and the straight line $(\vec{A}, \vec{e}_2 + A_{41}^1 \vec{e}_4)$ parallels to an image of the plane ρ_2 under the affinity \vec{R}_2 .

d) The hypercone K_2^0 disintegrates into two hyperplanes L_3^1 and L_3^2 .

THEOREM 2. The surface S_2 in A_4 of class (4.1) exists and is defined with the arbitrariness of six functions of one argument.

PROOF. From (15) and (16) in [4] and by virtue of (4.1) and (4.2),

we obtain

$$\begin{split} &A_{22}^2 + A_{41}^1 = 1, \ A_{11}^1 + A_{32}^2 = 1, \ A_{32}^3 = 2A_{12}^1 - 1, \ A_{41}^4 = 2A_{21}^2 - 1, \\ &- 3A_{32}^1 - A_{21}^2 + 3 = 0, \ -3A_{41}^2 + 3 - A_{12}^1 = 0, \\ &dA_{31}^1 \wedge \omega^1 + dA_{32}^1 \wedge \omega^2 = \\ &(2A_{31}^1 - A_{32}^2 - 2A_{21}^2A_{32}^1 - 2A_{11}^1A_{32}^1 - 2A_{12}^1A_{31}^1)\omega^1 \wedge \omega^2, \\ &dA_{41}^2 \wedge \omega^1 + dA_{42}^2 \wedge \omega^2 = \\ &(2A_{42}^2 - A_{41}^1 - 2A_{12}^1A_{41}^2 - 2A_{22}^2A_{41}^2 - 2A_{21}^2A_{42}^2)\omega^2 \wedge \omega^1, \\ &dA_{32}^2 \wedge \omega^2 = (1 - 2A_{12}^1 + 2A_{12}^1A_{21}^2 + A_{32}^2(1 - A_{11}^1 - 4A_{21}^2)) \\ &- A_{21}^2 + A_{31}^1)\omega^1 \wedge \omega^2, \\ &dA_{41}^1 \wedge \omega^1 = (A_{42}^2 - A_{41}^1(3A_{12}^1 + A_{22}^2))\omega^2 \wedge \omega^1, \\ &dA_{11}^1 \wedge \omega^1 + dA_{12}^1 \wedge \omega^2 = \\ &(-1 + A_{32}^1 + A_{11}^1 - A_{12}^1 - A_{11}^1A_{12}^1 + A_{21}^2A_{12}^1), \\ &dA_{21}^2 \wedge \omega^1 + dA_{22}^2 \wedge \omega^2 = \\ &(-1 + A_{22}^2 - A_{21}^2 + A_{41}^2 - A_{22}^2A_{21}^2 + A_{21}^2A_{12}^1)\omega^2 \wedge \omega^1. \end{split}$$

Applying Bachvalov's theorem to the above system, we obtain

$$r = 10 - 4 = 6, \ s_1 = 6 \implies r = s_1 = 6.$$

Thus, the arbitrarmess of the solution is equal to six functions of one argument.

References

- M A Akivis, Focal Images of Surfaces of Rank r News of Institute of Higher Education, Mathematic, (1957 No 2), 9-19.
- [2] E T Ivlev, About Invariant Stratifications and Their Connections on Rigged Surface of Projective Space Differential Geometry of Fugures' Diversity, Inter-Instit Higher Educ collection of scientific, works Kaliningr. University, Kaliningrad (1992, issue 23.), 41-45
- [3] E T Ivlev, About Pairs' Diversity of the Linear Subspaces which are Dual to Each Other in the n-dimensional Projecting Space, Mathematics collection Works of the TSU, v I (1974)

290 E. T IVLEV, O. V ROZHKOVA AND HAI GON JE

[4] E.T. Ivlev, O.V. Rozhkova, Hai Gon Je, A Note on the two Dimensional Surface in four Dimensional equiaffine Space, East Asian Math J 14(2) (1998), 329-341

E. T. Ivlev, O. V. Rozhkova Department of Higher Mathematics Tomsk Polytechnic University Tomsk, 634034, Russia

Hai Gon Je Department of Mathematics University of Ulsan Ulsan 680–749, Korea