REGULARLY DISSIPATIVE OPERATOR AND INTERPOLATION SPACES

Jin-Mun Jeong, Doo-Hoan Jeong and Chul-Yun Park

1. Introduction

Let H and V be complex Hilbert spaces such that the embedding $V \subset H$ is continuous. The inner product and norm in H are denoted by (\cdot, \cdot) and $|\cdot|$ The notations $\|\cdot\|$ and $\|\cdot\|_{*}$ denote the norms of V and V^{*} as usual, respectively. Hence we may regard that

$$
\begin{equation*}
\|u\|_{*} \leq|u| \leq\|u\|, \quad u \in V . \tag{1.1}
\end{equation*}
$$

Let $a(\cdot, \cdot)$ be a bounded sesquilinear form defined in $V \times V$ and satisfying Gårding's mequality

$$
\begin{equation*}
\text { Re } a(u, u) \geq c_{0}\|u\|^{2}-c_{1}|u|^{2}, \quad c_{0}>0, \quad c_{1} \geq 0 \tag{1.2}
\end{equation*}
$$

Let A be the operator associated with the sesquilinear form $-a(\cdot, \cdot)$

$$
\begin{equation*}
(A u, v)=-a(u, v), \quad u, v \in V . \tag{1.3}
\end{equation*}
$$

The operator A defined by (1.3), using a bounded sesquilnear form satisfying (1.2), is called a regularly dissipative operator

In this paper we will show that A generates an analytic semıgroup $S(t)=e^{t A}$ in both H and V^{*} and A is positive definite and self adjoint if $a(u, v)$ is symmetric. Finally, we will deal with interpolation spaces between the intial Hulbert space H and the domain of the regularly dissipative operator A by the J- and K-methods as in Butzer and Berens [1] and [2](see also [4,5]). In [3,4], interpolation spaces generated by C_{0}-semigroup and analytic semigroup operators were established

Recerived April 14, 1999. Revised June 14, 1999

2. Preliminaries

Let X and Y be two Banach spaces contained in a locally convex lnear Hausdorff space \mathcal{X} such that the embedding mapping of both X and Y in \mathcal{X} is continuous. Let $X \cap Y$ be a dense subspace in both X and Y. For $1<p<\infty$, we denote by $L_{*}^{p}(X)$ the Banach space of all functions $t \rightarrow u(t), t \in(0, \infty)$ and $u(t) \in X$, for which the mapping $t \rightarrow u(t)$ is strongly measurable with respect to the measure $d t / t$ and the norm $\|u\|_{L_{*}^{p}(X)}$ is finite, where

$$
\|u\|_{L^{p}(X)}=\left\{\int_{0}^{\infty}\|u(t)\|_{X}^{p} \frac{d t}{t}\right\}^{\frac{1}{p}}
$$

For $0<\theta<1$, set

$$
\begin{aligned}
\left\|t^{\theta} u\right\|_{L_{*}^{p}(X)} & =\left\{\int_{0}^{\infty}\left\|t^{\theta} u(t)\right\|_{X}^{p} \frac{d t}{t}\right\}^{\frac{1}{p}} \\
\left\|t^{\theta} u^{\prime}\right\|_{L_{*}^{p}(Y)} & =\left\{\int_{0}^{\infty}\left\|t^{\theta} u^{\prime}(t)\right\|_{Y}^{p} \frac{d t}{t}\right\}^{\frac{1}{p}}
\end{aligned}
$$

We now introduce a Banach space

$$
V=\left\{u:\left\|t^{\theta} u\right\|_{L_{*}^{p}(X)}<\infty, \quad\left\|t^{\theta} u^{\prime}\right\|_{L^{p}(Y)}<\infty\right\}
$$

with norm

$$
\|u\|_{V}=\left\|t^{\theta} u\right\|_{L^{P}(X)}+\left\|t^{\theta} u^{\prime}\right\|_{L^{P}(Y)} .
$$

Definition 2.1. We define $(X, Y)_{\theta p}, 0<\theta<1,1 \leq p \leq \infty$, to be the space of all elements $u(0)$ where $u \in V$, that is,

$$
(X, Y)_{\theta, p}=\{u(0): u \in V\}
$$

For $0<\theta<1$ and $1 \leq p \leq \infty$, the space $(X, Y)_{\theta, p}$ is a Banach space with the norm

$$
\|a\|_{\theta, p}=\inf \{\|u\|: u \in V, \quad u(0)=a\}
$$

Furthermore, there is a constant $C_{\theta}>0$ such that

$$
\|a\|_{\theta, p}=C_{\theta} \inf \left\{\left\|t^{\theta} u\right\|_{L^{p}(X)}^{1-\theta}\left\|t^{\theta} u^{\prime}\right\|_{L^{p}(Y)}^{\theta}: u(0)=a, \quad u \in V\right\}
$$

as is seen in [2]. It is known that $(X, X)_{\theta, p}=X$ for $0<\theta<1$ and $1 \leq p \leq \infty$ and

$$
(X, Y)_{\theta, p} \subset(X, Y)_{\theta^{\prime}, p}, \quad 0<\theta<\theta^{\prime}<1
$$

where $X \subset Y$ satisfying that there exists a constant $c>0$ such that $\|u\|_{Y} \leq c\|u\|_{X}$.

Let X be a Banach space with norm $\|\cdot\|$ and $T(t)$ be a C_{0}-semigroup with infinitesimal generator A. Then its doman $D(A)$ is a Banach space with the graph norm $\|x\|_{D(A)}=\|A x\|+\|x\|$. The following result is obtained from Theorem 3.1 in [3]

Proposition 2.1. Let A be the generator of a C_{0}-semagroup $T(t)$. Then for $0<\theta<1,1<p<\infty$, we have that

$$
(D(A), X)_{\theta, p}=\left\{x \in X: \int_{0}^{\infty}\left(t^{\theta-1}\|T(t) x-x\|\right)^{p} \frac{d t}{t}<\infty\right\} .
$$

Let $T(t)$ be an analytic semigroup with infintesimal generator A. We may assume that

$$
\|T(t)\| \leq M, \quad\|A T(t)\| \leq \frac{K}{t}
$$

for some positive constants M, K and $t \geq 0$ The following result is obtained from Theorem 3.1 in [4].

Proposition 2.2. Let A be the generator of an analytic semigroup $T(t)$. Then for $0<\theta<1,0 \leq t$, we have

$$
(D(A), X)_{\theta, p}=\left\{x \in X: \int_{0}^{\infty}\left(t^{\theta}\|A T(t) x\|\right)^{p} \frac{d t}{t}<\infty\right\} .
$$

3. Regularly dissipative operators and interpolation spaces

Let $a(\cdot, \cdot)$ be a sesquilinear form defined in $V \times V$, that is, for each $u, v \in V$ there corresponds a complex number $a(u, v)$ which $: 1 \%$ ar in u and antilmear in v :

$$
\begin{aligned}
& a\left(u_{1}+u_{2}, v\right)=a\left(u_{1}, v\right)+a\left(u_{2}, v\right), \\
& a\left(u, v_{1}+v_{2}\right)=a\left(u, v_{1}\right)+a\left(u, v_{2}\right), \\
& a(\lambda u, v)=\lambda a(u, v), \quad a(u, \lambda v)=\bar{\lambda} a(u, v) .
\end{aligned}
$$

We assume that $a(u, v)$ is bounded, i.e., there exists a constant M such that

$$
\begin{equation*}
|a(u, v)| \leq M\|u \mid\| v \|, \quad u, v \in V \tag{3.1}
\end{equation*}
$$

and satisfies Gårding's inequality

$$
\begin{equation*}
\operatorname{Re} a(u, u) \geq c_{0}\|u\|^{2}-c_{1}|u|^{2}, \quad c_{0}>0, \quad c_{1} \geq 0 \tag{3.2}
\end{equation*}
$$

Let A be the operator associated with the sesquilinear form $a(\cdot, \cdot)$:

$$
(A u, v)=a(u, v), \quad u, v \in V
$$

When $a(u, v)$ with $u \in V$ fixed is considered as a functional of v, it is an element of V^{*}. Therefore, using an element $f \in V^{*}$, we can write $A u=f$ in the sense of the following Lax-Milgram theorem.

Lemma 31 Let X be a Helbert space, whose inner product and norm will be denoted by (\cdot, \cdot) and $\|\cdot\|$, respectively. Assume that $b(u, v)$ is sesquilnear form defined on $X \times X$ and that there exasts positvee constants C and c such that

$$
\begin{align*}
& |b(u, v)| \leq C\|u\|\|v\|, \tag{3.3}\\
& |b(u, u)| \geq c\|u\|^{2} \tag{3.4}
\end{align*}
$$

for every $u, v \in X$. Under these conditions, if $f \in X^{*}$, then there unquely exists an element $u \in X$ such that $f(v)=b(u, v)$ for every $v \in X$.

The realization for the operator A in H, which is the restriction of A to

$$
\begin{equation*}
D(A)=\{u \in V ; A u \in H\} \tag{3.5}
\end{equation*}
$$

is denoted by A_{H}.
In what follows we assume that (3.2) holds for $c_{1}=0$:

$$
\begin{equation*}
\operatorname{Re} a(u, u) \geq c_{0}\|u\|^{2}, \quad c_{0}>0 \tag{3.6}
\end{equation*}
$$

Let $f \in V^{*}$, from (31), (3.6) and Lemma 3.1 it follows that there exists a $v \in V$ such that $(f, v)=a(u, v)$ for all $v \in V$, 1.e., $f=A u$, and hence $R(A)=V^{*}$. Combining this result with (35), we have $R\left(A_{H}\right)=H$ From (3.1) and (36), we have that

$$
\begin{equation*}
c_{0}\|u\| \leq\|A u\|_{*} \leq M\|u\| \tag{3.7}
\end{equation*}
$$

Thus A is an isomorphism from V onto V^{*}.
Lemma 3.2. For $R e \lambda \leq 0$ there exzsts a bounded inverse of $A-\lambda$ which has varrous bounds for every f of H or V^{*} :

$$
\begin{equation*}
\left|(A-\lambda)^{-1} f\right| \leq M_{1}|\lambda|^{-1}|f| \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\left\|(A-\lambda)^{-1} f\right\|_{*} \leq M_{1}|\lambda|^{-1}\|f\|_{*} \tag{11}
\end{equation*}
$$

where $M_{1}=1+M / c_{0}$. Here, M and c_{0} are the constants in (3.7) and (3.6), respectively.

Proof. For $u, v \in V$, put $b(u, v)=((A-\lambda) u, v)$ with $\operatorname{Re} \lambda \leq 0$, then

$$
b(u, v)=a(u, v)-\lambda(u, v), \quad v \in V
$$

From (3.1) and (32) it follows

$$
\begin{aligned}
|b(u, v)| & \leq|a(u, v)|+|\lambda||(u, v)| \\
& \leq M| | u| ||v||+|\lambda|| u| | v \mid \\
& \leq(M+|\lambda|)| | u|\|||v|
\end{aligned}
$$

and

$$
|b(u, u)| \geq \operatorname{Re} b(u, u)=\operatorname{Re} a(u, u)-\operatorname{Re} \lambda|u|^{2} \geq c_{0}\|u\|^{2}
$$

Hence, by Lemma 3.1 for every $f \in V^{*}$ there uniquely exists $u \in V$ such that

$$
(f, v)=b(u, v)=((A-\lambda) u, v),
$$

i.e., $f=(A-\lambda) u$. Since

$$
(f, v)=a(u, v)-\lambda(u, v)
$$

we have

$$
\begin{equation*}
(f, u)=a(u, u)-\lambda|u|^{2}, \tag{3.8}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Re}(f, u)=\operatorname{Re} a(u, u)-\operatorname{Re} \lambda|u|^{2} . \tag{3.9}
\end{equation*}
$$

From (3.9) it follows

$$
c_{0}\|u\|^{2} \leq|f||u|
$$

and hence,

$$
\begin{aligned}
|\lambda||u|^{2} & =|a(u, u)-(f, u)| \leq M| | u\left\|^{2}+|f \||u|\right. \\
& \leq \frac{M}{c_{0}}|f||u|+|f||u|=\left(\frac{M}{c_{0}}+1\right)|f \||u| .
\end{aligned}
$$

It implies that $|u| \leq M_{1}|\lambda|^{-1}|f|$ where $M_{1}=M / c_{0}+1$, which proves (i).

From (3.9) we have

$$
c_{0}\|u\|^{2}-\operatorname{Re} \lambda|u|^{2} \leq\|f\|_{*}\|u\|,
$$

thus

$$
\begin{equation*}
\|u\| \leq \frac{1}{c_{0}}\|f\|_{* *} \tag{3.10}
\end{equation*}
$$

from which it follows that

$$
\begin{aligned}
|\lambda| \|(u, v) \mid & \leq M\|u\|\| \| v\|+\| f\left\|_{*}\right\| v \| \\
& \leq M c_{0}^{-1}\|f\|_{*}\|v\|+\|f\|_{*}\|v\| \\
& \leq\left(\frac{M}{c_{0}}+1\right)\|f\|_{*}\|v\|=M_{1}\|f\|_{*}\|v\|
\end{aligned}
$$

for every $v \in V$. It implies

$$
\frac{|(u, v)|}{\|v\|} \leq \frac{M_{1}}{|\lambda|}\|f\|_{*}, \quad v \in V
$$

i.e.,

$$
\|u\|_{*} \leq \frac{M_{i}}{|\lambda|}\|f\|_{*}, \quad v \in V
$$

The proof of (ii) is complete.
Theorem $31 .-A$ and $-A_{H}$ generate analytic semagroups in V^{*} and H, respectively.

Proof. The half plane $\{\lambda . \operatorname{Re} \lambda>0\}$ is contained in $\rho(-A)$ from Lemma 3.2 where $\rho(-A)$ stands for the resolvent set of $-A$. Let λ_{0} be a complex number such that $\operatorname{Re} \lambda_{0}=0$ and $\operatorname{Im} \lambda_{0}>0$ Then if $\left|\lambda-\lambda_{0}\right|<\left|\lambda_{0}\right| / M_{1}$ where M_{1} is the constant in Lemma 3.2, from (ii) of Lemma 3.2 we have

$$
\left\|\left(\lambda-\lambda_{0}\right)\left(\lambda_{0}-A\right)^{-1}\right\|_{*} \leq\left|\lambda-\lambda_{0}\right| \frac{M_{1}}{\left|\lambda_{0}\right|}
$$

Note

$$
\begin{aligned}
\lambda-A & =\lambda-\lambda_{0}+\lambda_{0}-A \\
& =\left\{I+\left(\lambda-\lambda_{0}\right)\left(\lambda_{0}-A\right)^{-1}\right\}\left(\lambda_{0}-A\right)
\end{aligned}
$$

and

$$
(\lambda-A)^{-1}=\left(\lambda_{0}-A\right)^{-1} \sum_{n=0}^{\infty}\left(\lambda_{0}-\lambda\right)^{n}\left(\lambda_{0}-A\right)^{-n}
$$

Hence

$$
\begin{aligned}
\left\|(\lambda-A)^{-1}\right\|_{*} & \leq\left\|\left.\left(\lambda_{0}-A\right)^{-1}\right|_{* *} \sum_{n=0}^{\infty}\left|\lambda-\lambda_{0}\right|^{n}| |\left(\lambda_{0}-A\right)^{-1}\right\|_{*}^{n} \\
& \leq \frac{M_{1}}{\left|\lambda_{0}\right|} \sum_{n=0}^{\infty}\left|\lambda-\lambda_{0}\right|^{n}\left(\frac{M_{1}}{\left|\lambda_{0}\right|}\right)^{n}=\frac{M_{1}}{\left|\lambda_{0}\right|} \frac{1}{1-\frac{M_{1}\left|\lambda-\lambda_{0}\right|}{\left|\lambda_{0}\right|}} \\
& =\frac{M_{1}}{\left|\lambda_{0}\right|-M_{1}\left|\lambda-\lambda_{0}\right|}
\end{aligned}
$$

It is a necessary and sufficient condition for A to generate an analytic semigroup in V^{*} (see Theorem 3.3.1 or Remark 3.3 .2 of [7]). Since $A_{H} u=A u$ for all $u \in D\left(A_{H}\right)$, from (i) of Lemma 3.2 we immediately obtain that A_{H} generates an analytic semigroup in H.

Definition 3.1. Let A be a linear operator in a Hilbert space H and its domain is assumed to be dense. The operator A is called a dissipative operator if $\operatorname{Re}(A u, u) \leq 0$ for all $u \in D(A)$. If $\operatorname{Re}(A u, u) \geq 0$ for all $u \in D(A)$, that is, $-A$ is a dissipative operator, A is said to be an accretive operator. A dissipative operator which extends a dissipative operator A is called a dissipative extension of A. An operator A is said to be maxımal dissipative of its any dissipative extension is A itself. Accretive extensions and maximal accretive operators are defined simılarly.

A sesquilinear form $a^{*}(u, v)$ defined by $a^{*}(u, v)=\overline{a(v, u)}$ is called an adjoint sesquilmear form If $a(u, v)$ satisfied (3.1), (3.2) or (3.6), so, correspondingly, does $a^{*}(u, v)$. Let A^{\prime} and A_{H}^{\prime} be operators defined by $a^{*}(u, v)$ in ways similar to A and A_{H}, respectively:

Let $u \in V$. If there exists an $f \in V^{*}$ such that $a^{*}(u, v)=(f, v)$ all $v \in V$, then $u \in D\left(A^{\prime}\right)$ and $A^{\prime} u=f . a^{*}(u, v)=\left(A^{\prime} u, v\right)$ for all $u, v \in V$.

Assume again that (3.6) is satisfied. Then, as in the cases of A_{H} and A, we have $R\left(A_{H}^{\prime}\right)=X$ and $R\left(A^{\prime}\right)=V^{*}$ for A_{H}^{\prime} and A^{\prime}.

Lemma 3.3. $D\left(A_{H}\right)$ is dense in V. Therefore, it is also dense in H.

Proof. It is enough to show that $f \in V^{*}$ and if $(f, v)=0$ for all $v \in D\left(A_{H}\right)$, then $f=0$ Since $R\left(A^{\prime}\right)=V^{*}$, there exusts a $u \in V$ such that $f=A^{\prime} u$. If $v \in D\left(A_{H}\right)$, we have

$$
\left(A_{H} v, u\right)=a(v, u)=\overline{a^{*}(u, v)}=\overline{\left(A^{\prime} u, v\right)}=\overline{(f, v)}=0
$$

This, together with $R\left(A_{H}\right)=H$, imphes $u=0$. Hence, $f=0$.
Since $\operatorname{Re}\left(A_{H} u, u\right)=\operatorname{Re} a(u, u) \geq c_{0}\|u\|^{2} \geq 0$ for any $u \in D\left(A_{H}\right)$, the operator A_{H} is accretive.

Definition 32. The operator A_{H} associated with a sesquilinear form satisfying (3.1) and (36), is called a regularly accretive operator. If $-A_{H}$ is regularly accretive, A_{H} is called a regularly dissıpative operator.

Theorem 3.2. Let A_{H}^{*} be an adjoint of A_{H} when the latter us veewed as an operator in H. Then $A_{H}^{\prime}=A_{H}^{*}$.

Proof. Let $u \in D\left(A_{H}\right)$ and $v \in D\left(A_{H}^{\prime}\right)$. Then we find

$$
\left(A_{H} u, v\right)=a(u, v)=\overline{a^{*}(v, u)}=\overline{\left(A_{H}^{\prime} v, u\right)}=\left(u, A_{H}^{\prime} v\right) .
$$

This shows $A_{H}^{\prime} \subset A_{H}^{*}$. Let $u \in D\left(A_{H}^{*}\right)$ and put $A_{H}^{*} u=f$. Since $R\left(A_{H}^{\prime}\right)=H$, there exists a $w \in D\left(A_{H}^{\prime}\right)$ such that $f=A_{H}^{\prime} w$. The relation $A_{H}^{\prime} \subset A_{H}^{*}$ implies $f=A_{H}^{*} w$. Since $0 \in p\left(A_{H}\right)$ we have $0 \in \rho\left(A_{H}^{*}\right)$. Therefore, $u=w \in D\left(A_{H}^{\prime}\right)$ and, hence, $A_{H}^{\prime}=A_{I I}^{*}$.

From now on, both A_{H} and A are denoted sımply by A. We also denote A^{\prime} by A^{*}. Thercfore, for any $u, v \in V$, we have

$$
a(u, v)=(A u, v), \quad a^{*}(u, v)=\left(A^{*} u, v\right) .
$$

This notation will not cause any confusion
When $a^{*}(u, v)=a(u, v)$ holds for all $u, v \in V$, the sesquilinear form $a(u, v)$ is said to be symmetric. In this case, by Theorem 3.2, an operator A in X is self-adjoint. It is evident that $a(u, u)$ is a real number for each $u \in V$. Since, by (3.6), we have

$$
(A u, u)=a(u, u) \geq c_{0}|u|^{2}
$$

for all $u \in D(A)$, the operator A is bounded from below. In particular, A is positive definte if (3.6) is satisfied.

Theorem 3.3. If $a(u, v)$ is a symmetruc sesquilinear form satisfying (3.1) and (3.6), then A is positive definate and self-adjoint, $D\left(A^{1 / 2}\right)=$ V and

$$
\begin{equation*}
a(u, v)=\left(A^{1 / 2} u, A^{1 / 2} v\right), \quad u, v \in V . \tag{3.11}
\end{equation*}
$$

Proof. According to this assumption, for each $u \in D(A)$ we have

$$
\begin{equation*}
c_{0}\|u\|^{2} \leq a(u, v)=(A u, u)=\left|A^{1 / 2} u\right|^{2} . \tag{3.12}
\end{equation*}
$$

Let u be an arbitrary element of $D\left(A^{1 / 2}\right)$. For each natural number n we put $u_{n}=\left(1+n^{-1} A\right)^{-1} u$. Then $u_{n} \in D(A)$ and we can show by the using the spectral resolution that

$$
u_{n} \rightarrow u
$$

and

$$
A^{1 / 2} u_{n}=\left(1+n^{-1} A\right)^{-1} A^{1 / 2} u \rightarrow A^{1 / 2} u
$$

in H as $n \rightarrow \infty$. By applying (3.12) to $u_{n}-u_{m}$, it is found that $\left\{u_{n}\right\}$ is a Cauchy sequence in V. Since $u_{n} \rightarrow u$ in H, so it does in V ; hence, $D\left(A^{1 / 2}\right) \subset V$. Applying (3.12) to u_{n} and let $n \rightarrow \infty$, then we obtain $c_{0}\|u\|^{2} \leq\left|A^{1 / 2} u\right|^{2}$. On the other hand, if we let $u \in V$, by Lemma 3.3 there exists a sequence $\left\{u_{j}\right\}$ of elements of $D(A)$ such that $\left\|u_{3}-u\right\| \rightarrow 0$. Since

$$
\left|A^{1 / 2}\left(u_{\jmath}-u_{k}\right)\right|^{2}=a\left(u_{\jmath}-u_{k}, u_{\jmath}-u_{k}\right) \leq M\left\|u_{\jmath}-u_{k}\right\|^{2}
$$

$\left\{A^{1 / 2} u_{3}\right\}$ is a Cauchy sequence in H. Since $A^{1 / 2}$ is a closed operator, $u \in D\left(A^{1 / 2}\right)$ and thus we have obtained $D\left(A^{1 / 2}\right)=V$. Equation (3.11) can be easlly verified

Remark. For $c_{1}>0$, replace $a(u, v)$ by $a(u, v)+c_{1}(u, v)$ and A by $A+c_{1}$, respectively, then the conclusion of Theorem 3.3 still holds.

Let H_{1} and H_{2} be Hilbert spaces with inner products $(\cdot, \cdot)_{1}$ and $(\cdot, \cdot)_{2}$, respectively. Their norms will be denoted by $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$,
respectively. Assume that H_{1} is dense subspace in H_{2} and the injection of H_{1} into H_{2} is continuous.

Now we can apply the previous Theorem to the case with H_{1}, H_{2} and $(\cdot, \cdot)_{1}$ in place of V, H and $a(\cdot, \cdot)$, respectively. Therefore, if we put

$$
(A u, v)_{2}=(u, v)_{1}
$$

then A is positive definite and self adjoint on $H_{2}, D\left(A^{1 / 2}\right)=H_{1}$ and

$$
(u, v)_{1}=\left(A^{1 / 2} u, A^{1 / 2} v\right)_{2}, \quad u, v \in H_{1} .
$$

Theorem 3.4. Put $\Lambda=A^{1 / 2}$ Then Λ is positive definte and self adjoint on $H_{2}, D(\Lambda)=H_{1}$, and

$$
(u, v)_{1}=(\Lambda u, \Lambda v)_{2}, \quad u, v \in H_{1} .
$$

Furthermore,

$$
\begin{equation*}
\left(H_{1}, H_{2}\right)_{\theta, 2}=D\left(\Lambda^{1-\theta}\right), \quad 0<\theta<1 . \tag{3.13}
\end{equation*}
$$

Proof. We know that $-\Lambda$ generates analytic semigroup and if

$$
\Lambda=\int_{0}^{\infty} \lambda d E(\lambda)
$$

is the spectral resolution of the self adjoint operator Λ then

$$
e^{-t \Lambda}=\int_{0}^{\infty} e^{-t \lambda} d E(\lambda)
$$

By Proposition 22 , it holds that

$$
\begin{aligned}
\left(H_{1}, H_{2}\right)_{\theta, 2} & =\left(D(\Lambda), H_{2}\right)_{\theta, 2} \\
& =\left\{x \in H_{2}: \int_{0}^{\infty}\left(t^{\theta}\left\|\Lambda e^{-t \Lambda} x\right\|_{2}\right)^{2} \frac{d t}{t}\right\}<\infty .
\end{aligned}
$$

The proof of (3.13) is a consequence of following inequality

$$
\begin{aligned}
& \int_{0}^{\infty}\left(t^{\theta}\left\|\Lambda e^{-t \Lambda} x\right\|\right)^{2} \frac{d t}{t}=\int_{0}^{\infty} t^{2 \theta-1}\left\|\Lambda e^{-t \Lambda} x\right\|_{2}^{2} d t \\
& =\int_{0}^{\infty} t^{2 \theta-1}\left\|\int_{0}^{\infty} \lambda e^{-t \lambda} d E(\lambda) x\right\|_{2}^{2} d t \\
& =\int_{0}^{\infty} t^{2 \theta-1} \int_{0}^{\infty} \lambda^{2} e^{-2 t \lambda} d\|E(\lambda) x\|_{2}^{2} d t \\
& =\int_{0}^{\infty} \lambda^{2} \int_{0}^{\infty} t^{2 \theta-1} e^{-2 t \lambda} d t d\|E(\lambda) x\|_{2}^{2} \\
& =\int_{0}^{\infty} \lambda^{2} \int_{0}^{\infty}\left(\frac{t}{2 \lambda}\right)^{2 \theta-1} e^{-t} \frac{d t}{2 \lambda} d\|E(\lambda) x\|_{2}^{2} \\
& =\int_{0}^{\infty} \lambda^{2}(2 \lambda)^{-2 \theta} \int_{0}^{\infty} t^{2 \theta-1} e^{-t} d t d\|E(\lambda) x\|_{2}^{2} \\
& =2^{-2 \theta} \Gamma(2 \theta) \int_{0}^{\infty} \lambda^{2-2 \theta} d\|E(\lambda)\|_{2}^{2} \\
& =2^{-2 \theta} \Gamma(2 \theta)\left\|\Lambda^{1-\theta} x\right\|_{2}^{2}
\end{aligned}
$$

where the Γ is the Gamma function.

References

[1] P. L Butzer and H Berens, Semagroup of Operators and Approximation, Springer-Verlag Berlin Heidelberg New York, 1967
[2] D H Jeong and J M Jeong, Bounded hnear operator on interpolation sunces 12 (2) (1996), Pusan Kyongnam Math J, 167-174
[3] D H Jeong, D H Kım and J M Jeong, Interpolatzon spaces generatr d by C_{0}-semıgroup operator. 13 (1) (1997), Pusan Kyongnam Math J
[4] D. H leong, J M Jeong and D W. Kim, Interpolatzon spaces gertrate: by analytac semegroup operator. 14 (2) (1998), Pusan Kyongnam Math J
[5] J L. Lions and J. Peetre, Sur une classe d'espaces d'interpolation, Ins1 H•ites 19 (1964), 5-68
[6] H Triebelng, Interpolation Spaces, Function Spaces, Dufferential : pperitors, North-Holland Publ
[7] H. Tanabe, Functional analysss II, Jıkko Suppan Publ. Co., Tokyo, 1981

Jin-Mun Jeong and Chul-Yun Park
Division of Mathematical Sciences
Pukyong National University
Pusan 608-737, Korea
E-mall: jmjeong@dolphin.pknu.ac kr
Doo-Hoan Jeong
Dongeui Institute of technology
Pusan 614-053, Korea

