THE RADIUS OF CONVEXITY FOR THE CLASS $K^{(2)}$

TAE YOUNG SEO AND JINSOOK KANG

1. Introduction

Let S denote the class of functions f of a complex variable z, analytic and univalent in the open unit disk $\Delta = \{z : |z| < 1\}$, and normalized by f(0) = f'(0) - 1 = 0 and hence with the Taylor expansion

$$f(z) = z + a_2 z^2 + \dots + a_n z^n + \dots, \quad z \in \Delta.$$

Let K denote the subclass of S consisting of functions f for which $f(\Delta)$ is a convex set. Furthermore, let $S^{(2)}$ denote the class of odd functions in S, i.e., the functions with the expansion

$$g(z) = z + c_3 z^3 + c_5 z^5 + \cdots + c_{2n+1} z^{2n+1} + \cdots, \quad z \in \Delta.$$

For each function $f \in S$, the square root transform

$$g(z) = \sqrt{f(z^2)} = z + c_3 z^3 + c_5 z^5 + \cdots$$

is an odd univalent function. Conversely, it is easy to see that every odd function $g \in S$ is the square-root transform of some $f \in S$. We define $K^{(2)}$ be the class of functions which are square-root transforms of functions in K.

The one of the geometric properties for the class S is that every f(z) in S is not convex. Near the origin each function $f \in S$ is close to the identity mapping. It is to be expected that f will map small circles $|z| = \rho$ onto curves which bound convex domains.

Received August 22, 1998 Revised January 20, 1999

¹⁹⁹¹ Mathematics Subject Classification: 30C45

Key words and phrases. Univalent function, radius of convexity, growth and distortion

THEOREM 1.1. [1] For every positive number $\rho \leq 2 - \sqrt{3}$, each function $f \in S$ maps the disc $|z| < \rho$ onto a convex domain. This is false for every $\rho > 2 - \sqrt{3}$.

This number $\rho = 2 - \sqrt{3} = 0.267...$ is called the radius of convexity for the class S. Let $h(z) = z(1-z)^{-1} \in K$. Then we have $\sqrt{h(z^2)} \notin K$, i.e., $K^{(2)}$ is not the subclass of K. Thus we would find the radius of convexity for the class $K^{(2)}$.

2. Preliminaries

THEOREM 2.1. ([1], Growth and Distortion theorem) If $f \in S$ and |z| = r < 1 then

$$\frac{r}{(1+r)^2} \leq |f(z)| \leq \frac{r}{(1-r)^2}$$

and

$$\frac{1-r}{(1+r)^3} \le |f'(z)| \le \frac{1+r}{(1-r)^3}.$$

For each $z \in \Delta$, $z \neq 0$, equality occurs if and only if f is a suitable rotation of the Koebe function.

THEOREM 2.2. [1] For each $f \in S$,

$$\left|\frac{1-r}{1+r} \le \left|\frac{zf'(z)}{f(z)}\right| \le \frac{1+r}{1-r}, \quad |z| = r < 1.$$

For each $z \in \Delta$, $z \neq 0$, equality occurs if and only if f is a suitable rotation of the Koebe function.

Theorem 2.3. For odd functions $h \in S^{(2)}$

$$\frac{r}{1+r^2} \le |h(z)| \le \frac{r}{1-r^2}$$

and

$$\frac{1-r^2}{(1+r^2)^2} \le |h'(z)| \le \frac{1+r^2}{(1-r^2)^2}, \quad |z| = r < 1.$$

Proof. Let $h(z) = \sqrt{f(z^2)}$ for some $f \in S$, then

$$\sqrt{\frac{r^2}{(1+r^2)^2}} \le |h(z)| \le \sqrt{\frac{r^2}{(1-r^2)^2}}.$$

Thus

$$\frac{r}{1+r^2} \le |h(z)| \le \frac{r}{1-r^2}, \quad |z| = r < 1.$$

Since

$$\left|\frac{1-r}{1+r} \le \left|\frac{zf'(z)}{f(z)}\right| \le \frac{1+r}{1-r}$$

and

$$\frac{zh'(z)}{h(z)} = \frac{z^2f'(z^2)}{f(z^2)} ,$$

$$\left| rac{1-r^2}{1+r^2} < \left| rac{zh'(z)}{h(z)}
ight| < rac{1+r^2}{1-r^2}$$

and

$$|h'(z)|=\left|rac{zf'(z^2)h(z)}{f(z^2)}
ight|,\quad |z|=r<1.$$

Thus
$$\frac{1-r^2}{(1+r^2)^2} \le |h'(z)| \le \frac{1+r^2}{(1-r^2)^2}, \quad |z| = r < 1.$$

3. Main Results

LEMMA 3.1. For each $f \in K$,

$$\frac{1}{(1+r)^2} \le |f'(z)| \le \frac{1}{(1-r)^2}, \quad |z| = r < 1.$$

For each $z \in \Delta$, $z \neq 0$, equality occurs if and only if f is a suitable rotation of the function $l(z) = z(1-z)^{-1}$.

Lemma 3.2. For convex function $f \in K$,

$$\frac{r}{1+r} \le |f(z)| \le \frac{r}{1-r}, \quad |z| = r < 1,$$

with equality occurring only for functions of the form

$$f(z) = \frac{z}{1 - e^{i\varphi_z}}, \quad 0 \le \varphi \le 2\pi.$$

The growth of $K^{(2)}$ would be obtained by the following theorem.

THEOREM 3.3. For $h \in K^{(2)}$,

$$\frac{r}{\sqrt{1+r^2}} \le |h(z)| \le \frac{r}{\sqrt{1-r^2}}, \quad |z| = r < 1.$$

Proof. Let $h(z) = \sqrt{f(z^2)}$ and $f \in K$. Then by Lemma 3.2,

$$|h(z)| = |\sqrt{f(z^2)}| \le \sqrt{\frac{r^2}{1 - r^2}} = \frac{r}{\sqrt{1 - r^2}}$$

and

$$\frac{r}{\sqrt{1+r^2}} \le |h(z)|, \quad |z| = r < 1.$$

If $h \in K^{(2)}$, then we have

$$rac{r}{1+r} \leq rac{r}{\sqrt{1+r^2}} \leq |h(z)| \leq rac{r}{\sqrt{1-r^2}} \leq rac{r}{1-r}, \quad |z| = r < 1$$

But $K^{(2)}$ is not the subclass of convex functions.

LEMMA 3.4. For each $f \in K$,

$$\frac{1}{1+r} \le \left| \frac{zf'(z)}{f(z)} \right| \le \frac{1}{1-r} , \quad |z| = r < 1.$$

For each $z \in \Delta$, $z \neq 0$, equality occurs if and only if f is a suitable rotation of the function l(z) = z/(1-z).

LEMMA 3.5. For each $f \in K$,

$$-\frac{2r}{1+r} \le Re\left\{\frac{zf''(z)}{f'(z)}\right\} \le \frac{2r}{1-r} \ , \quad |z|=r<1.$$

Theorem 3.6. For every positive number $\sigma \leq \sqrt{5-\sqrt{17}}/2$, each function $h \in K^{(2)}$ maps the disk $\Delta_{\sigma} = \{z : |z| < \sigma\}$ onto a convex domain and $\sqrt{5-\sqrt{17}}/2 > 2-\sqrt{3}$

Proof. For each $f \in K$ and $h = \sqrt{f(z^2)} \in K^{(2)}$,

$$Re\left\{1 + \frac{zh''(z)}{h'(z)}\right\} = Re\left\{2 + \frac{2z^2f''(z^2)}{f'(z^2)} - \frac{z^2f'(z^2)}{f(z^2)}\right\}$$

and

$$Re\left\{1+\frac{zh^{\prime\prime}(z)}{h^{\prime}(z)}\right\}>0,\quad |z|=r<\frac{\sqrt{5-\sqrt{17}}}{2}$$

by Lemma 3.4 and 3.5. Thus h maps such a disk $\{z:|z|<\sqrt{5-\sqrt{17}}/2\}$ onto a convex domain

Acknowledgements

The authors wish to acknowledge the financial support of the Korea Research Foundation made in the program year of 1998, Project No. 1998-015-D00022 and this work was supported by Pusan National University Research Grant, 1998.

References

- [1] P. L. Duren, Univalent Functions, Springer-Verlag, New York (1983).
- [2] A W. Goodman, Univalent Functions Vol. I, Mariner Publ., Tampa (1983)

Department of Mathematics Pusan National University

Pusan 609-735, Korea

E-mail: tyseo@hyowon.pusan.ac.kr