SYMMETRIC BI-DERIVATIONS ON PRIME RINGS

Mehmet Sapanci, M. Ali Óztürk and Young Bae Jun

1. Introduction

In [6], J. Vukman has proved some results concerning symmetric bi-derivation on prime and semi-prime rings. In this short note, we obtain a few results on symmetric bi-derivations in prime rings.

2. Preliminaries

Throughout this paper all rings will be associative. Denote by R (resp., C and Z) an associative ring (resp, the extended centroid of R and the center of R). We shall write $[x, y]$ for $x y-y x$. A mapping $D(-,-): R \times R \rightarrow R$ is said to be symmetric if $D(x, y)=D(y, x)$ for all $x, y \in R$. In what follows, denote by $D(-,-)$ a symmetric mapping from $R \times R$ to R without otherwise specified A mapping $d \cdot R \rightarrow R$ is called the trace of $D(-,-)$ if $d(x)=D(x, x)$ for all $x \in R$ It is obvious that if $D(-,-)$ is b1-additive (i.e, additive in both arguments), then the trace d of $D(-,-)$ satisfies the identity $d(x+y)=d(x)+d(y)+2 D(x, y)$ for all $x, y \in R$ If $D(-,-)$ is biadditive and satisfies the identity $D(x y, z)=D(x, z) y+x D(y, z)$ for all $x, y, z \in R$, we say that $D(-,-)$ is a symmetric br-derivation

Lemma 2.1 [1, Lemma 3 1.1]). Let R be a prime ring with char R $\neq 2, D(-,-)$ a symmetric bi-derivation and d the trace of $D(-,-)$. If U is a non-zero ideal of R such that $\operatorname{ad}(U)=0$ (or, $d(U) a=0$), then $a=0$ or $d=0$.

[^0]Lemma 2.2 (1, Theorem 3.1.3]). Let R be a prime ring with char R $\neq 2, D(-,-)$ a symmetric bi-derivation and d the trace of $D(-,-)$. For a fixed element $a \in R$, we have
(i) if $[a, d(x)]=0$ for all $x \in R$, then $a \in Z$ or $d=0$.
(ii) if $[a, d(x)] \in Z$ for all $x \in R$ and for non-zero trace d with $d(a) \neq 0$, then $a \in Z$.

Lemma 2.3 [3, Lemma 2]). Let R be a prime ring and let $a, b, c \in R$. If $a x b=c x a$ for all $x \in R$, then $a=0$ or $b=c$.

3. Main results

We begin with the following lemma.
Lemma 3.1. Let R be a prime ring with char $R \neq 2$ and let d_{1} and d_{2} be traces of symmetric bi-derivations $D_{1}(-,-)$ and $D_{2}(-,-)$, respectively. If the identity

$$
\begin{equation*}
d_{1}(x) d_{2}(y)=d_{2}(x) d_{1}(y) \tag{1}
\end{equation*}
$$

holds and $d_{1} \neq 0$, then there exists $\lambda \in C$ such that $d_{2}(x)=\lambda d_{1}(x)$.
Proof. Let $x, y, z \in R$. Replacing y by $y+z$ in (1), we get

$$
\begin{equation*}
d_{1}(x) D_{2}(y, z)=d_{2}(x) D_{1}(y, z), \tag{2}
\end{equation*}
$$

and replacing z by $z y$ in (2) leads to the identity

$$
\begin{equation*}
d_{1}(x) z d_{2}(y)=d_{2}(x) z d_{1}(y) . \tag{3}
\end{equation*}
$$

It follows from replacing y by x in (3) that

$$
\begin{equation*}
d_{1}(x) z d_{2}(x)=d_{2}(x) z d_{1}(x) \tag{4}
\end{equation*}
$$

Thus if $d_{1}(x) \neq 0$, then by (4) and [4, Corollary to Lemma 1.3.2] we have $d_{2}(x)=\lambda(x) d_{1}(x)$ for some $\lambda(x) \in C$. Hence if $d_{1}(x) \neq 0$ and $d_{1}(y) \neq 0$, then $(\lambda(y)-\lambda(x)) d_{1}(x) z d_{1}(y)=0$ by (3). Since R is prime, it follows from Lemma 2.1 that $\lambda(x)=\lambda(y)$. This shows that there exists $\lambda \in C$ such that $d_{2}(x)=\lambda d_{1}(x)$ under the condition $d_{1}(x) \neq 0$. On the other hand, assume that $d_{1}(x)=0$. Since $d_{1} \neq 0$ and R is prime, it follows from (3) that $d_{2}(x)=0$ as well. Thus $d_{2}(x)=\lambda d_{1}(x)$. This completes the proof.

Theorem 3.2. Let R be a prime ring with char $R \neq 2$ and let $d_{1}(\neq$ $0), d_{2}, d_{3}$, and $d_{4}(\neq 0)$ be traces of symmetric bi-derivations $D_{1}(-,-)$, $D_{2}(-,-), D_{3}(-,-)$, and $D_{4}(-,-)$ respectively. If the identity

$$
\begin{equation*}
d_{1}(x) d_{2}(y)=d_{3}(x) d_{4}(y) \tag{5}
\end{equation*}
$$

holds for all $x, y \in R$, then there exists $\lambda \in C$ such that $d_{2}(x)=\lambda d_{4}(x)$ and $d_{3}(x)=\lambda d_{1}(x)$.

Proof. Let $x, y, z, w \in R$. Replacing y by $y+z$ in (5), we get

$$
\begin{equation*}
d_{1}(x) D_{2}(y, z)=d_{3}(x) D_{4}(y, z) \tag{6}
\end{equation*}
$$

and replacing z by $z y$ in (6) and using (6) leads to the identity

$$
\begin{equation*}
d_{1}(x) z d_{2}(y)=d_{3}(x) z d_{4}(y) \tag{7}
\end{equation*}
$$

It follows from replacing z by $z d_{4}(w)$ in (7) that

$$
d_{1}(x) z d_{4}(w) d_{2}(y)=d_{3}(x) z d_{4}(w) d_{4}(y)=d_{1}(x) z d_{2}(w) d_{4}(y)
$$

so that $d_{1}(x) z\left(d_{4}(w) d_{2}(y)-d_{2}(w) d_{4}(y)\right)=0$. Since $d_{1} \neq 0$ and R is prime, it follows that $d_{4}(w) d_{2}(y)=d_{2}(w) d_{4}(y)$. Applying Lemma 3.1, there exists $\lambda \in C$ such that $d_{2}(y)=\lambda d_{4}(y)$, which implies from (7) that $\left(\lambda d_{1}(x)-d_{3}(x)\right) z d_{4}(y)=0$ so that $d_{3}(x)=\lambda d_{1}(x)$. This completes the proof.

Theorem 3.3. Let R be a prime ring with char $R \neq 2,3$ and let d be the trace of a non-zero symmetric bi-derivation $D(-,-)$ For a fixed element a of R with $d(a) \neq 0$, if the identity

$$
\begin{equation*}
d(x) a d(x)=0 \tag{8}
\end{equation*}
$$

holds for all $x \in R$, then $a \in Z$.
Proof. By linearizing (8) and using (8), we get

$$
\begin{align*}
& d(x) a d(y)+2 d(x) a D(x, y)+d(y) a d(x)+2 d(y) a D(x, y) \\
& +2 D(x, y) a d(x)+2 D(x, y) a d(y)+4 D(x, y) a D(x, y)=0 \tag{9}
\end{align*}
$$

for all $x, y \in R$. Substituting $-x$ for x in (9), we have

$$
\begin{align*}
& d(x) a d(y)-2 d(x) a D(x, y)+d(y) a d(x) \\
& -2 d(y) a D(x, y)-2 D(x, y) a d(x)-2 D(x, y) a d(y) \\
& +4 D(x, y) a D(x, y)=0 . \tag{10}
\end{align*}
$$

By adding (9) and (10), and using the fact that char $R \neq 2$, we obtain

$$
\begin{equation*}
d(x) a d(y)+d(y) a d(x)+4 D(x, y) a D(x, y)=0 . \tag{11}
\end{equation*}
$$

Now we substitute $x+y$ for x in (11) and expand it, and then we use (8), (11) and the fact that char $R \neq 2$. Then we obtain
(12) $D(x, y) a d(y)+d(y) a D(x, y)+2 d(x) a D(x, y)+2 D(x, y) a d(x)=0$.

Replacing y by $x+y$ in (12) and then using (8), (11), (12) and the fact that char $R \neq 3$, we get

$$
\begin{equation*}
D(x, y) a d(x)+d(x) a D(x, y)=0 \tag{13}
\end{equation*}
$$

Substituting $y z$ for y in (13), and reminding that

$$
D(x, y) a d(y)=-d(y) a D(x, y) \text { and } D(z, y) a d(y)=-d(y) a D(z, y),
$$

we can write

$$
\begin{equation*}
D(x, y)[z, a d(y)]=[x, d(y) a] D(z, y) . \tag{14}
\end{equation*}
$$

Replacing x by $x w$ in (14) and using (14) again, we have

$$
\begin{equation*}
D(x, y) w[z, a d(y)]=[x, d(y) a] w D(z, y) \tag{15}
\end{equation*}
$$

Exchanging z for x in (15); then

$$
\begin{equation*}
D(x, y) w[x, a d(y)]=[x, d(y) a] w D(x, y) . \tag{16}
\end{equation*}
$$

It follows from Lemma 2.3 that $D(x, y)=0$ or $[x, a d(y)]=[x, d(y) a]$. In other words, R is the union of its subsets $A:=\{x \in R \mid D(x, y)=$ 0 for all $y \in R\}$ and $B:=\{x \in R \mid[x, a d(y)-d(y) a\}=0$ for all $y \in R\}$. Note that A and B are additive subgroups of R. Since R can't be written as the union of A and B, it follows that $A=R$ or $B=R$ so from the hypothess that $R=B$. This implies that $[a, d(y)] \in Z$ for all $y \in R$. By Lemma 2.2(ii), we know that $a \in Z$. This completes the proof.

References

[1] N Argaç, On prime rings with dervvation, Ph D. Thesss, Ege University, 1992.
[2] M. Bresar, Centralizing mappings and derivations in prime rings, J. Algebra 156 (1993), 385-394.
[3] M. Bresar, A note on dervations, Math J. Okayama Univ. 32 (1990), 83-88.
[4] I N Herstesn, Rings with involution, Univ of Chicago Press, Chicago, 1969.
[5] J. Mayne, Centralizing mappings of prime rings, Canadian Math Bull. 27(1) (1984), 122-126
[6] I Vukman, Symmetric bi-derivations on prime and semi-prime rings, Aequatrones Mathematicae 38 (1989), 245-254.
[7] M S. Yenıgul and N Argaç, Ideals and symmetric bi-dervvations of prume and semi-prime rings, Math. J. Okayama Univ 35 (1993), 189-192

M. Sapanci
Department of Mathematics
Faculty of Sciences, Ege University
35100-Bornova, Izmir, Turkey

M. A. Ozturk

Department of Mathematics
Faculty of Arts and Sciences
Cumhuriyet University
58140-Sivas, Turkey
E-mall: maozturk@bim.cumhuriyet.edu.tr
Y. B Jun

Department of Mathematics Education
Gyeongsang National University
Chinju 660-701, Korea
E-mail : ybjun@nongae gsnu.ac.kr

[^0]: Received January 21, 1999
 1991 Mathematics Subject Classification 16N60, 16W25.
 Key words and phrases Symmetric bi-derivation, trace
 This work was supported by the Basic Science Research Institute Program, Ministry of Education, 1996, Project No BSRI-96-1406

