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APPROXIMATE FIBRATIONS ON
MANIFOLD DECOMPOSITIONS

YouNG Ho Iu

1. Introduction

Coram and Duvall [2] introduced an approximate fibration as a map
having the approximate homotopy lifting property for every space,
which 1s a generalization of a Hurewicz fibration and a cell-like map.

A proper map p: M — B between locally compact ANRs is called
an approzinate fibration if it has the following approximate homotopy
lifting property: given an open cover ¢ of B, an arbitrary space X, and
twomaps ¢: X — M and F: X x I — B such that po g = Fp, there
exists a map G : X x J — M such that Gy = g and po G is e-close to
F.

If a proper map p* M — B is an approximate fibration, not only are
the point inverses homotopy equivalent but also there exists an exact
homotapy sequence between M, B and fibers of p as follows;

= W1 (B) - m(p7b) — m(M} — m(B) — -

It 18 very essential to examine whether a given decomposition map is
an approximate fibration, for then, above exact homotopy sequence
provides us structural informations about any one object by means of
their interrelations with the rests.

A closed n-manifold N is called a codimension k fibrator if whenever
there is a usc decomposition G of an arbitrary (n+ k)-manifold M such
that each element of G is homotopy equivalent to N and dimM /G <
oo, then p: M — M/G is an approximate fibration.
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QUESTION. Which manifolds N are codimension k fibrators?

Liem [16] proved that S™ (n > 2) is a codimension 1 fibrator, and
Daverman (4] showed that if G is a decomposition of an (n+1)-manifold
M into continua having the shape of arbitrary closed n-manifolds then
M/G is a 1-dimensional manifold, furthermore, if each element of G is
locally flat in M, then p is an approximate fibration.

The main problem is to determine which manifolds N are codimen-
sion 2 fibrators.

Simply connected manifolds, closed manifolds N with m(N) & Z,
(for example, real projective n—spaces (n > 1)), closed manifolds with
finite (or abelian) fundamental group and nonzero Euler characteristic
are known to be codimension-2 fibrators ([1], [5] and [6]).

And closed hopfian manifolds with hopfian fundamental group and
nonzero Euler characteristic as well as closed hopfian manifolds with
hyperhopfian fundamental group are known tobe codimension-2 fibra-
tors ([5] and [14]). But there are some non-codimension-2 fibrators (see
51, (6], and [7]).

The question of whether the collection of codimension 2 fibrators
is closed under the Cartesian product operator remains unsolved. In
[11] and [12], Im showed that any product of finitely many orientable
surfaces of genus at least two is a codimension 2 (orientable) fibrator.
Recently Kim [16] generalized Im’s results to the orientation-free ver-
sion. To determine whether any product of finitely many codimension
2 fibrators is a codimension 2 fibrator, one may confront the question,
which is widely open, whether the collection of hopfian manifolds is
closed under the Cartesian product operator.

In this paper, we first show that the product F x A of a closed
hopfian n—manifold ¥ and a closed orientable aspherical m—manifold
A is a hopfian manifold under either solvable 7 (F) and y(A4) # 0,
or finite m; (F"). Then using those facts we investigate the conditions
under which products of codimension 2 fibrators are again codimension
2 fibrators.

2. Preliminaries

We assume all spaces are locally compact, metrizable ANR’s, and
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all manifolds are connected and boundaryless. A manifold M is said
to be closed if M is compact and boundaryless.

Let N and N' be closed n—manifolds and f : N — N’ be a map. If
both N and N' are orientable, then the degree of f is the nonnegative
integer d such that the induced endomorphism of f. - Hn,(N;Z) =
Z — H,(N';Z) & Z amounts to multiplication by d, up to sign. In
general, the degree mod 2 of f is the nonnegative integer d such that the
induced endomorphism of f, : H,(N; Zy) & Zy — H,(N'; Z3) =2 Z,
amounts to multiplication by d.

Suppose that N is a closed n—manifold and a proper map p: M —
B is N—like. Let G be the set of all fibers, i.e, G = {p~!(b) : b € B}.
Put C = {p(g9) € B : g € G and there exist a neighborhood Uy of ¢
in M and a retraction Ry : Uy, — gsuch that Ry | ¢’ : ¢’ ~—— g isa
degree one map for all ¢’ € G with ¢’ € Gin Uy}, and C' = {p(g) € B :
¢ € G and there exist a neighborhood U, of ¢ in. M and a retraction.
Ry : Uy — g such that Ry | ¢’ : ¢ — g 15 a degree one mod 2 map
for all ¢' € G with ¢’ € G in U,}. Call C the continuity set of p and
C’ the mod 2 continuity set of p D. Coram and P. Duvall [3] showed
that C and C' are dense, open subsets of B.

Coram and Duvall [3] gave several charactenzations for an approx-
imate fibration. One of them is that a proper map p: M — B is an
approximate fibration if and only if it is k-movable for all & (for de-
tails, see {3]), since then, this criterion has been the most used to check
under which conditions inverse images of p are homotopy equivalent.
The folowing terms help a lot for looking into these conditions

A closed orientable manifold N is called hopfian if every degree one
map N — N which induces a 7 -isomorphism is a homotopy equiv-
alence. A group H is hopfian if every epimorphism © - H — H is
necessarily an isomorphism, while a finitely presented group H is hy-
perhopfian if every homomorphism ¥ : H — H with U(H) normal and
H/W(H) cyclic is an automorphism.

The symbol x is used to denote Fuler characteristic.

A group H is said to be residually finite if for each ey # h € H,
there exists a finite group A and a homomorphism & : H — A with
®(h) #£ ea.

In the study of a decomposition map p - M™% — B from (n + k)-
manifold M™% codimension 2 is much more advantageous and acces-
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sible than other dimensions on account of following result.

THEOREM 2.1 [8]. If G is a usc decomposition of an orientable
(n 4+ 2)—manifold M into closed, orientable n—manifolds, then the
decomposition space B = M/G is a 2—-manifold and D = B\ C is
locally finite in B, where C represents the continuity set of the decom-
position map p : M — B. If either M or some elements of G are
nonorientable, B is a 2—manifold with boundary (possibly empty) and
D' = (int BY\ C' is locally finite in B, where C' represents the mod 2
continuity set of p.

The next results give useful information connecting hopfian mani-
folds and hopfian fundamental groups.

THEOREM 2.2 [6]. A closed orientable n-manifold N is a hopfian
maunifold if any one of the following conditions holds:

Hn <4

2) m(N) contains a nilpotent subgroup of finite index;

3) m(N) is trivial for 1 <i<n—1.

THEOREM 2.3 [6]. A closed hopfian manifold N with either hop-
fian m{N) and x(N) # 0 or hyperhopfian n;(N) is a codimension 2
fibrator.

3. Products of Hopfian manifolds

In this section we discuss conditions under which products of hopfian
manifolds are hopfian manifolds.

LEMMA 3.1. Let Ty and T’y be groups and let ¢ : Ty x Ty — Ty x 'y
be an isomorphism.

Then, ¢(T'y x 1) =T'y x 1 under one of the following conditions

1) T'y is solvable and T'y has no nontrivial abelian normal subgroups;

2) Ty is finite and T'y is torsion free.

Proof. 1) Since T') is solvable, by taking successive derived sub-
groups, we have a derived series
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for somie k. From the fact that I‘gl) xl"gf) = ([} xI'2)" is a characteristic
subgroup of I' x I'y, we have an isomorphism ¢ |: I'{" xI{Y = 1 <l
for each 7. Note that ng) = 1 implies that P(lk—l) is abelian. By
hypothesis of I'g, I‘gchl) has no nontrivial abelian normal subgroup so
that (P x 1) =TV 1 c 02 p-?

Consider the induced map ¢ | Fﬁ"’“z)/rﬁ‘““l)xrgk‘” : F(lk_g)/l"ik_l) X
rg"*” — r{k‘” / 1-.(11:—1) X ng—z)' Again since ng“g) has no nontrivial
abelian normal subgroup, ¢ | (ng-z)/l“gk_l) x 1) = ngd)/rgk_l) x 1.
Hence we have that gb(I‘(lk_z) x 1) = ng—z) x 1. By the inductive step
we have the conclusion.

2) is obvious.

THEOREM 3 2 Let F be a closed hopfian n—manifold and let A
be a closed orientable aspherical m—manifold. If either 1) m (I is
solvable and x(A) # 0, or 2) my(F) is finite, then F' x A is a hopfian
manifold

Proof Proof of 1) Let f . F x A — F x A be a degree one map
which induces a 7 —isomorphism.

Now since x(A) # 0 implies that m(A) has no nontrivial abelian
normal subgroup [17], by Lemma 3.1, we have a map f* : I x A* —
F x A* satisfying the following commutative diagram

f*»
¥ -— F

1
2 pr

FxA —— FxaAr

Idxgq fdxqg
f
FxA — Fx A,

where 3 is the inclusion, pr is the projection, ¢ : A* — A is the universal
covering map, and f** = pr o f* o ;. Note that j and pr are homotopy
equivalences, for A* is contractible. The fact of deg f = 1 implies
that f, : Hy(F x A) — Hi(F x A) is an isomorphism for every k >
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0. In particular, f. : Ho(F x A) — H,(F x A) is an isomorphism
so that f. | free part of H,(F x A) : free part of Hp(F x A)
—  free part of H,(F x A) is an isomorphism. Here note 7 =
H,(F) ® Ho(A) is a subgroup of the free part of H,(F x A). From
the diagram, we see that (f. [)(H.(F) ® Hp(A)) C Hp(F) ® Hy(A).
But since f, | free part of H,(F x A) is an isomorphism, we have an
isomorphism f | Ho(F)® Ho(A) : Ho(F)Y® Ho(A) — Ho(F)® Ho(A).
Then by simple diagram chasing we see that the degree of f** is one.
The hopfianness of F implies that f** is a homotopy equivalence, and
sois f*. Therefore since fu : m (Fx A) — m(F x A) is an isomorphism,
we have an isomorphism fy : nx(F x A) — 7 (F x A) for all &k > 1.
By the Whitehead Theorem, f is a homotopy equivalence.

Proof of 2). Lemma 3.1 guarantees the existence of f* as in the
proof of 1), since 7y (A) is torsion free. Now just copy the proof of 1)

CoroOLLARY 2.3, Let F be a closed orientable n—manifold with
m]potent 1(F) and let A be a closed orientable aspherical m—manifold
with x(A) # 0. Then F x A is a hopfian manifold.

Proof. Hopfianness of F' comes from Theorem 2.2.

LEMMA 3.4. Let F and A be closed orientable n—manifolds. If
7w (F} is finite and m1(A) is infinite, then any map f : F — A has
degree zero.

Proof. Consider the following

)

f
B ——

5
Ny e M

B
5

f
— s

where gr and g4 are the universal covering maps, and f is the lifting
of f o gp. Since H,(A) = 0, the homomorphism (f o gp), : Hu(F) —
H,(A) is trivial, so that f o gr has degree zero. It follows from degree
of gp = (11 (F) : m1(F)] > 1 that f: F — A has degree zero.
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THEOREM 3.5. Let F' and A be closed orientable n—manifolds. If
7 (F') is finite and 7,(A) is trivial for 1 < 1 < n, then F x A is hopfian.

Proof. If m1(A) is finite, then m; (F) x m1(A) is finite, so that £'x A
is hopfian. Now assume that 7 (F) x w1 (A) is infinite. Let f: F'x 4 —
F' x A be a degree one map which induces a m; —isomorphism. Consider
the following commutative diagram

where gy : F— Fland g4 - A — A are the universal covering maps,
and f is the lifting of f o (gr X ga). Note that the degree of f is one.

To show that f is a homotopy equivalence, it suffices to show that fis
a homotopy equivalence.

Claim 1: gp = prp o f o jr has degree one, where jp : F' — F x A
1s the inclusion and pryg : F' x A — F is the projection.
The isomorphism f, : H,(F x A) — H,(F x A) induces 2 X

2—invertible matrix
aiy Q12
Q21 Q22

where a,, corresponds to the coefficient in f, - H,(FxA) — H,(FxA).
By Lemma 3.3, a;2 = 0 so that a1; = agy = 1, ie, degree of gp = 1.

Claim 2- For any k , (f). : He(F x A) — Hg(F x A) is an isomor-
phism.

By the Hurewicz Theorem, H,,(;{) =0 for 1 <1 < n. Since Hk(ﬁ x
A) Hk(F ) ® HO(A) Hk(ﬁ), we may regard the homomorphism
(f) H;C(F X A) — Hk(F X A) (gp)« : He(F) — Hg(F), where gp
is the lifting of prp o f o yp.

By Claim 1, g has degree one, and so does gp since gp is the lifting

of grogp. This implies that {Gr). : Hx(F) — Hi(F) is an isomorphism
for all k > 0.
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COROLLARY 3.6. Let N be a closed orientable aspherical n mani-
fold. Then S™ x N is hopfian.

4. Products of fibrators

LEMMA 4.1. Let G and K be hyperhopfian groups. If G is finite
and K is torsion free, then G x K is hyperhopfian.

Proof. Let ¢ : G x K — G x K be a homomorphism with ¢(G x K)
normal and (G x K)/¢(G x K) cyclic. Consider the following diagram

G G

where ig, i) are inclusions and prg, prix are projections. Then
K/priop(Gx K} is cyclic. From the fact that priogorg{G) is trivial,
prxod(GxK) = prgodoig(K) and K/prgopoix{K) is cyclic. Using
the hyperhopficity of X, we have an isomorphism prigogoig : K — K.
Similarly, we have an isomorphism prgo¢ o1z : G — G, because
pri © ¢ oig(G) is trivial. As a result, it is easy to see that ¢ is an
isomorphism.

The next recent result of Chinen gives us useful information about
manifolds with hyperhopfian fundamental group being codimension 2
fibrators.

LEMMA 4.2. [I, Theorem 5.3] Let N be a closed n—manifold with
hyperhopfian fundamental group. If every N—like proper map p :
M™*% — B? from an (n+2)—manifold M onto a 2—manifold B is an
approximate fibration over (', where C' denotes the mod 2 continuity
set of p, then N is a codimension-2 fibrator.
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THEOREM 4.3. Let F' be a closed n—manifold with finite m\(F)
and let A be a closed aspherical m—manifold. If m(F) and m1(A) are
hyperhopfian, then N = F x A is a codimension 2 fibrator.

Proof. Case I: N is orientable,

It follows from Theorem 2.3, Theorem 3.2 and Lemma 4.1 that N
is a codimension 2 fibrator.

Case II' N is non-orientable.

Let a proper map p : M™**2 — B2 pe N—like. By Lemma 4.1 and
4.2, it suffices to show that p is an approximate fibration over the mod
2 continuity set C' of p. Assume that B2 = C’. Fix go € G with p{go) €
C’. Take a neighborhood U{C C') of p{go) such that p~*(U) retracts
to go, and take a smaller connected neighborhood V' of p(gg) such that
p~ (V) deformation retracts to go in p~1(U/). Call this retraction R :
p~ (V) — go. Take the covering map q : M* — p~ (V) corresponding
to RGN H). where H is the intersection of ali index 2 subgroups of
71(N). Since [my(p~1(V)) : R;I(H)] = {m{go) - H} < o0, ¢ is finite.
Then we have that for all ¢ € G with p(g) € C’, ¢ l(g) = ¢" is
connected and has the homotopy type of Ny, where N is the covering
space of N corresponding to H (see {15] for the detailed proof). Set
G* = {g*: g € G with p(g) € V} and let p* = pog: M* — M*/G* be
the decomposition map. Here note M*/G* = V.

Claim: p* is an approximate fibration over the continuity set C(p*)
of p*.

Fix g5 € G* with p*(g;) = p(gs) = b € C(p*). Carefully take a small
neighborhood W (< C(p*)) of b and a retraction R, : p Y (W) — gp.
Let R} : W* = p~{W) — g} be the lifting of R;. For any a € W
consider the following

al| al| X al|

9o — p W) —— .

We regard this diagram as the commutative diagram
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f
Ny — Ny

o
f
N —— N,
where N ~ g, = FF X A and Ny ~ gj.

Construct the covermg QX g F x A — F x A corresponding
to H x H”, where H and H" are the intersections of all index 2
subgroups of 7, (F) and 7y (A), respectively. Choose F' = F or A A
in case F or A is orientable. It is easy to check that H C H x H', for
HcC H x1and H C 1xH". Hence we have the following commutative
diagram

Ny .__f_._, Ny
q’l lq’
. f
F x A —_— ><

QIXQzl l q1Xgz
Fx A(= N) —— Fx A(= N),

where f is the lifting of fand ¢ : Ny — F x A is the covering
map. Since f has degree one, so does f. Then F,f, and f induce
mi—epimorphisms. From the fact that n(F x A) is bopfian, fy4 is a
71 —isomorphism,; and so f# is. Applying similarly to the argument of
the proof of Theorem 3.2, we see that f is a homotopy equivalence so
that f 1s. The claim follows from the complete movability condition
[3).

Now since the continuity set C(p*) of p* is dense, open in V, and
V\ C(p*) is locally finite, we can localize the situation so that V' is an
open disk containing by = p(gp} and p is an approximate fibration over
V' \ bp. Also we assume that R : p~}(V) — go is a strong deformation
retraction. From the fact that n{(N) is hyperhopfian, we have that
p:p }(V) — V is an approximate fibration.
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THEOREM 4.4. Let F be a closed n—manifold with x(F'} # 0 and let
A be a closed aspherical m—manifold with x(A) # 0. Then N = F'x A
is a codimension 2 fibrator if it satisfies one of the followings

1) m\(F) is finite and m (A) is hopfian;

2) m(F'} is nilpotent and m (A) is residually finite;

3) F is hopfian with residually finite solvable m1(F') and residually
finite m; (A).

Proof. First, note that m;(V) is hopfian, because any finitely pre-
sented group which has a finite index hopfian subgroup is hopfian {10]
for 1}, and every finitely generated nilpotent group is residually finite
for 2).

Case I. N is orientable.

All facts from section 3 gives us that F' x A is hopfian with hopfian
71{N) so that by Proposition 2.3 F' x A is a codumension-2 fibrator.
Case II: N is non-orientable.

Let a proper map p : M?t™+2 _, B? he N—-like. Applying to the
argument of the proof in Theorem 4.3, we see that p is an approximate
fibration over some dense open subset O of C' with locally finite C'\ O,
where C’ is the mod 2 continuity set of p. Using the fact x(N) =
x(F) x x(A) # 0 and the method of the proof in [14, Theorem 3.3}, we
see that O = C’. Moreover, the proof of intB = C’ and B = 0 is just
copy of the proofs in [14,Lemma 3.2 and Theorem 3.3].
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