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THE RADIUS OF CONVEXITY FOR THE CLASS K

TAE YOUNG SEO AND JINSOOK KANG

1. Introduction

Let S denote the class of functions f of a complex variable z, analytic
and univalent in the open umt disk A = {z : |z{ < 1}, and normalized
by f(0) = f/(0) — 1 = 0 and hence with the Taylor expansion

fl2)=2z+a +-- a2+, z€A.

Let K denote the subclass of S consisting of functions f for which f(A)

is a convex set. Furthermore, let S(?) denote the class of odd functions
in S, ie., the functions with the expansion

g(2) = 2+ a2 + 52 + 12T+, zEA.

For each function f € S, the square root transform

9(3):Vf(z2]=z+(:323+csz5+~~

s an odd univalent function. Conversely, it is easy to see that every
odd function g € § is the square-root transform of some f € 5. We
define K(? be the class of functions which are square-root transforms
of functions in K.

The one of the geometric properties for the class § is that every f(2)
in § 15 not convex. Near the origin each function f € S is close to the
identity mapping. It is to be expected that f will map small circles
}z] = p onto curves which bound convex domains.
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THEOREM 1.1. [1] For every positive number p < 2 — /3 , each
function f € S maps the disc {2| < p onto a convex domain. This is
false for every p > 2 — /3.

This number p = 2—+/3 = 0.267.. .. is called the radius of convexity
for the class S. Let h(z) = z(1—2)~! € K. Then we have \/h(2?) ¢ K,
ie., K@ is not the subclass of K. Thus we would find the radius of
convexity for the class K{2).

2. Preliminaries

THEOREM 2.1. ([1], Growth and Distortion theorem) If f € S and
{2 =r < 1 then

T SHEIS 5

and ) .
-r 1+r
— < < ;
For each z € A, z # 0, equality occurs if and only if f is a suitable
rotation of the Koebe function.

THEOREM 2.2. [If For each f € S,
1-7 |zf(2)
<
1+ 7| f(2)
For each 2 € A,z # 0, equality occurs if and only if f is a suitable
rotation of the Koebe function.

THEOREM 2.3. For odd functions h € 52

r r

< |h{2)} <
7v 2 Shals 75

1
<itr
“1l-r

lz| =r < L

and
172 1+ 72

mgihf(z)‘g (—1_:2)—2, [zj=r < 1.

Proof. Let h(2) = 1/ f(2?) for some f € S, then

\/(1—4_;2—)2 < |z}l < \}(1—_72*)—2
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Thus r
I << 7 el=r <l
Since .
1—r < zf'(2) N 1+7
| f(2)
and
zh'(z) 22 f'(2%)
h(z) — f(z2)
1-72 |2h(2)|  1+7?
1+ 72 h(z) 1
e F()h(2)
, zf'(z*)h{z
iR {z)| = T | [z| =r < 1.
1—72 1
Thus (——2)—2 < ()| € = —= i +r? TR [z =7 < 1.

3. Main Results
LEMMA 3.1. Foreach f € K,

i 1
(1+7)? 1—r?

For each z € A ,z # 0, equality occurs if and only if f is a suitable
rotation of the function I(z) = 2(1 — z)~1.

<f'()l <

lz| =r < 1.

LEeMMA 3.2. For convex function f € K ,

T

<|f(R) £ +—, jz/=r<1
SI@I< , ld=r<1,
with equality occurring only for functions of the form

The growth of K(? would be obtained by the following theorem.
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THEOREM 3.3. For he K,

r

V1+72

Proof. Let h{z) = /f(2?) and f € K. Then by Lemma 3.2,

jM@PﬂJﬂﬂNS\hiif=¢£ﬁ3

|2 =7r<1.

< Jh(z)] <

T
V1 —r2’

and -
<|h(z}, |2|=r<1.
s <) 1
If he K®) then we have
< S = <, el =r <

/= ] 1 .
{ — T~ L !

4717 Yi+re

But K(? is not the subclass of convex functions.
LemMMA 3.4. For each f € K,

zf'(z)

f(z)

For each z € A,z # 0, equality occurs if and only if f is a suitable
rotation of the function l(z) = z/(1 — 2) .

LEMMA 3.5. For each f € K,

2r zf"(z} 2r .
_I+r§Re{ f(z) }Sl—r » lel=r <l

1
=715

1
<

= L.
1+r ™ Izl =7 <

THEOREM 3.6. For every positive number ¢ < /5 —+/17/2, each
function h € K® maps the disk A, = {z : |z| < o} onto a convex

domain and /5 — 17/2 > 2 - /3
Proof. For each f € K and h = \/f(2?) € K,

wef i e S -
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and
zh"(2) 5— V17
Refae OV g VST

by Lemma 3.4 and 3.5. Thus h maps such a disk {z : {z} < V/5 —/17/2}
onto a convex domain
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