East Asian Math. J 15(1999), No 2, pp. 267-276

THE SPACES OF ULTRADIFFERENTIABLE FUNCTIONS OF TWO TYPES AND WHITNEY JETS

YOUNG SIK PARK

0. Introduction

We investigate some problems on the space $E_M(\Omega)(\text{resp. } E_{[\omega]}(\Omega))$ of ultradifferentiable functions of class $M = (M_k)_{k \in N_0(=N \cup \{0\})}$ (resp. Beurling, Roumieu type) and that of $E_M(K)(\text{resp. } E_{[\omega]}(K))$ of Whitney jets of class M(resp. Beurling, Roumieu type) on a compact set K in \mathbb{R}^n . Also we consider the problems on non quasi-analytic classes of functions. Here $M(\text{resp. } [\omega])$ stands for (M_k) or $\{M_k\}(\text{resp. } (\omega) \text{ or} \{\omega\})$.

1. The spaces $E_{[\omega]}(\Omega)$ and $E_M(\Omega)$

Throughout N_0 and N denote the sets of all nonnegative integers and positive integers, respectively. Let $M = (M_k)_{k \in N_0}$ be a sequence of positive numbers which satisfies some of the following conditions with $M_0 = 1$,

(M.1) $M_k^2 \leq M_{k-1}M_{k+1}, k \in N;$ (M.2) There are constants K > 0 and H > 1 such that

$$M_k \le KH^k \min_{0 \le l \le k} M_l M_{k-l}, \ k \in N_0;$$

Received May 9, 1999. Revised June 3, 1999.

¹⁹⁹¹ Mathematics Subject Classification 06F35

Key words and phrases Projective and inductive limits, Whitney jets of class M

(M.3) There is a constant L > 0 such that

$$\sum_{l=k+1}^{\infty} \frac{M_{l-1}}{M_l} \le Lk \frac{M_k}{M_{k+1}}, \quad k \in N;$$

$$(M.3)' \qquad \qquad \sum_{k=1}^{\infty} \frac{M_{k-1}}{M_k} < \infty.$$

We write $m_k = \frac{M_k}{M_{k-1}}, k \in N$, and define

 $m(t) = ext{the number of } m_k \leq t, M(t) = \sup_{t} \log \frac{t^k}{M_t}.$

DEFINITION 1.1. Let $w : [0, \infty) \to [0, \infty)$ be a continuous increasing function with w(0) = 0 and $\lim_{t\to\infty} w(t) = \infty$. We consider the following conditions on w:

(α) $0 = w(0) \le w(s+t) \le w(s) + w(t)$ for all $s, t \in [0, \infty)$. (β) $\int_0^\infty \frac{w(t)}{1+t^2} dt < \infty$;

$$(\beta) \int_0^\infty \frac{w(t)}{1+t^2} dt < \infty$$

$$(\gamma) \lim_{t\to\infty} \frac{\log t}{w(t)} = 0;$$

(δ) $\varphi: t \to w(e^t)$ is convex;

(ϵ) There exists C > 0 with $\int_{1}^{\infty} \frac{w(yt)}{t^2} dt \leq Cw(y) + C$ for all $y \geq 0$; (ζ) There exists $H \ge 1$ with $2w(t) \le w(Ht) + H$ for all $t \ge 0$.

DEFINITION 1.2 A continuous increasing function $w: [0,\infty) \rightarrow$ $[0,\infty)$ with w(0) = 0 will be called a *weight function* if it has the properties (γ) , (δ) and (ϵ) in Definition 1.1.

We shall denote by φ^* , $[0,\infty) \to [0,\infty)$ the Young conjugate of the convex function φ defined in (δ), i.e.,

$$\varphi^*(s) = \sup\{st - \varphi(t) | t \ge 0\}.$$

DEFINITION 1.3. Let Ω be an open set in \mathbb{R}^n .

(a) We define the space $E_{(\omega)}(\Omega)$ (resp. $E_{\{\omega\}}(\Omega)$) of ultradifferentiable functions of Beurling type (resp. Roumieu type) is the set of C^{∞} functions f in Ω with the property that for each compact set $K \subset \Omega$

and each $n \in N(\text{resp. some } n \in N)$, $||f||_{K,n}(\text{resp. } ||f||_{K,\frac{1}{n}})$ is finite, where

$$||f||_{K,n} = \sup_{\substack{x \in K \\ \alpha}} \frac{|\partial^{\alpha} f(x)|}{\exp[\varphi^*(\frac{|\alpha|}{n})]}.$$

The topology in the space $E_{(\omega)}(\Omega)$ (resp. $E_{\{\omega\}}(\Omega)$) is given the projective limit topology over K and n(resp. the projective limit topology over K of the inductive limit over n).

(b) We define the space $E_{(M_k)}(\Omega)$ (resp. $E_{\{M_k\}}(\Omega)$) of ultradifferentiable functions of class (M_k) (resp. $\{M_k\}$), i.e., $E_{(M_k)}(\Omega)$ (resp $E_{\{M_k\}}(\Omega)$) = { $f \in C^{\infty}(\Omega)$: for each compact set $K \subset \Omega$ and each(resp. some) h > 0, $P_{K,h}(f) < \infty$ }, where

$$P_{K,h}(f) = \sup_{\substack{x \in K \\ \alpha}} \frac{|D^{\alpha}f(x)|}{h^{|\alpha|}M_{|\alpha|}}.$$

The topology on the space $E_{(M_k)}(\Omega)$ (resp. $E_{\{M_k\}}(\Omega)$) is given the projective limit topology over K and $n \in N$ (resp. the projective limit topology over K of the inductive limit over $n \in N$).

THEOREM 1.4. For a compact set $K \subset \Omega$ and $n \in N$, we define

(1.1)
$$E_{(\omega)}(K,n) = \{f \in C^{\infty}(\Omega) : ||f||_{K,n} < \infty\},\$$
$$E_{\{\omega\}}(K,n) = \{f \in C^{\infty}(\Omega) . ||f||_{K,\frac{1}{n}} < \infty\},\$$
$$E_{(M_k)}(K,n) = \{f \in C^{\infty}(\Omega) . P_{K,\frac{1}{n}} < \infty\},\$$
and
$$E_{\{M_k\}}(K,n) = \{f \in C^{\infty}(\Omega) . P_{K,n} < \infty\}.$$

Then

(1.2)
$$E_{(\omega)}(\Omega) = \operatorname{proj} \lim_{\substack{K \Subset \Omega \\ n \to \infty}} E_{(\omega)}(K, n),$$
$$E_{\{\omega\}}(\Omega) = \operatorname{proj} \lim_{\substack{K \Subset \Omega \\ n \to \infty}} \operatorname{Ind} \lim_{\substack{n \to \infty}} E_{\{\omega\}}(K, n)],$$
$$E_{(M_k)}(\Omega) = \operatorname{proj} \lim_{\substack{K \Subset \Omega \\ n \to \infty}} E_{(M_k)}(K, n), \text{ and}$$
$$E_{\{M_k\}}(\Omega) = \operatorname{proj} \lim_{\substack{K \Subset \Omega \\ K \Subset \Omega}} \operatorname{Ind} \lim_{\substack{n \to \infty}} E_{\{M_k\}}(K, n)].$$

PROOF. They are well defined and can be proved by the following remark :

(i)

$$\exp[n\varphi^*(\frac{|\alpha|}{n})] = \sup_{t\geq 0} \left[\frac{t^{|\alpha|}}{\exp nw(t)}\right],$$

$$\exp[\varphi^*(\frac{1}{n}|\alpha|)] = \sup_{t\geq 0} \left[\frac{t^{|\alpha|}}{\exp\frac{1}{n}w(t)}\right].$$
(ii)

$$\exp[nw(t)] = \sup_{x\geq 0} \left\{\frac{t^x}{\exp[n\varphi^*(\frac{x}{n})]}\right\},$$

$$\exp[\frac{1}{n}w(t)] = \sup_{x\geq 0} \left\{\frac{t^x}{\exp[\frac{1}{n}\varphi^*(nx)]}\right\}$$

THEOREM 1.5. The space $E_{\{M_k\}}(\mathbb{R}^n)$ of ultradifferentiable functions of class $\{M_k\}$ is a Silva space, that is, inductive limit of Fréchet spaces such that the canonical mappings are compact.

PROOF. We define, for $j \in N$, $E_{M,j}(\mathbb{R}^n) = \{f \in C^{\infty}(\mathbb{R}^n) : \text{ for every compact set } K \text{ in } \mathbb{R}^n, P_{K,j}(f) < \infty\}$, where the topology in $E_{M,j}(\mathbb{R}^n)$ is defined by, for an increasing sequence $\{K_i\}$ of compact sets such that $\bigcup K_i = \mathbb{R}^n$, the system of seminorms $\{P_{K_i,j} : i \in N\}$.

Then $E_{M,j}(\mathbb{R}^n)$ is a Fréchet space with $\{P_{K_i,j} : i \in N\}$. We have the well-known properties such that the image of a bounded set under a continuous linear mapping is a bounded set and the closure of a bounded set is bounded. Also the space $E_{M,j}(\mathbb{R}^n)$ has the property that all bounded and closed subsets are compact by Ascoli's theorem. Therefore, for j < k, the inclusion mappings $E_{M,j}(\mathbb{R}^n) \hookrightarrow E_{M,k}(\mathbb{R}^n)$ are compact. Hence we have

$$E_{\{M_k\}}(\mathbb{R}^n) = \operatorname{ind} \lim_{j \to \infty} E_{M,j}(\mathbb{R}^n).$$

THEOREM 1.6. The space $E_{\{\omega\}}(\mathbb{R}^n)$ of ultradifferentiable functions of Roumieu type is a Silva space

Indeed, if a sequence $(M_k)_{k \in N_0}$ of positive numbers satisfies (M.1), (M.2) and (M.3), then there exists a weight function w(t) satisfying all conditions (α) - (ζ) in Definition 1.1 such that $E_{\{M_k\}}(\mathbb{R}^n) = E_{\{\omega\}}(\mathbb{R}^n)$ and vice versa (see [6], Theorems 3.1, 3.2).

2. Non quasi-analyticity

(M.1) is equivalent to saying that the sequence

$$(2.1) m_k = \frac{M_k}{M_{k-1}}, \ k \in N$$

is increasing. We denote by m(t) the number of $m_k \leq t$. Then we have

(2.2)
$$M(t) = \int_0^t \frac{m(\lambda)}{\lambda} d\lambda$$

PROPOSITION 2.1. (1) $\int_0^\infty \frac{M(t)}{t^2} dt < \infty \Rightarrow \lim_{t \to \infty} \frac{M(t)}{t} = 0.$ (2) $\int_0^\infty \frac{m(t)}{t^2} dt < \infty \Rightarrow \lim_{t \to \infty} \frac{m(t)}{t} = 0.$

PROOF (1) For otherwise, there exists a constant $\epsilon > 0$ and a sequence $t_1 < t_2 < \cdots$ such that $\frac{M(t_j)}{t_j} > \epsilon$ and $t_{j+1} > 2t_j$. Hence

$$\int_{0}^{\infty} \frac{M(t)}{t^{2}} dt \ge \sum_{j=1}^{\infty} \int_{t_{j}}^{2t_{j}} \frac{M(t_{j})}{t^{2}} dt = \sum_{j=1}^{\infty} \frac{M(t_{j})}{2t_{j}} = \infty$$

Hence $\lim_{t \to \infty} \frac{M(t)}{t} = 0$

(2) Similarly we can prove it

THEOREM 2.2. $\lim_{k\to\infty} \frac{k}{m_k} = 0 \Leftrightarrow \lim_{t\to\infty} \frac{m(t)}{t} = 0.$

PROOF (\Rightarrow) For every $\epsilon > 0$, there exists $n_0 \in N$ such that $\frac{k}{m_k} < \epsilon$ when $k \ge n_0$, i.e., $\frac{k}{\epsilon} < m_k$ for $k \ge n_0$. If $t = \frac{1}{\epsilon}n_0$, then $\frac{m(t)}{t} = \frac{m(\frac{1}{\epsilon}n_0)}{\frac{1}{\epsilon}n_0} \le \frac{n_0}{\frac{1}{\epsilon}n_0} = \epsilon$.

(\Leftarrow) For every $\epsilon = \frac{1}{n}$, there exists M > 0 such that $t \ge M$ implies $\frac{m(t)}{t} < \frac{1}{n}$, i.e., there exists $n_0 \in N$ such that $t \ge nn_0$ implies $\frac{m(nn_0+k)}{nn_0+k} < \frac{1}{n}$. If $k = n_0$, then $\frac{k}{m_k} = \frac{n_0}{m_{n_0}} \le \frac{n_0}{nn_0} = \frac{1}{n} \to 0$ as $n \to \infty$.

PROPOSITION 2.3. $\lim_{t\to\infty} \frac{m(t)}{t} = 0 \Leftrightarrow \lim_{t\to\infty} \frac{M(t)}{t} = 0.$

PROOF. Obvious by L'Hôpital's law.

PROPOSITION 2.4. ([7], Proposition 3.1) Suppose that $M = (M_k)_{k \in N_0}$ satisfies (M.1) and (M.3)', then

(1)
$$\int_0^\infty \frac{M(t)}{t^2} dt = \int_0^\infty \frac{m(t)}{t^2} dt,$$

(2) $\int_0^\infty \frac{dm(t)}{t} = \int_0^\infty \frac{m(t)}{t^2} dt.$

PROOF. See [7].

PROPOSITION 2.5. ([7], Proposition 3.5) Suppose that $M = (M_k)_{k \in N_0}$ satisfies (M.1) and (M.3)'. Then we have the following relations:

(1)
$$\int_{0}^{t} \frac{m(\lambda)}{\lambda^{2}} d\lambda = \frac{M(t)}{t} + \int_{0}^{t} \frac{M(\lambda)}{\lambda^{2}} d\lambda,$$

(2)
$$\int_{t}^{\infty} \frac{M(\lambda)}{\lambda^{2}} d\lambda = \frac{M(t)}{t} + \int_{t}^{\infty} \frac{m(\lambda)}{\lambda^{2}} d\lambda, \text{ and hence by (1) or (2)}$$

(3)
$$\int_{0}^{\infty} \frac{M(\lambda)}{\lambda^{2}} d\lambda = \int_{0}^{\infty} \frac{m(\lambda)}{\lambda^{2}} d\lambda. \text{ By (1) and (2) we have}$$

(4)
$$\int_{0}^{t} \frac{m(\lambda) - M(\lambda)}{\lambda^{2}} d\lambda = \int_{t}^{\infty} \frac{M(\lambda) - m(\lambda)}{\lambda^{2}} d\lambda.$$

PROOF. See [7].

Suppose that $M = (M_k)_{k \in N_0}$ satisfies (M.1). Then M satisfies (M.3) if and only if there is a constant A such that

(*)
$$\int_{t}^{\infty} \frac{m(\lambda)}{\lambda^{2}} d\lambda \leq (A+1) \frac{m(t)}{t}$$

for $t \ge m_1$ (see Komatsu [4], Proposition 4.4).

Integrating both sides of (*), we obtain for $t \ge m_1$

$$\int_{m_1}^t d\mu \int_{\mu}^{\infty} \frac{m(\lambda)}{\lambda^2} d\lambda = t \int_t^{\infty} \frac{m(\lambda)}{\lambda^2} d\lambda + \int_{m_1}^t \frac{m(\lambda)}{\lambda} d\lambda - m_1 \int_{m_1}^{\infty} \frac{m(\lambda)}{\lambda^2} d\lambda$$
$$\leq (A+1) \int_{m_1}^t \frac{m(\mu)}{\mu} d\mu = (A+1)M(t).$$

Hence we have the following relation :

(1)
$$t \int_{t}^{\infty} \frac{m(\lambda)}{\lambda^{2}} d\lambda \leq A \int_{m_{1}}^{t} \frac{m(\lambda)}{\lambda} d\lambda + m_{1} \int_{m_{1}}^{\infty} \frac{m(\lambda)}{\lambda^{2}} d\lambda$$
$$= AM(t) + m_{1} \int_{0}^{\infty} \frac{m(\lambda)}{\lambda^{2}} d\lambda.$$

By Proposition 2.5(2), we have $t \int_{t}^{\infty} \frac{M(\lambda)}{\lambda^{2}} d\lambda = M(t) + t \int_{t}^{\infty} \frac{m(\lambda)}{\lambda^{2}} d\lambda$. Hence, by (1) and Proposition 2.5(3), we have the relation \cdot

(2)
$$t \int_{t}^{\infty} \frac{M(\lambda)}{\lambda^{2}} d\lambda \leq (A+1)M(t) + m_{1} \int_{0}^{\infty} \frac{M(\lambda)}{\lambda^{2}} d\lambda$$

3. Whitney jets of class M on K

The letters α, β will mean multi-indexes in N_0^n . For $\alpha = (\alpha_1, \dots, \alpha_n)$, we write $\alpha! = \alpha_1! \dots \alpha_n!$ and $|\alpha| = \alpha_1 + \dots + \alpha_n$ Also, $\alpha \leq \beta$ stands for $\alpha_i \leq \beta_i (i = 1, \dots, n)$ and, for $x \in \mathbb{R}^n, x^\alpha = x_1^{\alpha_1} \dots x_n^{\alpha_n}$. Let K be a compact set in \mathbb{R}^n .

A jet in K is a multisequence $F = (f_{\alpha})$ of continuous functions f_{α} on K. For a jet F, for $x, y \in K, z \in \mathbb{R}^n, m \in N_0$ and $|\alpha| \leq m$, we put

(3.1)
$$(T_x^m F)(z) = \sum_{|\alpha| \le m} \frac{f_\alpha(x)}{\alpha!} (z - x)^\alpha,$$

(3.2)
$$(R_x^m F)_{\alpha}(y) = f_{\alpha}(y) - \sum_{|\alpha+\beta| \le m} \frac{f_{\alpha+\beta}(x)}{\beta!} (y-x)^{\beta}$$

A jet F is called a Whitney jet on K if it satisfies, for all $m \in N_0$ and $|\alpha| \leq m$,

(3.3)
$$|(R_x^m F)_{\alpha}(y)| = o(|x - y|^{m - |\alpha|})$$

for $x, y \in K$, as $|x - y| \to 0$. We denote by $C^{\infty}(K)$ for the space of Whitney jets on K

YOUNG SIK PARK

Let $C^{m}(K), m \in N_{0}$, be the space of all m times continuously differentiable functions on K in the sense of Whitney i.e.,

 $C^m(K) = \{F = (f_{\alpha}; |\alpha| \le m) \mid F \text{ is an array of continuous functions } f_{\alpha} \text{ on } K \text{ such that for each } |\alpha| \le m$

$$\frac{|(R_x^m F)_{\alpha}(y)|}{|x-y|^{m-|\alpha|}} \quad \text{tends to zero uniformly as} |x-y| \to 0 \quad \text{in } K \}.$$

Define the norm of $F = (f_{\alpha}) \in C^{m}(K)$ by

$$||F||_{C^m(K)} = \sup_{|\alpha| \le m} ||f_{\alpha}||_{C(K)}.$$

Then $(C^m(K), \|\cdot\|_{C^m(K)})$ is a Banach space. The Fréchet space $C^{\infty}(K)$ is defined by

$$C^{\infty}(K) = \operatorname{proj} \lim_{m \to \infty} C^{m}(K).$$

Let Ω be an open set in \mathbb{R}^n and K a compact subset of Ω . For a weight function w with the properties (α) - (ζ) in Definition 1.1, let φ denote the function defined by (δ) . Let φ^* be the Young conjugate of φ .

DEFINITION 3.1. (a) A jet $F = (f_{\alpha})$ on K is called a Whitney jet of Beurling type if it satisfies the following conditions (3.4) and (3.5): For each $n \in N$, there exist constants A, B such that

(3.4)
$$|f_{\alpha}(x)| \leq A \exp[n\varphi^*(\frac{|\alpha|}{n})]$$
 for all α and $x \in K$,

(3.5)
$$|(R_x^m F)_{\alpha}(y)| \leq B \frac{|x-y|^{m-|\alpha|+1}}{(m-|\alpha|+1)!} \exp[n\varphi^*(\frac{m+1}{n})],$$

 $x, y \in K, m \in N_0, |\alpha| \leq m.$

We write $E_{(\omega)}(K)$ for the space of Whitney jets of Beurling type with the projective limit topology.

(b) A jet $F = (f_{\alpha})$ on K is called a Whitney jet of Roumieu type if it satisfies the following conditions :

(3.6)
$$|f_{\alpha}(x)| \leq A \exp[\frac{1}{n}\varphi^{*}(n|\alpha|)]$$
 for all α and $x \in K$,

(3.7)
$$|(R_x^m F)_{\alpha}(y)| \le B \frac{|x-y|^{m-|\alpha|+1}}{(m-|\alpha|+1)!} \exp[\frac{1}{n} \varphi^*(n(m+1))],$$

 $x, y \in K, m \in N_0, |\alpha| \le m$

for some $n \in N$ and some constants A > 0, B > 0.

We write $E_{\{\omega\}}(K)$ for the space of Whitney jets of Roumieu type with the inductive limit topology.

For a jet $F = (f_{\alpha})$ on K and $n \in N$, we define

(3.8) $||F||_{K,n} = \inf\{A : \text{Constant } A \text{ satisfies } (3.4) \text{ for all } x \in K \text{ and } \alpha \in N_0^n\}$ $+ \inf\{B : \text{Constant } B \text{ satisfies } (3.5) \text{ for all } x, y \in K, |\alpha| \leq m, m \in N_0\}.$

THEOREM 3.2. We define, for $n \in N$,

(3.9)
$$E_{(\omega)}(K,n) = \{F = (f_{\alpha}) \text{ a jet on } K : ||F||_{K,n} < \infty\},\$$

$$(3.10) E_{\{\omega\}}(K,n) = \{F = (f_{\alpha}) \text{ a jet on } K : ||F||_{K,\frac{1}{n}} < \infty\}.$$

Then

(3.11)
$$E_{(\omega)}(K) = \operatorname{proj} \lim_{n \to \infty} E_{(\omega)}(K, n),$$

(3.12)
$$E_{\{\omega\}}(K) = \operatorname{ind} \lim_{n \to \infty} E_{\{\omega\}}(K, n).$$

PROOF. They are obvious

Let $M = (M_k)_{k \in N_0}$ be a sequence of positive numbers satisfying (M 1), (M.2) and (M.3).

DEFINITION 3.3. A jet $F = (f_{\alpha})$ on K is called a Whitney jet of class (M_k) (resp. $\{M_k\}$) if it satisfies the following conditions :

$$(3.13) |f_{\alpha}(x)| \le Ah^{|\alpha|} M_{|\alpha|}, x \in K, \alpha \in N_0^n;$$

(3.14)
$$|(R_x^m F)_{\alpha}(y)| \le B \frac{|x-y|^{m-|\alpha|+1}}{(m-|\alpha|+1)!} h^{m+1} M_{m+1},$$

 $x, y \in K, m \in N_0, |\alpha| \le m$

for some constants A > 0, B > 0 and every(resp. some) h > 0.

We write $E_{(M_k)}(K)$ (resp. $E_{\{M_k\}}(K)$) for the space of Whitney jets of class (M_k) (resp. $\{M_k\}$) with the projective (resp. inductive) limit topology.

For a jet $F = (f_{\alpha})$, we define, h > 0

(3.15) $P_h(F) = \inf\{A : \text{Constant } A \text{ satisfies (3.13) for all } x \in K, \alpha \in N_0^n\}$

 $+\inf\{B: ext{Constant } B ext{ satisfies (3.14) for } x, y \in K, |\alpha| \le m, m \in N_0\}.$

THEOREM 3.4. For $n \in N$, we define

$$(3.16) E_{(M_k)}(K,n) = \{F = (f_\alpha) \text{ a jet on } K : P_{\frac{1}{n}}(F) < \infty\},$$

$$(3.17) E_{\{M_k\}}(K,n) = \{F = (f_\alpha) \text{ a jet on } K : P_n(F) < \infty\}.$$

Then

(3.18)
$$E_{(M_k)}(K) = \operatorname{proj} \lim_{n \to \infty} E_{(M_k)}(K, n).$$

(3.19)
$$E_{\{M_k\}}(K) = \operatorname{ind} \lim_{n \to \infty} E_{\{M_k\}}(K, n).$$

PROOF. They are obvious.

References

- [1] A Beurling, Quasi-analyticity and general distributions, 1961
- G. Bjorck, Linear partial differential operators and generalized distributions, Ark Mat 6, 1965, pp 351-407
- [3] J Bruna, An extension theorem of Whitney type for non quasi-analytic classes of functions, J London Math. Soc. 22(2) (1980), 495-505
- [4] H Komatsu, Ultradistributions I. Structure theorems and a characterization, Fac. Sci. Univ Tokyo Sect IA 20 (1973), 25-105
- [5] S. Mandelbrojt, Series adherentes, regularisation des suites, applications, Gauthier-Villars, Paris, 1952.
- [6] S. Y. Chung, D. Kim and S. K. Kim, Equivalence of the spaces of ultradifferentiable functions and its applications to Whitney extension theorem, Rendiconti di Mathematica, Serie VII 12, Roma (1992), 365-380.
- Y S Park, Generalized Sobolev spaces and some related problems, East Asian Math J 15(1), (1999), 17-26

Department of Mathematics Pusan National University Pusan 609-735, Korea *E-mail*: ysikpark@hyowon.pusan.ac.kr