PERMUTING TRI-DERIVATIONS IN PRIME AND SEMI-PRIME RINGS

M. Ali Öztürk

Abstract. In this work, we study permuting tri-derivations and give an example

1. Introduction

Throughout this work, R will represent an associative ring and Z will denote the center of R. We shall write $[x, y]$ for $x y-y x$.

A mapping $D(.,):. R \times R \rightarrow R$ is called symmetric if $D(x, y)=$ $D(y, x)$ holds for all $x, y \in R$. A mapping $d \cdot R \rightarrow \mathrm{R}$ defined by $d(x)=D(x, x)$ is called trace of $D(\ldots)$, where $D(.):, R \times R \rightarrow R$ is a symmetric mapping It is obvious that, if $D(,):. R \times R \rightarrow R$ is a symmetric mapping which is also bi-additive (ie, additive in both arguments), then trace of $D(.,$.$) satisfies the relation d(x+y)=d(x)+$ $d(y)+2 D(x, y)$ for all $x, y \in R$.

A symmetric bi-additive mapping $D(.,.) \cdot R \times R \rightarrow R$ is called a symmetric bi-derivation of $D(x y, z)=D(x, z) y+x D(y, z)$ is fulfilled for all $x, y, z \in R$. Then the relation $D(x, y z)=D(x, y) z+y D(x, z)$ is also fulfilied for all $x, y, z \in R$.

We shall need the following well-known and frequently used lemmas.

[^0]Lemma 1. ([2, Lemma 2. (u)]) Let R be a prime ring, $a \in R$ and $d: R \rightarrow R$ an α-derivation. If U is a non-zero deal of R and $a d(U)=0$, then $a=0$ or $d=0$.

Lemma 2. ([11, Lemma 1]) Let R be a 2-torsion free semi-prime ring, U a non-zero adeal of R and a, b be fixed elements of R. Then the following condutıons are equivalent:
i) $a x b=0$ for all. $x \in U$,
ii) $b x a=0$ for all $x \in U$,
iii) $a x b+b x a=0$ for all $x \in U$.

If one of these conditions is fulfilled and $l(U)=0$, then euther $a=0$ or $b=0$ too, where $l(U)$ is the left annahilator of U.

2. The Results

We shall start our investigation of permuting tri-derivations with the following resuit.

Definition 3. Let R be a ring. A mapping $D(., .,):. R \times R \times$ $R \rightarrow R$ is called tri-additive if

$$
\begin{aligned}
& D(x+w, y, z)=D(x, y, z)+D(w, y, z) \\
& D(z, y+w, z)=D(x, y, z)+D(x, w, z) \\
& D(x, y, z+w)=D(x, y, z)+D(x, y, w)
\end{aligned}
$$

holds for all $x, y, z, w \in R$. A tri-additive mapping $D(., .,):. R \times R \times$ $R \rightarrow R$ is called permuting tri-additive if $D(x, y, z)=D(x, z, y)=$ $D(z, x, y)=D(z, y, x)=D(y, z, x)=D(y, x, z)$ holds for all $x, y, z, w \in$ R. A mapping $d: R \rightarrow R$ defined by $d(x)=D(x, x, x)$ is called trace of $D(., .,$.$) , where D(., .,.) \cdot R \times R \times R \rightarrow R$ is a permuting tri-additive mapping

It is obvious that, if $D(.,,):. R \times R \times R \rightarrow R$ is a permuting tri-additive mapping then the trace of $D(., .,$.$) satısfies the relation$ $d(x+y)=d(x)+d(y)+3 D(x, x, y)+3 D(x, y, y)$ for all $x, y \in R$.

A permuting tri-additive mapping $D(., .):, R \times R \times R \rightarrow R$ is called a permuting tri-derivation if $D(x w, y, z)=D(x, y, z) w+x D(w, y, z)$ is
fulfilled for all $x, y, z, w \in R$. Then relation $D(x, y w, z)=D(x, y, z) w+$ $y D(x, w, z)$ and $D(x, y, z w)=D(x, y, z) w+z D(x, y, w)$ are fulfilled for all $x, y, z, w \in R$.

Let $D(.,,$.$) be a permuting tri-additive mapping of R$, where R is a ring. Since $D(0, x, y)=D(0+0, x, y)=D(0, x, y)+D(0, x, y)$, in this case, $D(0, x, y)=0$ is fulfilled for all $x, y \in R$. Thus, $0=D(0, y, z)=$ $D(-x+x, y, z)=D(-x, y, z)+D(x, y, z)$ for all $x, y, z \in R$ and so we get that $D(-x, y, z)=-D(x, y, z)$ for all $x, y, z \in R$. Therefore, the mapping $d \quad R \rightarrow R$ defined by $d(x)=D(x, x, x)$ is an odd function.

Example 4. For a commutative ring, let

$$
M=\left\{\left.\left[\begin{array}{lll}
a & b & c \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \right\rvert\, a, b, c, \in \mathbb{R}\right\},
$$

it is obvious that M is a ring under matrix addition and multiplication. $D(., .):, M \times M \times M \rightarrow M$, defined by

$$
\begin{aligned}
& \left(\left[\begin{array}{ccc}
a_{1} & b_{1} & c_{1} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
a_{2} & b_{2} & c_{2} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
a_{3} & b_{3} & c_{3} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\right) \rightarrow \\
& D\left(\left[\begin{array}{ccc}
a_{1} & b_{1} & c_{1} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
a_{2} & b_{2} & c_{2} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
a_{3} & b_{3} & c_{3} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\right)=\left[\begin{array}{ccc}
0 & 0 & a_{1} a_{2} a_{3} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

is a permuting tri-derivation.
Lemma 5 Let R be a 2, 3-torsion free ring, $D(.$, ,) a permuting tri-additvee mapping of R and d the trace of $D(., .,$.$) . If d(x)=0$ for all $x \in R$, then $D=0$.

Proof. For any $x, y \in R$,

$$
d(x+y)=d(x)+d(y)+3 D(x, x, y)+3 D(x, y, y)
$$

and so, from the hypothesis and since R is 3 -torsion free we get, for all $x, y \in R$

$$
D(x, x, y)+D(x, y, y)=0 .
$$

In this case, writing $-x$ for x in this relation we have, for all $x, y ?$

$$
D(x, x, y)+D(x, y, y)=0
$$

By adding the relation above and this last relation and sum " \because is 2-torsion free we have $D(x, x, y)=0$ for all $x, y, \in R$. Thus, wring $x+z, z \in R$ for x in this relation and since R is 2-torsion free wo tr, ve $D(x, y, z)=0$ for all $x, y, z \in R$. Thus, we get that $D=0$.

Remark 6. Let R be a ring and $D(., .,$.$) be a permuting 1$ iderivation of R. In this case, for any fixed $a \in R$ and for all τ, y, R, a mapping $D_{1}(.,):. R \times R \rightarrow R$ defined by $D_{1}(x, y)=D(a, x, y$, and a mapping $d_{2}: R \rightarrow R$ defined by $d_{2}(x)=D(a, a, x)$ is a symt. 'tric bi-derivation (in this meaning, permuting 2 -derivation is a sym netric bi-derivation) and is a derivation, respectively. If the symn tric bi-derivation and the dervation are obtained after some opera: ons, studying at the permuting tri-derivation is not necessary.

THEOREM 7. Let R be a non-commutative prime ring which is $\mathscr{2}^{2}$, 3-torsion free. Let $D(., .$,$) be a permuting tri-derivation of R$ and the trace of $D(., .,$.$) . If [d(x), x]=0$ for all $x \in R$, then $D=0$.

Proof. From the hypothesis, for any $x, y \in R$

$$
[d(x+y), x+y]+[d(-x+y),-x+y]=0
$$

and since R is 2,3 -torsion free we have, for all $x, y \in R$

$$
\begin{equation*}
[D(x, y, y), x]+[D(x, x, y), y]=0 \tag{1}
\end{equation*}
$$

Writing $y+z, z \in R$ for y in (1), from (1) we get, for all $x, y, z \in R$

$$
\begin{equation*}
2[D(x, y, z), x]+[D(x, x, y), z]+[D(x, x, z), y]=0 \tag{2}
\end{equation*}
$$

Replacing y by $x y$ in (2) and from (2) we get, for all $x, y, z \in R$

$$
\begin{equation*}
2 D(x, x, z)[y, x]+[x, z] D(x, x, y)+d(x)[y, z]=0 \tag{3}
\end{equation*}
$$

Replacing z by x in (3) and since R is 3 -torsion free we obtain, for all $x, y \in R$

$$
\begin{equation*}
d(x)[y, x]=0 . \tag{4}
\end{equation*}
$$

From (4) and Lemma 1 one can conclude that, for any $x \in Z$ we have $d(x)=0$ (note that for any fixed $x \in R$ a mapping $y \mapsto[x, y]$ is a derivation). Let $x \in Z$ and $y \in Z$. Then, $x+y \in Z,-y \in Z$ and $x+(-y) \in Z$. Thus, $0=d(x+y)=d(x)+3 D(x, y, y)+3 D(x, x, y)$ and $0=d(x+(=y))=d(x)+3 D(x, y, y)-3 D(x, x, y)$ which imples that

$$
\begin{equation*}
d(x)+3 D(x, y, y)=0 . \tag{5}
\end{equation*}
$$

Writing $x+y$ for y in (5), from (5) and since R is 3 -torsion free we get

$$
\begin{equation*}
d(x)+2 D(x, x, y)=0 . \tag{6}
\end{equation*}
$$

Writing $-x$ for x in (6) we get,

$$
\begin{equation*}
-d(x)+2 D(x, x, y)=0 \tag{7}
\end{equation*}
$$

From (6) and (7) and since R is 2 -torsion free we obtain $D(x, x, y)=0$ Let us write in this rclation $x+y$ instcad of y we have $d(x)=0$. Thus, we obtain that $d(x)=0$ for all $x \in R$. From Lemma 5 we have $D=0$.

Theorem 8. Let R be a non-commutative prime ring of characterastac not 2 and 3 -torsion free. Let $D(., .,$.$) be a permuting tri-derivation$ of R and d the trace of $D(., .$,$) . If [d(x), x] \in Z$ for all $x \in R$, then $D=0$.

Proof. From the hypothesis, for any $x, y \in R$

$$
[d(x+y), x+y]+[d(-x+y),-x+y] \in Z
$$

and since Char $R \neq 2$ and R is 3 -torsion free we have, for all $x, y \in R$

$$
\begin{equation*}
[D(x, y, y), x]+[D(x, x, y), y] \in Z \tag{8}
\end{equation*}
$$

Writing $y+z, z \in R$ for y in (8), from (8) we get, for all $x, y, z \in R$

$$
\begin{equation*}
2[D(x, y, z), x]+[D(x, x, y), z]+[D(x, x, z), y] \in Z \tag{9}
\end{equation*}
$$

Replacing x^{2} by y in (9) we have, for all $x, z \in R$

$$
\begin{align*}
& 3 x[D(x, x, z), x]+3[D(x, x, z), x] x+x[d(x), z]+[d(x), z] x \tag{10}\\
& \quad+[x, z] d(x)+d(x)[x, z] \in Z .
\end{align*}
$$

Replacing x by z in (10), From the hypothesis and since Char $R \neq 2$ we have, for all $x \in R$

$$
\begin{equation*}
x[d(x), x] \in Z \tag{11}
\end{equation*}
$$

Thus, we obtain, for all $x, y \in R$

$$
\begin{equation*}
[x, y][d(x), x]=0 . \tag{12}
\end{equation*}
$$

by (11) and the hypothesis. In this case, the relation above makes it possible to conclude, using the same arguments as the proof of Theorem 7 , that for any $x \notin Z$ we have $[d(x), x]=0$. Thus, from Theorem 7 we obtain $D=0$.

Theorem 9. Let R be a prime ring of characteristac not 2 and 3torsion free. Let $D_{1}(., .,$.$) and D_{2}(., .,$.$) be permuting tri-dervuations$ of R, d_{1} and d_{2}, the traces of $D_{1}(.,, .$,$) and D_{2}(., .,$.$) , respectivcly. If$ $D_{1}\left(d_{2}(x), x, x\right)=0$ for all $x \in R$, then $D_{1}=0$ or $D_{2}=0$.

Proof. For any $x, y \in R$

$$
D_{1}\left(d_{2}(x+y), x+y, x+y\right)+D_{1}\left(d_{2}(-x+y),-x+y,-x+y\right)=0
$$

and since $\operatorname{Char} R \neq 2$ we have, for all $x, y \in R$

$$
\begin{align*}
& 2 D_{1}\left(d_{2}(x), x, y\right)+D_{1}\left(d_{2}(y), x, x\right)+6 D_{1}\left(D_{2}(x, y, y), x, y\right) \tag{13}\\
& \quad+3 D_{1}\left(D_{2}(x, x, y), x, x\right)+3 D_{1}\left(D_{2}(x, x, y), y, y\right)=0 .
\end{align*}
$$

Writing $y+z, z \in R$ for y in (13), from (13) and since R is 3 -torsion free, we get

$$
\begin{aligned}
& \text { (14) } D_{1}\left(D_{2}(y, z, z), x, x\right)+D_{1}\left(D_{2}(y, y, z), x, x\right)+4 D_{1}\left(D_{2}(x, y, z), x, y\right) \\
& \quad+2 D_{1}\left(D_{2}(x, y, y), x, z\right)+4 D_{1}\left(D_{2}(x, y, z), x, z\right)+2 D_{1}\left(D_{2}(x, z, z), x, y\right) \\
& \quad+2 D_{1}\left(D_{2}(x, y, y), x, z\right)+D_{1}\left(D_{2}(x, x, y), z, z\right)+D_{1}\left(D_{2}(x, x, z), y, y\right) \\
& \quad+2 D_{1}\left(D_{2}(x, x, z), y, z\right)=0
\end{aligned}
$$

for all $x, y, z \in R$ Writing $-y$ for y in (14) we get, for all $x, y, z \in R$

$$
\begin{align*}
& -D_{1}\left(D_{2}(y, z, z), x, x\right)+D_{1}\left(D_{2}(y, y, z), x, x\right) \tag{15}\\
& \quad+4 D_{1}\left(D_{2}(x, y, z), x, y\right)+2 D_{1}\left(D_{2}(x, y, y), x, z\right) \\
& -4 D_{1}\left(D_{2}(x, y, z), x, z\right)-2 D_{1}\left(D_{2}(x, z, z), x, y\right) \\
& \quad+2 D_{1}\left(D_{2}(x, x, y), y, z\right)-D_{1}\left(D_{2}(x, x, y), z, z\right) \\
& \quad-D_{1}\left(D_{2}(x, x, z), y, y\right)-2 D_{1}\left(D_{2}(x, x, z), y, z\right)=0 .
\end{align*}
$$

From (14) and (15) and since Char $R \neq 2$ we get, for all $x, y, z \in R$

$$
\begin{align*}
& D_{1}\left(D_{2}(y, y, z), x, x\right)+2 D_{1}\left(D_{2}(x, y, y), x, z\right) \tag{16}\\
& +4 D_{1}\left(D_{2}(x, y, z), x, y\right)+2 D_{1}\left(D_{2}(x, x, y), y, z\right) \\
& +D_{1}\left(D_{2}(x, x, z), y, y\right)=0 .
\end{align*}
$$

Replacing $y z$ by z in (16), and from (16) we have, for all $x, y, z u n R$
(17) $D_{1}(x, x, y) D_{2}(y, y, z)+d_{2}(y) D_{1}(x, x, z)+4 D_{1}(x, y, y) D_{2}(x, y, z)$ $+4 D_{2}(x, y, y) D_{1}(x, y, z)+D_{2}(x, x, y) D_{1}(y, y, z)+d_{1}(y) D_{2}(x, x, z)=0$.

Replacing x by y in (17), since Char $R \neq 2$ and R is 3 -torsion free we have, for all $x, y, z \in R$

$$
\begin{equation*}
d_{1}(x) D_{2}(x, x, z)+d_{2}(x) D_{1}(x, x, z)=0 . \tag{18}
\end{equation*}
$$

Writing $y z$ for z in (18) and from (18) we obtain, for all $x, y, z \in R$

$$
\begin{equation*}
d_{1}(x) y D_{2}(x, x, z)+d_{2}(x) y D_{1}(x, x, z)=0 . \tag{19}
\end{equation*}
$$

Writing x for z in (19) and we have, for all $x, y \in R$

$$
\begin{equation*}
d_{1}(x) y d_{2}(x)=0 \tag{20}
\end{equation*}
$$

by Lemma 2 . In this case, suppose that d_{1} and d_{2} are both different from zero. Then there exist $x_{1}, x_{2} \in R$ such that $d_{1}\left(x_{1}\right) \neq 0$ and $d_{2}\left(x_{2}\right) \neq 0$. In particular, $d_{1}\left(x_{1}\right) y d_{2}\left(x_{1}\right)=0$ for all $y \in R$. Since $d_{1}(x 1) \neq 0$ and R is a prime ring we have $d_{2}\left(x_{1}\right)=0$. Similarly, we get $d_{1}\left(x_{2}\right)=0$. Then the relation (19) reduces to the equation $d_{1}\left(x_{1}\right) y D_{2}\left(x_{1}, x_{1}, z\right)=0$ for all $y \in R$. Using this relation and Lemma 1 we obtain that $D_{2}\left(x_{1}, x_{1}, z\right)=0$ for all $z \in R$ because of $d_{1}\left(x_{1}\right) \neq 0$ (recall that the mapping $z \mapsto D_{2}\left(x_{1}, x_{1}, z\right)$ is a derivation).Thus, we have $D_{2}\left(x_{1}, x_{1}, x_{2}\right)=0$. In the same way, we get $D_{1}\left(x_{1}, x_{1}, x_{2}\right)=0$. Substituting $x_{1}+x_{2}$ for z, we obtain

$$
\begin{aligned}
d_{1}(z) & =d_{1}\left(x_{1}+x_{2}\right) \\
& =d_{1}\left(x_{1}\right)+d_{1}\left(x_{2}\right)+3 D_{1}\left(x_{1}, x_{1}, x_{2}\right)+3 D_{1}\left(x_{1}, x_{2}, x_{2}\right) \\
& =d_{1}\left(x_{1}\right) \neq 0 \\
\text { and } \quad d_{2}(z) & =d_{2}\left(x_{1}+x_{2}\right) \\
& =d_{2}\left(x_{1}\right)+d_{2}\left(x_{2}\right)+3 D_{2}\left(x_{1}, x_{1}, x_{2}\right)+3 D_{2}\left(x_{1}, x_{2}, x_{2}\right) \\
& =d_{2}\left(x_{2}\right) \neq 0 .
\end{aligned}
$$

Therefore we have $d_{1}(z) \neq 0$ and $d_{2}(z) \neq 0$, a contradiction by (20) and R is prime ring. Hence we get $d_{1}(x)=0$ for all $x \in R$ or $d_{2}(x)=0$ for all $x \in R$. Thus, we have that $D_{1}=0$ or $D_{2}=0$ by Lemma 5 .

Corollary 10. Let R be a semi-prime ring of characterastac not 2 and 3 -torsion free. Let $D(., .$,$) be a permuting tri-derivation of R$ and d be the trace of $D(., .,$.$) . If D(d(x), x, x)=0$ for all $x \in R$, then $D=0$.

Proof. Replacing $D_{1}(., \ldots)$ and $D_{2}(., .$,$) by D(., .,$.$) in (20) we get$ that $d(x) y d(x)=0$ for all $x, y \in R$. Thus, sunce R is a semi-prime ring we have $D=0$ by Lemma 5 .

Theorem 11. Let R be a prime ring of characteristic not 2 and 3, 5 -torsion free. Let $D_{1}(., .,$.$) and D_{2}(., .,$.$) be permutung tri-derivations$ of R, d_{1} and d_{2} be the traces of $D_{1}(., .$,$) and D_{2}(, \ldots)$, respectively. If $D_{1}\left(d_{2}(x), d_{2}(x), x\right)=0$ for all $x \in R$, then $D_{1}=0$ or $D_{1}=0$

Proof. For any $x, y \in R$
$D_{1}\left(d_{2}(x+y), d_{2}(x+y), x+y\right)+D_{1}\left(d_{2}(-x+y), d_{2}(-x+y),-x+y\right)=0$
and since Char $R \neq 2$ we have, for all $x, y \in R$

$$
\begin{align*}
& 2 D_{1}\left(d_{2}(y), d_{2}(x), x\right)+6 D_{1}\left(D_{2}(x, x, y), d_{2}(x), x\right) \tag{21}\\
& \quad+6 D_{1}\left(D_{2}(x, y, y), d_{2}(y), x\right)+18 D_{1}\left(D_{2}(x, x, y), D_{2}(x, y, y), x\right) \\
& \quad+D_{1}\left(d_{2}(x), d_{2}(x), y\right)+6 D_{1}\left(D_{2}(x, y, y), d_{2}(x), y\right) \\
& \quad+6 D_{1}\left(D_{2}(x, x, y), d_{2}(y), y\right)+9 D_{1}\left(D_{2}(x, y, y), D_{2}(x, y, y), y\right) \\
& +9 D_{1}\left(D_{2}(x, x, y), D_{2}(x, x, y), y\right)=0
\end{align*}
$$

Writıng $y+z, z \in R$ for y in (21), from (21) we get, for all $x, y, z \in R$

$$
\begin{align*}
& 6 D_{1}\left(D_{2}(y, z, z), d_{2}(x), x\right)+2 D_{1}\left(D_{2}(y, y, z), d_{2}(x), x\right) \tag{22}\\
& +2 D_{1}\left(D_{2}(x, y, y), d_{2}(z), x\right)+2 D_{1}\left(D_{2}(x, y, y), d_{2}(z), x\right) \\
& +6 D_{1}\left(D_{2}(x, y, y), D_{2}(y, y, z), x\right)+18 D_{1}\left(D_{2}(x, y, y), D_{2}(y, z, z), x\right) \\
& +4 D_{1}\left(D_{2}(x, y, z), d_{2}(y), x\right)+12 D_{1}\left(D_{2}(x, y, z), d_{2}(z), x\right) \\
& +12 D_{1}\left(D_{2}(x, y, z), D_{2}(y, z, z), x\right)+36 D_{1}\left(D_{2}(x, y, z), D_{2}(y, y, z), x\right) \\
& +6 D_{1}\left(D_{2}(x, z, z), d_{2}(y), x\right)+6 D_{1}\left(D_{2}(x, z, z), D_{2}(y, y, z), x\right) \\
& +18 D_{1}\left(D_{2}(x, z, z) D_{2}(y, z, z), x\right)+12 D_{1}\left(D_{2}(x, x, y), D_{2}(x, y, z), x\right) \\
& +18 D_{1}\left(D_{2}(x, x, y), D_{2}(x, z, z), x\right)+6 D_{1}\left(D_{2}(x, x, z), D_{2}(x, y, y), x\right) \\
& +36 D_{1}\left(D_{2}(x, x, z), D_{2}(x, y, z), x\right)+2 D_{1}\left(D_{2}(x, y, y), d_{2}(x), z\right) \\
& +4 D_{1}\left(D_{2}(x, y, z), d(x), y\right)+12 D_{1}\left(D_{2}(x, y, z), d_{2}(x), z\right) \\
& +6 D_{1}\left(D_{2}(x, z, z), d_{2}(x), y\right)+2 D_{1}\left(D_{2}(x, x, y), d_{2}(y), z\right) \\
& +2 D_{1}\left(D_{2}(x, x, y), d_{2}(z), y\right)+6 D_{1}\left(D_{2}(x, x, y), d_{2}(z), z\right) \\
& +18 D_{1}\left(D_{2}(x, x, y), D_{2}(y, z, z), y\right)+6 D_{1}\left(D_{2}(x, x, y), D_{2}(y, z, z), z\right) \\
& \left.+6 D_{1}\left(D_{2}(x, x, y), D_{2}(y, y, z), y\right)+18 D_{2}(x, x, y), D_{2}(y, y, z), z\right)
\end{align*}
$$

$$
\begin{aligned}
& +2 D_{1}\left(D_{2}(x, x, z), d_{2}(y), y\right)+6 D_{1}\left(D_{2}(x, x, z), d_{2}(y), z\right) \\
& +6 D_{1}\left(D_{2}(x, x, z), d_{2}(z), y\right)+6 D_{1}\left(D_{2}(x, x, z), D_{2}(y, z, z), y\right) \\
& +18 D_{1}\left(D_{2}(x, x, z), D_{2}(y, z, z), z\right)+18 D_{1}\left(D_{2}(x, x, z), D_{2}(y, y, z), y\right) \\
& +6 D_{1}\left(D_{2}(x, x, z), D_{2}(y, y, z), z\right)+3 D_{1}\left(D_{2}(x, x, y), D_{2}(x, x, y), z\right) \\
& +3 D_{1}\left(D_{2},(x, x, y), D_{2}(x, x, z), y\right)+9 D_{1}\left(D_{2}(x, x, y), D_{2}(x, x, z), z\right) \\
& +3 D_{1}\left(D_{2}(x, x, z), D_{2}(x, x, y), y\right)+9 D_{1}\left(D_{2}(x, x, z), D_{2}(x, x, y), z\right) \\
& +9 D_{1}\left(D_{2}(x, x, z), D_{2}(x, x, z), y\right)+3 D_{1}\left(D_{2}(x, y, y), D_{2}(x, y, y), z\right) \\
& +6 D_{1}\left(D_{2}(x, y, y), D_{2}(x, y, z), y\right)+18 D_{1}\left(D_{2}(x, y, y), D_{2}(x, y, z), z\right) \\
& +9 D_{1}\left(D_{2}(x, y, y), D_{2}(x, z, z), y\right)+3 D_{1}\left(D_{2}(x, y, y), D_{2}(x, z, z), z\right) \\
& +6 D_{1}\left(D_{2}(x, y, y), D_{2}(x, y, z), y\right)+18 D_{1}\left(D_{2}(x, y, z), D_{2}(x, y, y), z\right) \\
& +36 D_{1}\left(D_{2}(x, y, z), D_{2}(x, y, z), y\right)+12 D_{1}\left(D_{2}(x, y, z), D_{2}(x, y, z), z\right) \\
& +6 D_{1}\left(D_{2}(x, y, z), D_{2}(x, z, z), y\right)+18 D_{1}\left(D_{2}(x, y, z), D_{2}(x, z, z), z\right) \\
& +9 D_{1}\left(D_{2}(x, z, z), D_{2}(x, y, y), y\right)+3 D_{1}\left(D_{2}(x, z, z), D_{2}(x, y, y), z\right) \\
& +6 D_{1}\left(D_{2}(x, z, z), D_{2}(x, y, z), y\right)+18 D_{1}\left(D_{2}(x, z, z), D_{2}(x, y, z), z\right) \\
& +9 D_{1}\left(D_{2}(x, z, z), D_{2}(x, z, z), y\right)=0 .
\end{aligned}
$$

Thus, writing $-y$ for $y \mathrm{in}(22)$, from the equation is obtained and (22) and since C har $R \neq 2$ and R is 3 -torsion free we get, for all $x, y, z \in R$

$$
\begin{align*}
& 2 D_{1}\left(D_{2}(y, y, z), d_{2}(x), x\right)+2 D_{1}\left(D_{2}(x, y, y), d_{2}(z), x\right) \tag{23}\\
+ & 4 D_{1}\left(D_{2}(x, y, z), d_{2}(y), x\right)+6 D_{1}\left(D_{2}(x, y, y), D_{2}(y, y, z), x\right) \\
+ & 6 D_{1}\left(D_{2}(x, z, z), D_{2}(y, y, z), x\right)+12 D_{1}\left(D_{2}(x, y, z), D_{2}(y, z, z), x\right) \\
+ & 12 D_{1}\left(D_{2}(x, x, y), D_{2}(x, y, z), x\right)+6 D_{1}\left(D_{2}(x, x, z), D_{2}(x, y, y), x\right) \\
+ & 2 D_{1}\left(D_{2}(x, y, y), d_{2}(x), z\right)+4 D_{1}\left(D_{2}(x, y, z), d_{2}(x), y\right) \\
+ & 2 D_{1}\left(D_{2}(x, x, y), d_{2}(y), z\right)+2 D_{1}\left(D_{2}(x, x, y), d_{2}(z), y\right) \\
+ & 6 D_{1}\left(D_{2}(x, x, y), D_{2}(y, z, z), z\right)+6 D_{1}\left(D_{2}(x, x, y), D_{2}(y, y, z), y\right) \\
+ & 2 D_{1}\left(D_{2}(x, x, z), d_{2}(y), y\right)+6 D_{1}\left(D_{2}(x, x, z), D_{2}(y, z, z), y\right) \\
+ & 6 D_{1}\left(D_{2}(x, x, z), D_{2}(y, y, z), z\right)+3 D_{1}\left(D_{2}(x, x, y), D_{2}(x, x, y), z\right) \\
+ & 3 D_{1}\left(D_{2}(x, x, y), D_{2}(x, x, z), y\right)+3 D_{1}\left(D_{2}(x, x, z), D_{2}(x, x, y), y\right)
\end{align*}
$$

$$
\begin{aligned}
& +3 D_{1}\left(D_{2}(x, y, y), D_{2}(x, y, y), z\right)+12 D_{1}\left(D_{2}(x, y, y), D_{2}(x, y, z), y\right) \\
& +3 D_{1}\left(D_{2}(x, y, y), D_{2}(x, z, z), z\right)+12 D_{1}\left(D_{2}(x, y, z), D_{2}(x, y, z), z\right) \\
& +6 D_{1}\left(D_{2}(x, y, z), D_{2}(x, z, z), y\right)+3 D_{1}\left(D_{2}(x, z, z), D_{2}(x, y, y), z\right) \\
& +6 D_{1}\left(D_{2}(x, z, z), D_{2}(x, y, z), y\right)=0 .
\end{aligned}
$$

Writing $z+w, w \in R$ for z in (23) and from (23) we obtan, for all $x, y, z, w \in R$
(24) $6 D_{1}\left(D_{2}(x, y, y), D_{2}(z, w, w), x\right)+6 D_{1}\left(D_{2}(x, y, y), D_{2}(z, z, w), x\right)$ $+6 D_{1}\left(D_{2}(x, z, z), D_{2}(y, y, w), x\right)+12 D_{1}\left(D_{2}(x, z, w), D_{2}(y, y, z), x\right)$ $+12 D_{1}\left(D_{2}(x, z, w), D_{2}(y, y, w), x\right)+6 D_{1}\left(D_{2}(x, w, w), D_{2}(y, y, z), x\right)$ $+24 D_{1}\left(D_{2}(x, y, z), D_{2}(y, z, w), x\right)+12 D_{1}\left(D_{2}(x, y, z), D_{2}(y, w, w), x\right)$ $+12 D_{1}\left(D_{2}(x, y, w), D_{2}(y, z, z), x\right)+24 D_{1}\left(D_{2}(x, y, w), D_{2}(y, z, w), x\right)$ $+6 D_{1}\left(D_{2}(x, x, y), D_{2}(z, w, w), y\right)+6 D_{1}\left(D_{2}(x, x, y), D_{2}(z, z, w), y\right)$ $+6 D_{1}\left(D_{2}(x, x, y), D_{2}(y, z, z), w\right)+12 D_{1}\left(D_{2}(x, x, y), D_{2}(y, z, w), z\right)$ $+12 D_{1}\left(D_{2}(x, x, y), D_{2}(y, z, w), w\right)+6 D_{1}\left(D_{2}(x, x, y), D_{2}(y, w, w), z\right)$ $+12 D_{1}\left(D_{2}(x, x, z), D_{2}(y, z, w), y\right)+6 D_{1}\left(D_{2}(x, x, z), D_{2}(y, w, w), y\right)$ $+6 D_{1}\left(D_{2}(x, x, w), D_{2}(y, z, z), y\right)+12 D_{1}\left(D_{2}(x, x, w), D_{2}(y, w, z), y\right)$ $+6 D_{1}\left(D_{2}(x, x, z), D_{2}(y, y, z), w\right)+6 D_{1}\left(D_{2}(x, x, z), D_{2}(y, y, w), z\right)$ $+6 D_{1}\left(D_{2}(x, x, z), D_{2}(y, y, w), w\right)+6 D_{1}\left(D_{2}(x, x, w), D_{2}(y, y, w), z\right)$ $+6 D_{1}\left(D_{2}(x, x, w), D_{2}(y, y, z), z\right)+6 D_{1}\left(D_{2}(x, x, w), D_{2}(y, y, z), w\right)$ $+12 D_{1}\left(D_{2}(x, y, y), D_{2}(x, z, z), w\right)+6 D_{1}\left(D_{2}(x, y, y), D_{2}(x, z, w), z\right)$ $+6 D_{1}\left(D_{2}(x, y, y), D_{2}(x, z, w), w\right)+3 D_{1}\left(D_{2}(x, y, y), D_{2}(x, w, w), z\right)$ $+12 D_{1}\left(D_{2}(x, y, z), D_{2}(x, y, z), w\right)+12 D_{1}\left(D_{2}(x, y, z), D_{2}(x, y, w), z\right)$ $+12 D_{1}\left(D_{2}(x, y, z), D_{2}(x, y, w), w\right)+12 D_{1}\left(D_{2}(x, y, w), D_{2}(x, y, z), z\right)$ $+12 D_{1}\left(D_{2}(x, y, w), D_{2}(x, y, z), w\right)+12 D_{1}\left(D_{2}(x, y, w), D_{2}(x, y, w), z\right)$ $+12 D_{1}\left(D_{2}(x, y, z), D_{2}(x, z, w), y\right)+6 D_{1}\left(D_{2}(x, y, z), D_{2}(x, w, w), y\right)$ $+6 D_{1}\left(D_{2}(x, y, w), D_{2}(x, z, z), y\right)+12 D_{1}\left(D_{2}(x, y, w), D_{2}(x, z, w), y\right)$ $+3 D_{1}\left(D_{2}(x, z, z), D_{2}(x, y, y), w\right)+6 D_{1}\left(D_{2}(x, z, w), D_{2}(x, y, y), z\right)$ $+6 D_{1}\left(D_{2}(x, z, w), D_{2}(x, y, y), w\right)+3 D_{1}\left(D_{2}(x, w, w), D_{2}(x, y, y), z\right)$

$$
\begin{aligned}
& +6 D_{1}\left(D_{2}(x, z, z), D_{2}(x, y, w), y\right)+12 D_{1}\left(D_{2}(x, z, w), D_{2}(x, y, z), y\right) \\
& +12 D_{1}\left(D_{2}(x, z, w), D_{2}(x, y, w), y\right)+6 D_{1}\left(D_{2}(x, z, z), D_{2}(x, y, z), y\right)=0 .
\end{aligned}
$$

Replacing $-z$ by z in (24), from the equation is obtained and (24) and since C har $R \neq 2$ and R is 3 -torsion free we get, for all $x, y, z, w \in R$

$$
\begin{align*}
& D_{1}\left(D_{2}(x, y, y), D_{2}(z, z, w), x\right)+D_{1}\left(D_{2}(x, z, z), D_{2}(y, y, w), x\right) \tag{25}\\
+ & 2 D_{1}\left(D_{2}(x, z, w), D_{2}(y, y, z), x\right)+4 D_{1}\left(D_{2}(x, y, z), D_{2}(y, z, w), x\right) \\
+ & 2 D_{1}\left(D_{2}(x, y, w), D_{2}(y, z, z), x\right)+D_{1}\left(D_{2}(x, x, y), D_{2}(z, z, w), y\right) \\
+ & D_{1}\left(D_{2}(x, x, y), D_{2}(y, z, z), w\right)+2 D_{1}\left(D_{2}(x, x, y), D_{2}(y, z, w), z\right) \\
+ & 2 D_{1}\left(D_{2}(x, x, z), D_{2}(y, z, w), y\right)+D_{1}\left(D_{2}(x, x, w), D_{2}(y, z, z), y\right) \\
+ & D_{1}\left(D_{2}(x, x, z), D_{2}(y, y, z), w\right)+D_{1}\left(D_{2}(x, x, z), D_{2}(y, y, w), z\right) \\
+ & D_{1}\left(D_{2}(x, x, w), D_{2}(y, y, z), z\right)+D_{1}\left(D_{2}(x, y, y), D_{2}(x, z, z), w\right) \\
+ & 2 D_{1}\left(D_{2}(x, y, z), D_{2}(x, y, z), w\right)+2 D_{1}\left(D_{2}(x, y, z), D_{2}(x, y, w), z\right) \\
+ & 2 D_{1}\left(D_{2}(x, y, w), D_{2}(x, y, z), z\right)+2 D_{1}\left(D_{2}(x, y, z), D_{2}(x, z, w), y\right) \\
+ & D_{1}\left(D_{2}(x, y, w), D_{2}(x, z, z), y\right)+D_{1}\left(D_{2}(x, z, w), D_{2}(x, y, y), z\right) \\
+ & D_{1}\left(D_{2}(x, z, z), D_{2}(x, y, w), y\right)+2 D_{1}\left(D_{2}(x, z, w), D_{2}(x, y, z), y\right)=0 .
\end{align*}
$$

Replacing x by y and z in (25), from the hypothesis we get, for all $x, w \in R$

$$
\begin{equation*}
5 D_{1}\left(d_{2}(x), d_{2}(x), w\right)+30 D_{1}\left(D_{2}(x, x, w), d_{2}(x), x\right)=0 \tag{26}
\end{equation*}
$$

Replacing $w x$ by w in (26), from the hypothesis and (26) and since $C h a r R \neq 2$ and R is 3 -torsion free we get, for all $x, w \in R$

$$
\begin{equation*}
D_{1}\left(d_{2}(x), x, w\right) d_{2}(x)+D_{2}(x, x, w) D_{1}\left(d_{2}(x), x, x\right)=0 \tag{27}
\end{equation*}
$$

Writing $x w$ for w in (27) and from (27) we obtain, for all $x, w \in R$

$$
\begin{equation*}
D_{1}\left(d_{2}(x), x, x\right) w d_{2}(x)+d_{2}(x) w D_{1}\left(d_{2}(x), x, x\right)=0 \tag{28}
\end{equation*}
$$

By Lemma 2 and from (28) we wish to get $D_{1}\left(d_{2}(x), x, x\right)=0$ is fulfilled for all $x \in R$. But, if $D_{1}\left(d_{2}\left(x_{1}\right), x_{1}, x_{1}\right) \neq 0$ for some $x_{1} \in R$ then replacing x by x_{1} in (28) and since R is prime ring we obtain that $d_{2}\left(x_{1}\right)=0$ by Lemma 2. Therefore, $D_{1}\left(d_{2}\left(x_{1}\right), x_{1}, x_{1}\right)=$ $D_{1}\left(0, x_{1}, x_{1}\right)=0$. But this contradicts to the fact that $D_{1}\left(d_{2}\left(x_{1}\right), x_{1}, x_{1}\right) \neq$ 0 . Thus, from Theorem 8 we get that $D_{1}=0$ or $D_{2}=0$.

Corollary 12. Let R be a semi-prime ring of characteristic not 2 and 3, 5-torswon free. Let $D(., .,:)$ be a permuting trv-dervation of R and d be the trace of $D(., .$,$) . If D(d(x), d(x), x)=0$ for all $x \in R$, then $D=0$.

Proof. Replacing $D_{1}(., .,$.$) and D_{2}(., .,$.$) by D(.,,$.$) in (27) we$ get, for all $x, w \in R$. Thus, since R is semı-prime ring we have $D=0$ by Lemma 5 .

$$
\begin{equation*}
D(d(x), x, w) d(x)+D(x, x, w) D(d(x), x, x)=0 \tag{29}
\end{equation*}
$$

Replacing $w y$ by y in (29) and from (29) we obtain for all $x, w \in R$

$$
\begin{equation*}
D(d(x), x, w) y d(x)+D(x, x, w) y D(d(x), x, x)=0 \tag{30}
\end{equation*}
$$

Replacing $d(x)$ by w in (30) and from the hypothesss we obtain for all $x, w \in R$

$$
D(d(x), x, x) y D(d(x), x, x)=0 .
$$

Thus, since R is semi-prime ring we have $D=0$ by Corollary 10 .
Theorem 13. Let R be a prome ring of characteristac not 2, 3 and 5. Let $D_{2}(, .$,$) and D_{2}(., .$,$) be permutzng tri-dervations of R, d_{1}$ and d_{2}, the traces of $D_{1}(., .,$.$) and D_{2}(., .,$.$) , respectively If$

$$
d_{1}\left(d_{2}(x)\right)=f(x) \text { for all } x \in R
$$

then, $D_{1}=0$ or $D_{2}=0$, where a permuting tri-addutive mapping $F(., .,):. R \times R \times R \rightarrow R$ and f is the trace of $F(., .,$.$) .$

Proof. Using the same argument as the proof of Theorem 11 we obtam that for all $x, y \in R$

$$
\begin{equation*}
D_{1}\left(D_{2}(x, y, y), d_{2}(y), d_{2}(y)\right)=0 \tag{31}
\end{equation*}
$$

Writing $x y$ for x in (31) and from (31) we obtain, for all $x, y \in R$

$$
\begin{equation*}
D_{2}(x, y, y) D_{1}\left(y, d_{2}(y), d_{2}(y)\right)+D_{1}\left(x, d_{2}(y), d_{2}(y)\right) d_{2}(y)=0 \tag{32}
\end{equation*}
$$

Writing $y x$ for x in (32) and from (32) we obtain, for all $x, y \in R$

$$
\begin{equation*}
d_{2}(y) x D_{1}\left(y, d_{2}(y), d_{2}(y)\right)+D_{1}\left(y, d_{2}(y), d_{2}(y)\right) x d_{2}(y)=0 \tag{33}
\end{equation*}
$$

By Lemma 2 and from (33) we wish to get $D_{1}\left(d_{2}(y), d_{2}(y), y\right)=0$ is fulfilled for all $y \in R$. But, if $D_{1}\left(d_{2}\left(y_{1}\right), y_{1}, y_{1}\right) \neq 0$ for some $y_{1} \in R$ then replacing y by y_{1} in (33) and since R is prime ring we obtain that $d_{2}\left(y_{1}\right)=0$ by Lemma 2. Therefore, $D_{1}\left(d_{2}\left(y_{1}\right), d_{2}\left(y_{1}\right), y_{1}\right)=$ $D_{1}\left(0,0, x_{1}\right)=0$. But this contradicts with $D_{1}\left(d_{2}\left(y_{1}\right), y_{1}, y_{1}\right) \neq 0$. Thus from Theorem 11 we get that $D_{1}=0$ or $D_{2}=0$.

References

[1] N Argaç and M. S Yengúl, Lie Ideals and Symmetric Br-Derzvations of Prime Rings, Pure and Applied Sciences India, to appear.
[2] K. Kaya, On Prime Rings with α-Derivations, Doga TU Mat D C 12(2) (1988), 46-51
[3] Gy Maksa, A Remark on Symmetruc Br-Addative Functıons Havnng Non- negative Diagonalzzatzon, Glasnik Math. 15(35) (1980), 279-282
[4] Gy Maksa, On the Trace of Symmetric Bi-Derivations, C R. Math Rep.Acad. Sci Canada 9 (1987), 303-307.
[5] M. A. Özturk, M. Sapancı, Orthogonal Symmetric Br-Demvations on Semiprime Gamma Rings, Hacettepe Bull of Natural Sciences and Engineering, Series B Math and Statistics 26 (1997), 31-46.
[6] M A Ozturk, M Sapancı and Soyturk, Symmetric Br-Detwations on Prime Gamma Rings, to appear
[7] M Sapancı and M A Ozturk, Symmetric Bi-Derivations on Przme Rings, Greek Mathernatical Society, to appear
[8] J Vukman, Symmetric Bi-Derzvations on Prime and Semi-prime Rings, Aeqationes Math 38 (1989), 245-254
[3] J Vukman, Two Results Concerning Symmetric Br-Derivatzons on Prume Rings, Aeqationes Math 40 (1990), 181-189.
[10] M S. Yenıgul and N. Argaç, Ideals and Symmetric Bi-Dervations of Prime and Semi-prome Rings, Math J Okayama Univ. 35 (1993), 189-192
[11] M S. Yenıgul and N Argaç, On Ideals and Orthogonal Derivatıon, Journal of Southwest China Normal University (Natural Science) 20(2) (1995), 137-140

Department of Mathematics
Faculty of Arts and Sciences
Cumhuriyet University
58148 Sivas, Turkey

[^0]: Received August 8, 1999 Revised October 14, 1999
 1991 Mathematics Subject Classification 16A12, 16A68, 12A72
 Key words and phrases Permuting tri-derivation, Prime ring, Prime semı-ring, Derivation

