CONTROL PROBLEMS OF INTEGRODIFFERENTIAL SYSTEMS IN BANACH SPACE

Gu Dae Lee

1. Introduction

Several authors have studied the problem of controllability of linear and nonlinear systems in Banach spaces[2] Lasiecka and Triggiani[5] have studied exact controllability of abstract semilinear equations. Quinn and Carmichael[7] have shown that the controllability problem in Banach spaces can be converted into one of fixed point problems for a single valued mapping. Kwin et al.[4] investigated the approximate controllability and controllability of delay Volterra systems by using a fixed point theorem. Recently, Balanchandran et al. [1] studied the controllability of nonlinear integrodifferential systems in Banach spaces. In this paper, we shall study the controllability of semilinear integrodifferential systems in a Banach space by using the Schauder fixed point theorem.

2. Preliminaries

We consider the semilinear integrodifferential system:

$$
\begin{align*}
x^{\prime}(t)= & A\left[x(t)+\int_{0}^{t} F(t-s) x(s) d s\right]+B u(t)+f(t, x(t)) \tag{1}\\
& +\int_{0}^{t}[a(t, s) g(s, x(s))+h(t, s, x(s))] d s, \quad t \in[0, T] \\
x(0)= & x_{0}
\end{align*}
$$

where the state $x(\cdot)$ takes values in the Banach space X and the control function $u(\cdot)$ is given in $L^{2}(J ; U)$, a Banach space of admissible control functions with U as a Banach space. Here, A is a generator of a strongly continuous semigroup and B is a bounded linear operator from U into X. The nonlinear functions $f: J \times X \rightarrow X, g: J \times X \rightarrow X$, $h: J \times J \times X \rightarrow X$ and the kernel $a: J \times J \rightarrow \mathbb{R}(\mathbb{R}$ denotes the set of real numbers) are continuous. Moreover, $F(t) \in B(X), t \in J, F(t)$: $Y \rightarrow Y$ and for a continuous $x(\cdot)$ in $Y, A F(\cdot) X(\cdot) \in L^{1}([0, T] ; X)$. For $x \in X, F^{\prime}(t) x$ is continuous in $t \in[0, T]$, where $B(X)$ is the space of all linear and bounded operators on X and Y is the Banach space formed from $D(A)$, the domain of A, endowed with the graph norm. Then for the system (1), there exists a mild solution of the following form :

$$
\begin{align*}
x(t)= & R(t) x_{0}+\int_{0}^{t} R(t-s)[B u(s)+f(s, x(s)) \\
& \left.+\int_{0}^{s}(\hat{a}(s, \tau) g(\tau, x(\tau))+h(s, \tau, x(\tau))) d \tau\right] d s, \quad t \in[0, T] \tag{2}\\
x(0)= & x_{0}
\end{align*}
$$

where the resolvent operator $R(t) \in B(X)$ for $t \in J$ satisfies the following conditions:
(a) $R(0)=I$ (the identity operator on X).
(b) for all $x \in X, R(t) x$ is continuous for $t \in J$.
(c) $R(t) \in B(Y), t \in J$. For $y \in Y, R(t) y \in C^{1}([0, T] ; X) \cap$ $C^{1}([0, T] ; Y)$ and

$$
\begin{aligned}
\frac{d}{d t} R(t) y & =A\left[R(t) y+\int_{0}^{t} F(t-s) R(s) y d s\right] \\
& \left.=R(t) A y+\int_{0}^{t} R(t-s) A F(s) y d s\right], \quad t \in J
\end{aligned}
$$

Definition. The system (1) is said to be controllable on the interval J if for every $x_{0}, x_{1} \in X$, there exists a control $u \in L^{2}(J ; U)$ such that the solution $x(\cdot)$ of (1) satisfies $x(T)=x_{1}$.

We assume the following hypotheses:
(i) the resolvent operator $R(t)$ is compact such that $\max _{t>0}\|R(t)\|$ $\leq M_{1}$.
(ii) the linear operator from U into X, defined by

$$
W u=\int_{0}^{T} R(t-s) B u(s) d s
$$

has an invertible operator W^{-1} defined on $L^{2}(J ; U) / k e r W$ and there exist positive constants M_{2}, M_{3} such that $\|B\| \leq M_{2}$ and $\left\|W^{-1}\right\| \leq M_{3}$.
(iii) the nonlinear operators $f(t, x(t)), g(t, x(t)), h(t, s, x(s))$ and the kernel $a(t, s)$ for $t, s \in J$ satisfy

$$
\begin{aligned}
& \| f\left(t, x(t) \| \leq M_{4}\right. \\
& \| g\left(t, x(t) \| \leq M_{6}\right. \\
& \| h\left(t, s, x(s) \| \leq M_{7}\right. \\
& \|a(t, s)\| \leq M_{5}, \quad \text { where } M_{\imath}>0, \quad \text { for } \imath=1,2, \cdots 7
\end{aligned}
$$

3. Main result

THEOREM 3.1. If the hypotheses (i) - (2ii) are satisfied, then the system (1) is controllable on J.

Proof. Using the hypothesis (ii), an arbitrary function $x(\cdot)$ defines the control

$$
\begin{aligned}
u(t)= & W^{-1}\left[x_{1}-R(T) x_{0}-\int_{0}^{T} R(t-s)\{f(s, x(s))\right. \\
& \left.\left.+\int_{0}^{s}(a(s, \tau) g(\tau, x(\tau))+h(s, \tau, x(\tau))) d \tau\right\} d s\right], \quad t \in[0, T]
\end{aligned}
$$

Now we shall show that when using this control, the operator defined by

$$
\begin{aligned}
(\Phi x)(t)= & R(t) x_{0}+\int_{0}^{t} R(t-s)[B u(s)+f(s, x(s)) \\
& \left.+\int_{0}^{s}\{a(s, \tau) g(\tau, x(\tau))+h(s, \tau, x(\tau))\} d \tau\right] d s
\end{aligned}
$$

has a fixed point. This fixed point is then a solution of equation (2). Clearly, $(\Phi x)(T)=x_{1}$, which means that the control u states the
semilinear integrodifferential system from the initial state x_{0} to x_{1} in time T, provided we can obtain a fixed point of the nonlinear operator Φ. Let $Z=C(J ; X)$ and

$$
Z_{0}=\left\{x \in Z: x(0)=x_{0},\|\dot{x}(t)\| \leq r \quad \text { for } t \in J\right\}
$$

where the positive constant r is given by

$$
\begin{aligned}
r= & M_{1}\left\|x_{0}\right\|+M_{1} M_{2} M_{3}\left[\left\|x_{1}\right\|+M_{1}\left\|x_{0}\right\|+M_{1}\left\{M_{4}\right.\right. \\
& \left.\left.+\left(M_{5} M_{6}+M_{7}\right) T\right\} T\right] T+M_{1}\left[M_{4}+\left(M_{5} M_{6}+M_{7}\right) T\right] T .
\end{aligned}
$$

Then Z_{0} is clearly a bounded, closed, convex subset of Z. Define a mapping $\Phi: Z \rightarrow Z_{0}$ by

$$
\begin{aligned}
& (\Phi x)(t)=R(t) x_{0}+\int_{0}^{t} R(t-\eta) B W^{-1}\left[x_{1}-R(T) x_{0}-\int_{0}^{T} R(t-s)\right. \\
& \left.\quad \times\left[f(s, x(s))+\int_{0}^{s}\{a(s, \tau) g(\tau, x(\tau))+h(s, \tau, x(\tau))\} d \tau\right] d s\right](\eta) d \eta \\
& \quad+\int_{0}^{t} R(t-s)\left[f(s, x(s))+\int_{0}^{s}\{a(s, \tau) g(\tau, x(\tau))+h(s, \tau, x(\tau))\} d \tau\right] d s
\end{aligned}
$$

We claim that $\Phi: Z_{0} \rightarrow Z_{0}$ is continuous. From the hypothesis (ini), we get

$$
\begin{aligned}
& \|(\Phi x)(t)\| \leq\left\|R(t) x_{0}\right\|+\int_{0}^{t} \| R(t-\eta) B W^{-1}\left[x_{1}-R(T) x_{0}-\int_{0}^{T} R(t-s)\right. \\
& \left.\quad \times\left[f(s, x(s))+\int_{0}^{s}\{a(s, \tau) g(\tau, x(\tau))+h(s, \tau, x(\tau))\} d \tau\right] d s\right](\eta) \| d \eta \\
& \quad+\int_{0}^{t} \| R(t-s)\left[f(s, x(s))+\int_{0}^{s}\{a(s, \tau) g(\tau, x(\tau))+h(s, \tau, x(\tau))\} d \tau \| d s\right. \\
& \leq M_{1}\left\|x_{0}\right\|+M_{1} M_{2} M_{3}\left[\left\|x_{1}\right\|+M_{1}\left\|x_{0}\right\|+M_{1}\left\{M_{4}\right.\right. \\
& \left.\left.\quad+\left(M_{5} M_{6}+M_{7}\right) T\right\} T\right] T+M_{1}\left[M_{4}+\left(M_{5} M_{6}+M_{7}\right) T\right] T \\
& =r .
\end{aligned}
$$

Since f, a, g and h are continuous and $\|(\Phi x)(t)\| \leq r$, it follows that Φ is continuous and maps Z_{0} into itself. Moreover, Φ maps Z_{0} into a
precompact subset of Z_{0}. To prove this, we first show that for every fixed $t \in J$, the set $Z_{0}(t)=\left\{(\Phi x)(t) ; x \in Z_{0}\right\}$ is precompact in X. This is clear for $t=0$, since $Z_{0}(0)=\left\{x_{0}\right\}$. Let $t>0$ be fixed and for $0<\epsilon<t$, define

$$
\begin{aligned}
& \left(\Phi_{\epsilon} x\right)(t)=R(t) x_{0}+\int_{0}^{t-\epsilon} R(t-\eta) B W^{-1}\left[x_{1}-R(T) x_{0}-\int_{0}^{T} R(t-s)\right. \\
& \left.\quad \times\left[f(s, x(s))+\int_{0}^{s}\{a(s, \tau) g(\tau, x(\tau))+h(s, \tau, x(\tau))\} d \tau\right] d s\right](\eta) d \eta \\
& \quad+\int_{0}^{t-\epsilon} R(t-s)\left[f(s, x(s))+\int_{0}^{s}\{a(s, \tau) g(\tau, x(\tau))+h(s, \tau, x(\tau))\} d \tau\right] d s
\end{aligned}
$$

Since $R(t)$ is compact for every $t>0$, the set $Z_{\epsilon}(t)=\left\{\left(\Phi_{\epsilon} x\right)(t): x \in\right.$ $\left.Z_{0}\right\}$ is precompact in X for every $\epsilon, 0<\epsilon<t$ Furthermore, for $x \in Z_{0}$, we have

$$
\begin{aligned}
& \left\|(\Phi x)(t)-\left(\Phi_{\epsilon} x\right)(t)\right\|=\| \int_{t-\epsilon}^{t} R(t-\eta) B W^{-1}\left[x_{1}-R(T) x_{0}-\int_{0}^{T} R(t-s)\right. \\
& \left.\times\left\{f(s, x(s))+\int_{0}^{s}(a(s, \tau) g(\tau, x(\tau))+h(s, \tau, x(\tau))) d \tau\right\} d s\right](\eta) d \eta \| \\
& +\left\|\int_{t-\epsilon}^{t} R(t-s)\left[f(s, x(s))+\int_{0}^{s}\{a(s, \tau) g(\tau, x(\tau))+h(s, \tau, x(\tau))\} d \tau\right] d s\right\| \\
& \leq \epsilon M_{1} M_{2} M_{3}\left[\left\|x_{1}\right\|+M_{1}\left\|x_{0}\right\|+M_{1}\left\{M_{4}+\left(M_{5} M_{6}+M_{7}\right) T\right\} T\right] T \\
& \quad+\epsilon M_{1}\left[M_{4}+\left(M_{5} M_{6}+M_{7}\right) T\right] T
\end{aligned}
$$

which implies that $Z_{0}(t)$ is totally bounded, that is, precompact in X. We want to show that $\Phi\left(Z_{0}\right)=\left\{\Phi x: x \in Z_{0}\right\}$ is an equicontinuous family of functions. For that, let $t_{2}>t_{1}>0$ Then we have

$$
\begin{aligned}
& \left\|(\Phi x)\left(t_{1}\right)-(\Phi x)\left(t_{2}\right)\right\| \leq\left\|R\left(t_{1}\right)-R\left(t_{2}\right)\right\|\left\|x_{0}\right\|+\| \int_{0}^{t_{1}}\left[R\left(t_{1}-\eta\right)\right. \\
& \left.-R\left(t_{2}-\eta\right)\right] B W^{-1}\left[x_{1}-R(T) x_{0}-\int_{0}^{T} R(t-s)\left\{f(s, x(s))+\int_{0}^{s}(a(s, \tau) g(\tau, x\right.\right. \\
& +h(s, \tau, x(\tau))) d \tau\} d s](\eta) d \eta\|-\| \int_{t_{1}}^{t_{2}} R\left(t_{2}-\eta\right) B W^{-1}\left[x_{1}-R(T) x_{0}\right.
\end{aligned}
$$

(3)

$$
\begin{aligned}
& -\int_{0}^{T} R(t-s)\left\{f(s, x(s))+\int_{0}^{s}(a(s, \tau) g(\tau, x(\tau))\right. \\
& +h(s, \tau, x(\tau))) d \tau\} d s](\eta) d \eta\|+\| \int_{0}^{t_{1}}\left[R\left(t_{1}-s\right)-R\left(t_{2}-s\right)\right]\{f(s, x(s)) \\
& \left.+\int_{0}^{s}(a(s, \tau) g(\tau, x(\tau))+h(s, \tau, x(\tau))) d \tau\right\} d s-\int_{t_{1}}^{t_{2}} R\left(t_{2}-s\right) \\
& \times\left[f(s, x(s))+\int_{0}^{s}\{a(s, \tau) g(\tau, x(\tau))+h(s, \tau, x(\tau))\} d \tau\right] d s \| \\
& \leq\left\|R\left(t_{1}\right)-R\left(t_{2}\right)\right\|\left\|x_{0}\right\|+\int_{0}^{t_{1}}\left\|R\left(t_{1}-s\right)-R\left(t_{2}-s\right)\right\| M_{2} M_{3}\left[\left\|x_{1}\right\|\right. \\
& \left.+M_{1}\left\|x_{0}\right\|+M_{1} M_{4}+\left(M_{5} M_{6}+M_{7}\right) T T\right] d s \\
& +\int_{t_{1}}^{t_{2}}\left\|R\left(t_{2}-s\right)\right\| M_{2} M_{3}\left[\left\|x_{1}\right\|+M_{1}\left\|x_{0}\right\|+M_{1}\left\{M_{4}+\left(M_{5} M_{6}\right.\right.\right. \\
& \left.\left.\left.+M_{7}\right) T\right\} T\right] d s+\int_{0}^{t_{1}}\left\|R\left(t_{1}-s\right)-R\left(t_{2}-s\right)\right\|\left[M_{4}+\left(M_{5} M_{6}\right.\right. \\
& \left.\left.+M_{7}\right) T\right] d s+\int_{t_{1}}^{t_{2}}\left\|R\left(t_{2}-s\right)\right\|\left[M_{4}+\left(M_{5} M_{6}+M_{7}\right) T\right\} d s
\end{aligned}
$$

The compactness of $R(t), t>0$ implies that $R(t)$ is continuous in the uniform operator topology for $t>0$. Thus the right hand side of (3) which is independent of $x \in Z_{0}$, tends to zero as $t_{1}-t_{2} \rightarrow 0$. So $\Phi\left(Z_{0}\right)$ is an equicontınuous family of functions. Also, $\Phi\left(Z_{0}\right)$ is bounded in Z and so by the Arzela-Ascoli theorem, $\Phi\left(Z_{0}\right)$ is precompact. Hence from the Schauder fixed point theorem, Φ has a fixed point in Z_{0}. Any fixed point of Φ is a mild solution of the system (1) on J satisfying $(\Phi x)(t)=x(t) \in X$. Thus the system (1) is controllable on J.

Example. We consider the following equations of the form:

$$
\begin{align*}
y_{t}(t, x)= & \frac{\partial^{2}}{\partial x^{2}}\left[y(t, x)+\int_{0}^{t} F(t-s) y(s, x) d s\right] \\
& +B u(t)+f\left(t, y_{x x}(t, x)\right) \tag{4}\\
& +\int_{0}^{t}\left[a(t, s) g\left(t, s, y_{x x}(s, x)\right)+h\left(t, s, y_{x x}(s, x)\right)\right] d s
\end{align*}
$$

and given initial and boundary conditions

$$
\begin{aligned}
& y(0, t)=y(1, t)=0, \quad x \in I=(0,1), \quad t \in J, \\
& y(x, 0)=y_{0}(x)
\end{aligned}
$$

where $F: J \rightarrow \mathbb{R}$ is continuous and bounded, $B: U \rightarrow X$ with $U \subset J$ and $X=L^{2}(I ; \mathbb{R})$ is linear operator such that there exists an invertible operator W^{-1} on $L^{2}(J ; U) / k e r W$, hence W is defined by

$$
W u=\int_{0}^{T} R(t-s) B u(s) d s
$$

$R(t)$ is compact and

$$
\begin{aligned}
& a ; J \times J \rightarrow \mathbb{R}, \\
& f ; J \times X \rightarrow X, \\
& g, J \times X \rightarrow X, \\
& h ; J \times J \times X \rightarrow X
\end{aligned}
$$

are all continuous and uniformly bounded. Let $X=L^{2}(I ; \mathbb{R}), A x=$ $w_{x x}, B: U \rightarrow X$ and $D(A)=\left\{w \in X: w_{x x} \in X, w(0)=w(1)=0\right\}$ be such that the condition in the hypothesss $(\imath v)$ is satisfied. Then the system (4) becomes an abstract formulation of (1). Also the conditions of Theorem 3.1 are satisfied. Hence the system (4) is controllable on J.

References

[1] K Balanchandran, J P Dauer and P Balasubramaniam, Controllability of nonlınear integrodifferentıal systems in Banach space, J Optım. Th Appl. 84 (1995), 83-91
[2] E N Chukwu and S M Lenhart, Controllabrlity questıons for nonlınear systems in abstract spaces, J Optım Th Appl. 68 (1991), 437-462
[3] M B. Dhakne and B G Pachpatte, On some abstract functional integrodifferentral equatzons, Indian J. Pure Appl Math 22(2) (1991), 109-134
[4] Y. C. Kwun, J Y Park and J W Ryu, Approximate controllability and controllabılıty for delay Volterra systems, Bull Kor. Math Soc. 28 (1991), 131-145.
[5] I Lasiecka and R Triggıanı, Exact controllabality of semilinear abstract systems with application to waves and plates boundary control problems, Nonlinear Analysis TMA, 23 (1991), 109-154
[6] A. Pazy, Semıgroups of Linear Operators and Applıcatzons to Partıal Differentzal Equations, Springer-Verlag, New York, (1983).
[7] M. D. Quinn and N. Carmichael, An approach to nonlınear control problems using fixed point methods, degree theory and pseudo-inverses, Numerical Functional Analysis and Optimization 7 (1984), 197-219.

Department of Mathematics
Dongeui University
Pusan 614-714, Korea

