East Asian Math J. 15(1999), No 2, pp 191-199

RECURRENCE RELATIONS FOR POLYNOMIALS OF HYPERGEOMETRIC CHARACTER

INHYOK PARK AND TAE YOUNG SEO

ABSTRACT We derive various pure and differential recurrence relations for polynomials of terminating hypergeometric character by making use of Sister Celine's method

1. Introduction

The pure recurrence relation for hypergeometric polynomials received probably its first systematic attack at the hand of Sister Mary Celine Fasenmyer in a Michigan thesis in 1945. She introduced the tool in her study of a certain class of hypergeometric polynomials [2] Our object in the present paper is to obtain various recurrence relations of well known polynomials by using Sister Celine's method.

The generalized hypergeometric function with p numerator and q denominator parameters is defined by

(1.1)
$${}_{p}F_{q}(\alpha_{1},\ldots,\alpha_{p},\beta_{1},\ldots,\beta_{q},z)=\sum_{n=0}^{\infty}\frac{(\alpha_{1})_{n}\ldots(\alpha_{p})_{n}}{(\beta_{1})_{n}\ldots(\beta_{q})_{n}}\frac{z^{n}}{n!},$$

where $(\alpha)_n$ denotes the Pochhammer symbol defined by

(1.2)
$$(\alpha)_n = \begin{cases} \alpha(\alpha+1)\dots(\alpha+n-1) & \text{if } n=1,2,3,\dots, \\ 1 & \text{if } n=0, \end{cases}$$

Received March 9, 1999

1991 Mathematics Subject Classification 33C99, 33E20

Key words and phrases. Sister Celine's method, recurrence relation

for any complex number α . Equation (1.2) yields

(1.3)
$$(\alpha)_{m+n} = (\alpha)_m (\alpha + m)_n,$$

 and

(1.4)
$$(\alpha)_{n-k} = \frac{(-1)^k (\alpha)_n}{(1-\alpha-n)_k}, \quad 0 \le k \le n.$$

For $\alpha = 1$ in (1.4), we have

(1.5)
$$(n-k)! = \frac{(-1)^k n!}{(-n)_k}, \quad 0 \le k \le n.$$

2. Pure recurrence relations

At first, consider Rice's polynomials [5]

(2.1)
$$H_n = H_n(\zeta, p, \nu) = {}_3F_2(-n, n+1, \zeta; 1, p; \nu),$$

which, for $p = \frac{1}{2}$ and $\zeta = a$, becomes Sister Celine's polynomial

$$f_n(\nu) = {}_3F_2(-n, n+1, a, 1, \frac{1}{2}; \nu).$$

Now, with the aid of (1.3) and (1.5), we have

(2.2)
$$H_n = \sum_{k=0}^{\infty} \frac{(-n)_k (n+1)_k (\zeta)_k}{(1)_k (p)_k k!} \nu^k = \sum_{k=0}^{\infty} \frac{(-1)^k (n+k)! (\zeta)_k \nu^k}{(n-k)! (p)_k (k!)^2},$$

which, for convenience, is rewritten as in the following form

(2.3)
$$H_n = \sum_{k=0}^{\infty} \epsilon(k, n),$$

where $\epsilon(k, n)$ denotes the general term of the right-hand most summation part of (2.2).

Sister Celine's technique is to express H_{n-1} , H_{n-2} , νH_{n-1} , etc., as series involving $\epsilon(k, n)$, and then to find a combination of coefficients which vanishes identically.

We observe that, in view of (2.3),

(2.4)
$$H_{n-1} = \sum_{k=0}^{\infty} \frac{n-k}{n+k} \epsilon(k,n),$$

(2.5)
$$H_{n-2} = \sum_{k=0}^{\infty} \frac{(n-k)(n-k-1)}{(n+k)(n+k-1)} \epsilon(k,n),$$

(2.6)
$$H_{n-3} = \sum_{k=0}^{\infty} \frac{(n-k)(n-k-1)(n-k-2)}{(n+k)(n+k-1)(n+k-2)} \epsilon(k,n),$$

(2.7)
$$\nu H_{n-1} = \sum_{k=0}^{\infty} \frac{-k^2(p+k-1)}{(\zeta+k-1)(n+k)(n+k-1)} \epsilon(k,n),$$

(2.8)
$$\nu H_{n-2} = \sum_{k=0}^{\infty} \frac{-k^2(p+k-1)(n-k)}{(\zeta+k-1)(n+k)(n+k-1)(n+k-2)} \epsilon(k,n)$$

In equations (2.3)-(2.8) the coefficients of $\epsilon(k, n)$ have a lowest common denominator $(\zeta + k - 1)(n+k)(n+k-1)(n+k-2)$. When that denommator is used in each coefficient, the maximum degree with respect to k of the numerators is four. Then there exist constants (functions of nbut not of k or ν) A, B, C, D, and E such that

(2.9)
$$H_n + (A + B\nu)H_{n-1} + (C + D\nu)H_{n-2} + EH_{n-3} = 0$$

is an identity. We find that (2.9) is written equivalently to the following identity in k.

$$(2.10) \qquad (\zeta + k - 1)(n + k)(n + k - 1)(n + k - 2) \\ + A(n - k)(\zeta + k - 1)(n + k - 1)(n + k - 2) \\ - Bk^{2}(p + k - 1)(n + k - 2) + C(n - k)(n - k - 1)(\zeta + k - 1)(n + k - 2) \\ - Dk^{2}(p + k - 1)(n - k) + E(n - k)(n - k - 1)(n - k - 2)(\zeta + k - 1) = 0$$

The choice k = n, $k = 1-\zeta$, k = 2-n, k = 1-n, the coefficients of k^4 in (2.10) yield

(2.11)
$$B = \frac{2(2n-1)(\zeta+n-1)}{n(p+n-1)}, D = \frac{2(2n-1)(\zeta-n+1)}{n(p+n+1)}$$

$$E = \frac{(n-2)(2n-1)(p-n+1)}{n(2n-3)(p+n-1)}, C = \frac{(2n-3)[2(n-1)^2 - n(p-n-1)]}{n(2n-3)(p+n-1)},$$
$$A = -\frac{(2n-1)[2(n-1)(2n-3) + (n-2)(p-n+1)]}{n(2n-3)(p+n-1)},$$

which, with replaced in (2.9), yields a pure recurrence relation of the Rice's polynomials H_n :

$$(2.12) n(2n-3)(p+n-1)H_n - (2n-1)[(n-2)(p-n+1) + 2(n-1)(2n-3) - 2(2n-3)(\zeta+n-1)\nu]H_{n-1} + (2n-3)[2(n-1)^2 - n(p-n+1) + 2(2n-1)(\zeta-n+1)\nu]H_{n-2} + (n-2)(2n-1)(p-n+1)H_{n-3} = 0.$$

Next, consider polynomials

(2.13)
$$f_n(x) = {}_1F_2(-n; 1 + \alpha, 1 + \beta; x),$$

which is intimately related to Bateman's polynomials $J_n^{u,v}$ (cf., e.g., Rainville [4]). Now

$$f_n(x) = \sum_{k=0}^{\infty} \frac{(-n)_k x^k}{(1+\alpha)_k (1+\beta)_k k!} = \sum_{k=0}^{\infty} \frac{(-1)^k n! x^k}{(n-k)! k! (1+\alpha)_k (1+\beta)_k}.$$

 \mathbf{Put}

(2.15)
$$\gamma_n(x) = \frac{f_n(x)}{n!},$$

where

(2.16)
$$\gamma_n(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^k}{(n-k)! k! (1+\alpha)_k (1+\beta)_k} = \sum_{k=0}^{\infty} \epsilon(k,n),$$

from which it follows that, by using the same procedure as before,

(2.17)
$$\gamma_{n-1}(x) = \sum_{k=0}^{\infty} (n-k)\epsilon(k,n),$$

(2.18)
$$\gamma_{n-2}(x) = \sum_{k=0}^{\infty} (n-k)(n-k-1)\epsilon(k,n),$$

(2.19)
$$\gamma_{n-3}(x) = \sum_{k=0}^{\infty} (n-k)(n-k-1)(n-k-2)\epsilon(k,n),$$

(2.20)
$$x\gamma_{n-1}(x) = -\sum_{k=0}^{\infty} k(\alpha+k)(\beta+k)\epsilon(k,n),$$

(2.21)
$$x\gamma_{n-2}(x) = -\sum_{k=0}^{\infty} k(n-k)(\alpha+k)(\beta+k)\epsilon(k,n),$$

and so there exists a relation $% \left({{{\mathbf{x}}_{i}}} \right)$

(2.22)
$$\gamma_n(x) + (A + Bx)\gamma_{n-1}(x) + (C + Dx)\gamma_{n-2}(x) + E\gamma_{n-3}(x) = 0$$

where A, B, C, D, and E are determined by the identity in k

$$(2.23) \quad 1 + A(n-k) - Bk(\alpha+k)(\beta+k) + C(n-k)(n-k-1) \\ -Dk(n-k)(\alpha+k)(\beta+k) + E(n-k)(n-k-1)(n-k-2) = 0.$$

The choice k = n, the coefficients of k^4 , k = n - 1, k = n - 2, k = 0 in (2.23) yield

$$B = \frac{1}{n(\alpha+n)(\beta+n)}, \qquad D = 0,$$
(2 24)
$$A = -\frac{[3n^2 - 3n + 1 + (2n-1)(\alpha+\beta) + \alpha\beta]}{n(\alpha+n)(\beta+n)},$$

$$C = \frac{3n - 3 + \alpha + \beta}{n(\alpha+n)(\beta+n)}, \qquad E = -\frac{1}{n(\alpha+n)(\beta+n)}.$$

Thus the polynomials $\gamma_n(x)$ satisfy a pure recurrence relation

(2.25)
$$\frac{n(\alpha+n)(\beta+n)\gamma_n(x) - [3n^2 - 3n + 1 + (2n-1)(\alpha+\beta)]}{+\alpha\beta - x]\gamma_{n-1}(x) + (3n-3+\alpha+\beta)\gamma_{n-2}(x) - \gamma_{n-3}(x) = 0,$$

which, in terms of (2.15), yields a pure recurrence relation for $f_n(x)$: (2.26) $(\alpha + n)(\beta + n)f_n(x) - [3n^2 - 3n + 1 + (2n - 1)(\alpha + \beta) + \alpha\beta - x]f_{n-1}(x)$ $+ (n - 1)(3n - 3 + \alpha + \beta)f_{n-2}(x) - (n - 1)(n - 2)f_{n-3}(x) = 0.$

Consider Shively's polynomials [6]

$$\sigma_n(x) = \frac{(2n)!}{(n!)^2} F_2(-n, 1+n, 1; x)$$

which are related to the $f_n(x)$. If we set $\alpha = n$ and $\beta = 0$ in (2.13), $f_n(x)$ becomes $\frac{(n!)^2}{(2n)!}\sigma_n(x)$ and (2.26) yields a pure recurrence relation for Shively's polynomials:

$$(2.27) \qquad n^{3}\sigma_{n}(x) - (2n-1)(5n^{2} - 4n + 1 - x)\sigma_{n-1}(x) +2(4n-3)(2n-1)(2n-3)\sigma_{n-2}(x) - 4(2n-1)(2n-3)(2n-5)\sigma_{n-3} = 0.$$

The pseudo-Laguerre polynomials (see [1]) $g_n(x)$ are defined, for nonintegral λ , by

(2.28)
$$g_n(x) = \frac{(-\lambda)_n}{n!} F_1(-n; 1+\lambda-n; x) = \sum_{k=0}^n \frac{(-\lambda)_{n-k} x^k}{k! (n-k)!}.$$

When $\lambda = a + 2n - 1$ the polynomials $g_n(x)$ become $(-1)^n R_n(a, x)$, where Shively's polynomials $R_n(a, x)$ are defined by

(2.29)
$$R_n(a,x) = \frac{(a)_{2n}}{n!(a)_n} F_1(-n, a+n; x).$$

In the same manner, using Sister Celine's method, $g_n(x)$ satisfies the pure recurrence relation

(2.30)
$$ng_n(x) = (x+n-1-\lambda)g_{n-1}(x) - xg_{n-2}(x).$$

From (2.30) Shively's polynomials $R_n(a, x)$ satisfy the relation

(2.31)
$$nR(a,x) = -(x-a-n)R_{n-1}(a,x) - xR_{n-2}(a,x).$$

3. Mixed recurrence relations

Define the polynomial $v_n(x)$ by

(3.1)
$$v_n(x) = \sum_{k=0}^n \frac{(-1)^k n! P_k(x)}{(k!)^2 (n-k)!}$$

in terms of the Legendre polynomial $P_k(x)$, where $P_k(x)$ is defined by the generating relation

(3.2)
$$(1 - 2xt + t^2)^{-\frac{1}{2}} = \sum_{k=0}^{\infty} P_k(x)t^n,$$

which $(1 - 2xt + t^2)^{-\frac{1}{2}}$ denotes the particular branch which $\rightarrow 1$ as $t \rightarrow 0$. Put

(3.3)
$$S_n(x) := \frac{v_n(x)}{n!}$$
 and $\frac{(-1)^k P_k(x)}{(k!)^2} := u_k(x).$

Then

(3.4)
$$S_n(x) = \sum_{k=0}^{\infty} \frac{u_k(x)}{(n-k)!}.$$

From the known relation

$$(3.5) (1-x^2)P_k''(x) - 2xP_k'(x) + k(k+1)P_k(x) = 0,$$

we determine a recurrence relation for $u_k(x)$ which may be used to find a relation for $S_n(x)$, and finally (3.3) is employed to transform our result into a relation for $v_n(x)$.

In (3.5) put $P_k(x) = (-1)^k (k!)^2 u_k(x)$. The resulting relation for $u_k(x)$ is

(3.6)
$$(1-x)^2 u_k''(x) - 2x u_k'(x) + k(k+1)u_k(x) = 0.$$

First we set out to use (3.4) to obtain series

(3.7)
$$\sum_{k=0}^{\infty} \frac{k(k+1)u_k(x)}{(n-k)!}.$$

From (3.4) we get

(3.8)
$$S_n''(x) = \sum_{k=0}^{\infty} \frac{u_k''(x)}{(n-k)!}, \ S_n'(x) = \sum_{k=0}^{\infty} \frac{u_k'(x)}{(n-k)!},$$
$$S_{n-1}(x) = \sum_{k=0}^{\infty} \frac{(n-k)u_k(x)}{(n-k)!}, \ S_{n-2}(x) = \sum_{k=0}^{\infty} \frac{(n-k)(n-k-1)u_k(x)}{(n-k)!}.$$

As before we observe that there exist constants A, B, and C such that

(3.9)
$$AS_n(x) + BS_{n-1}(x) + CS_{n-2}(x) = \sum_{k=0}^{\infty} \frac{k(k+1)u_k(x)}{(n-k)!}$$

From (3.8) and (3.9) we obtain

(3.10) $A = n(n+1), \quad B = -2n, \quad C = 1,$

which, in conjunction with (3.9), yields

(3.11)
$$n(n+1)S_n(x) - 2nS_{n-1}(x) + S_{n-2}(x) = \sum_{k=0}^{\infty} \frac{k(k+1)u_k(x)}{(n-k)!}.$$

From (3.8)-(3.11) it follows that (3.12) $(1-x^2)S''_n(x) - 2xS'_n(x) + n(n+1)S_n(x) - 2nS_{n-1}(x) + S_{n-2}(x) = 0.$

With (3.3) and (3.12) we obtain the following mixed recurrence relation for $v_n(x)$: (3.13) $(1-x^2)v''_n(x)-2xv'_n(x)+n(n+1)v_n(x) = 2n^2v_{n-1}(x)-n(n-1)v_{n-2}(x).$ We conclude this note by remarking that the Sister Celine method can be applied to get a pure or mixed recurrence relation for given polynomials systematically, before her it seemed customary upon entering the study of a new set of polynomials to seek recurrence relations, pure or mixed (with or without derivatives involved) by essentially a hit-and-miss process (see [3]).

Acknowledgment

The second-named author wishes to acknowledge the financial support of the Korea Research Foundation made in the program year of 1998, Project No. 1998-015-D00022.

References

- R.P., Jr Boas and R C Buck. Polynomial Expansion of Analytic Functions, Springer-Verlag, Berlin, 1958
- [2] S. M. Cehne, Some generalized hypergeometric polynomials, Bull Amer Math Soc. 53 (1947), 806-812
- [3] E. D. Rainville, Special Functions, Macmillan Company, New York, 1960
- [4] E D Rainville, The contiguous function relations for ${}_{p}F_{q}$ with applications to Bateman's $J_{n}^{u,v}$ and Rice's $H_{n}(\zeta, p, v)$, Bull Amer Math. Soc 51 (1945), 714-723
- [5] S O Rice, Some properties of ${}_{3}F_{2}(-n, n + 1, \zeta; 1, p, v)$, Duke Math J 6 (1940), 108-119
- [6] R L Shively, On pseudo Laguerre polynomials, Michigan thesis, 1953

Department of Mathematics Pusan National University Pusan 609-735, Korea *E-mail*: tyseo@hyowon.pusan.ac.kr