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ON AN EVALUATION OF ;F(1/2)

JUNESANG CHOI AND ARJUN K. RATHIE

1. Introduction

The generalized hypergeometric function with p numerator and g
denominator parameters is defined by
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where (o}, denotes the Pochhammer symbol (or the shifted factorial,
since (1), = n!) defined by
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for any complex number «, I’ the well-known Gamma function, and N
the set of natural numbers.

The following interesting and well known definite integral has been
recorded in various literature (e.g, see [2, p. 99, Entry 15.94]):
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which can be easily evaluated by using Maclaurnin’s expansion of log{1—
z} and term-wise integration.
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The object of this note is to find the value of

by evaluating the integral
1/p _
(1.4) / log(1 x)dx
0 X

in two ways and then setting p = 2. As in 3 F1(1/2}, it has not yet been
found to evaluate 3F1(1/2) generally (see {1, pp. 45—107]). And so
the evaluation of its special cases is naturally considered. Indeed, the
summation formula to be proved is
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(1.5) 3k (1, 1,1;2,2; -21-) = % - (10g2)2.

2. Derivation of the Formula (1.5)

Using the Maclaurin’s series expansion of log(1 — z) and term-wise
integration, it is not difficult to see that, for p =2, 3, ...
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On the other hand we separate the integral {1.2) into two parts as in
the following way

1 —
(2.3) I 3=] 12gﬁ%mld:z: =11 + I,
0



On an evaluation of 3F2{1/2) 113

where Y
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Now, for Iy, performing integration by parts, we have after some sim-
plification
1 o
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Further for I3, let = 1 — £ and simplifying, we get
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Hence by (2.3), using (2.4) and (2.5), we have
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Now setting p = 2 in (2.2), and using (1.2), we get
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and setting p = 2 in (2.6} and using (1.2), we get
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Hence our desired result (1.5) follows from (2.7) and (2.8).
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