ON AN EVALUATION OF ${ }_{3} F_{2}(1 / 2)$

Junesang Choi and Arjun K. Rathie

1. Introduction

The generalized hypergeometric function with p numerator and q denominator parameters is defined by

$$
\begin{align*}
{ }_{p} F_{q}\left[\begin{array}{c}
\alpha_{1}, ., \alpha_{p} ; \\
\beta_{1}, \ldots, \beta_{q} ; z
\end{array}\right] & ={ }_{p} F_{q}\left[\alpha_{1}, ., \alpha_{p} ; \beta_{1}, \ldots, \beta_{q} ; z\right] \\
& =\sum_{n=0}^{\infty} \frac{\left(\alpha_{1}\right)_{n} \cdots\left(\alpha_{p}\right)_{n}}{\left(\beta_{1}\right)_{n} \cdots\left(\beta_{q}\right)_{n}} \frac{z^{n}}{n!} \tag{11}
\end{align*}
$$

where $(\alpha)_{n}$ denotes the Pochhammer symbol (or the shifted factorial, since (1$)_{n}=n!$) defined by

$$
(\alpha)_{n}:= \begin{cases}\alpha(\alpha+1) \ldots(\alpha+n-1)=\frac{\Gamma(\alpha+n)}{\Gamma(\alpha)} & (n \in \mathbf{N}) \\ 0 & (n=0),\end{cases}
$$

for any complex number α, Γ the well-known Gamma function, and \mathbf{N} the set of natural numbers.

The following interesting and well known definite integral has been recorded in various literature (e.g, see (2, p. 99, Entry 15.94]):

$$
\begin{equation*}
\int_{0}^{1} \frac{\log (1-x)}{x} d x=-\frac{\pi^{2}}{6} \tag{12}
\end{equation*}
$$

which can be easily evaluated by using Maclaurn's expansion of $\log (1-$ x) and term-wise integration.

[^0]The object of this note is to find the value of

$$
\begin{equation*}
{ }_{3} F_{2}(1,1,1 ; 2,2 ; 1 / 2) \tag{1.3}
\end{equation*}
$$

by evaluating the integral

$$
\begin{equation*}
\int_{0}^{1 / p} \frac{\log (1-x)}{x} d x \tag{1.4}
\end{equation*}
$$

in two ways and then setting $p=2$. As in ${ }_{2} F_{1}(1 / 2)$, it has not yet been found to evaluate ${ }_{3} F_{1}(1 / 2)$ generally (see [1, pp. 45-107]). And so the evaluation of its special cases is naturally considered. Indeed, the summation formula to be proved is

$$
\begin{equation*}
{ }_{3} F_{2}\left(1,1,1 ; 2,2 ; \frac{1}{2}\right)=\frac{\pi^{2}}{6}-(\log 2)^{2} . \tag{1.5}
\end{equation*}
$$

2. Derivation of the Formula (1.5)

Using the Maclaurin's series expansion of $\log (1-x)$ and term-wise integration, it is not difficult to see that, for $p=2,3, \ldots$

$$
\begin{align*}
\int_{0}^{1 / p} \frac{\log (1-x)}{x} d x & =-\sum_{n=1}^{\infty} \frac{1}{n^{2} p^{n}} \\
& =-\sum_{n=0}^{\infty} \frac{1}{(n+1)^{2} p^{n+1}} \tag{2.1}\\
& =-\frac{1}{p} \sum_{n=0}^{\infty} \frac{1}{(n+1)^{2} p^{n}} .
\end{align*}
$$

Hence

$$
\begin{equation*}
\int_{0}^{1 / p} \frac{\log (1-x)}{x} d x=-\frac{1}{p}{ }_{3} F_{2}\left(1,1,1 ; 2,2 ; \frac{1}{p}\right) \tag{2.2}
\end{equation*}
$$

On the other hand we separate the integral (1.2) into two parts as in the following way

$$
\begin{equation*}
I:=\int_{0}^{1} \frac{\log (1-x)}{x} d x=I_{1}+I_{2}, \tag{2.3}
\end{equation*}
$$

where

$$
\begin{aligned}
& I_{1}=\int_{0}^{1 / p} \frac{\log (1-x)}{x} d x \\
& I_{2}=\int_{1 / p}^{1} \frac{\log (1-x)}{x} d x
\end{aligned}
$$

Now, for I_{2}, performing integration by parts, we have after some simplification

$$
\begin{align*}
I_{2} & =\log p \log \left(1-\frac{1}{p}\right)+\int_{1 / p}^{1} \frac{\log x}{1-x} d x \tag{2.4}\\
& :=\log p \log \left(1-\frac{1}{p}\right)+I_{3}
\end{align*}
$$

Further for I_{3}, let $x=1-t$ and simplifying, we get

$$
\begin{equation*}
I_{3}=\int_{0}^{1-\frac{1}{p}} \frac{\log (1-x)}{x} d x \tag{2.5}
\end{equation*}
$$

Hence by (2.3), using (2.4) and (2.5), we have

$$
\begin{align*}
\int_{0}^{1} \frac{\log (1-x)}{x} d x & =\log p \log \left(1-\frac{1}{p}\right) \tag{2.6}\\
& +\int_{0}^{1 / p} \frac{\log (1-x)}{x} d x+\int_{0}^{1-\frac{1}{p}} \frac{\log (1-x)}{x} d x
\end{align*}
$$

Now setting $p=2$ in (2.2), and using (1.2), we get

$$
\begin{equation*}
-\frac{1}{2}{ }_{3} F_{2}\left(1,1,1 ; 2,2 ; \frac{1}{2}\right)=\int_{0}^{1 / 2} \frac{\log (1-x)}{x} d x \tag{2.7}
\end{equation*}
$$

and setting $p=2$ in (2.6) and using (1.2), we get

$$
\begin{equation*}
\frac{1}{2}\left(-\frac{\pi^{2}}{6}+(\log 2)^{2}\right)=\int_{0}^{1 / 2} \frac{\log (1-x)}{x} d x \tag{2.8}
\end{equation*}
$$

Hence our desired result (1.5) follows from (2.7) and (2.8).

References

[1] E. D. Rainville, Speczal Functzons, The Macmilhan Company, New York, 1960.
[2] M R. Spregel, Mathematical Handbook of Formulas and Tables, Schaum's Outline Series, McGraw-Hill Book Company, New York, 1968.

Junesang Choi
Department of Mathematics
College of Natural Sciences
Dongguk University
Kyongju 780-714, Korea
E-mall : junesang@mail.dongguk.ac.kr
Arjun K. Rathie
Department of Mathematics
Government Bungar College
M. D. S. University

Bikaner-334001
Rajasthan State, India

[^0]: Received November 22, 1998 Revised March 28, 1999
 1991 Mathematics Subject Classification 33C60, 33C05
 Key words and phrases. Generalized hypergeometric functions; Definte integrals

