CERTAIN CLASSES OF MEROMORPHIC FUNCTIONS WITH POSITTVE COEFFICIENTS

Sang Ho Lee, Nak Eun Cho and Oh Sang Kwon

1. Introduction

Let Σ_{p} denote the class of functions of the form

$$
\begin{equation*}
f(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} z^{n} \quad\left(a_{n} \geq 0\right) \tag{1.1}
\end{equation*}
$$

which are analytic in $\mathcal{D}=\mathcal{U}-\{0\}$, where $\mathcal{U}=\{z:|z|<1\}$. Let $\Sigma_{p}^{*}(\alpha)$ and $\Sigma_{k}(\alpha)(0 \leq \alpha<1)$ denote the subclasses of Σ_{p} that are meromorphically starlike of order α and meromorphically convex of order α, respectively. Analytically, a function f of the form (1.1) is in $\Sigma_{p}^{*}(\alpha)$ if and only if

$$
\begin{equation*}
-\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha(z \in U) \tag{1.2}
\end{equation*}
$$

Similarly, a function $f \in \Sigma_{k}(\alpha)$ if and only if f is of the form (1.1) and satisfies

$$
\begin{equation*}
-\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha(z \in U) \tag{1.3}
\end{equation*}
$$

The class $\Sigma_{p}^{*}(\alpha)$ and related other classes have been extensively studied by Clunie[1], Libera[2], Pommerenke[4] and others.

Assume that $\left\{c_{n}\right\}_{n=0}^{\infty}$ is a sequence of positive real numbers such that the series $\sum_{n=1}^{\infty} c_{n} a_{n} z^{n}$ is absolutely convergent for every $z \in \mathcal{U}$ Moreover, we suppose that $c_{0} \leq c_{n}(n \in \mathbb{N}=\{1,2, \cdots\})$.

Received January 31, 1999. Revised April 8, 1999.

Let $\Sigma_{p}^{\alpha}\left(\left\{c_{n}\right\}_{n=0}^{\infty}\right)$ be the class of functions that consists of all functions f belonging to Σ_{p} such that

$$
-\operatorname{Re}\left\{\frac{L(f(z))}{c_{0} f(z)}\right\}>\alpha(0 \leq \alpha<1, z \in \mathcal{U})
$$

where

$$
L(f(z))=-\frac{c_{0}}{z}+\Sigma_{n=1}^{\infty} c_{n} a_{n} z^{n}(z \in \mathcal{D}) .
$$

In particular, if $c_{0}=1$ and $c_{n}=n(n \in \mathbb{N})$, then the class $\left.\Sigma_{p}^{\alpha}\left(\left\{c_{n}\right)\right\}_{n=0}^{\infty}\right)$ reduces to the class $\Sigma_{p}^{*}(\alpha)$ studied by Mogra, Reddy and Juneja[3]. In the present paper, we prove coefficient estimates, distortion theorems, and convexity and starlikeness properties for the elements of $\Sigma_{p}^{\alpha}\left(\left\{c_{n}\right\}_{n=0}^{\infty}\right)$. Furthermore, modified Hadamard(or convolution) products in $\Sigma_{p}^{\alpha}\left(\left\{c_{n}\right\}_{n=0}^{\infty}\right)$ are investigated.

2. Coefficient Estimates

Theorem 2.1. Let f be in the class Σ_{p}. If f is given by (1.1), then $f \in \Sigma_{p}^{\alpha}\left(\left\{c_{n}\right\}_{n=0}^{\infty}\right)$ if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\alpha c_{0}+c_{n}\right) a_{n} \leq(1-\alpha) c_{0} \tag{2.1}
\end{equation*}
$$

Moreover, the result (2.1) is sharp, since the equality holds true for the function f given by

$$
\begin{equation*}
f(z)=\frac{1}{z}+\frac{(1-\alpha) c_{0}}{\alpha c_{0}+c_{m}} z^{m}(m \in \mathbb{N}, z \in \mathcal{D}) . \tag{2.2}
\end{equation*}
$$

Proof. Assume firstly that $f \in \Sigma_{p}^{\alpha}\left(\left\{c_{n}\right\}_{n=0}^{\infty}\right)$. Then

$$
\begin{align*}
-\operatorname{Re}\left\{\frac{L(f(z))}{c_{0} f(z)}\right\} & =-\operatorname{Re}\left\{\frac{-c_{0}+\sum_{n=1}^{\infty} c_{n} a_{n} z^{n+1}}{c_{0}\left(1+\sum_{n=1}^{\infty} a_{n} z^{n+1}\right)}\right\}>\alpha \tag{2.3}\\
& (0 \leq \alpha<1, z \in \mathcal{U})
\end{align*}
$$

Choose the values of z on the real axis so that $L(f(z)) / c_{0} f(z)$ is real. Upon clearing the denominator in (2.3) and letting $z \rightarrow 1^{-}$through real values, we get

$$
c_{0}-\sum_{n=1}^{\infty} c_{n} a_{n} \geq \alpha c_{0}\left(1+\sum_{n=1}^{\infty} a_{n}\right)
$$

or, equivalently,

$$
\sum_{n=1}^{\infty}\left(\alpha c_{0}+c_{n}\right) a_{n} \leq(1-\alpha) c_{0}
$$

We now prove that

$$
\begin{align*}
& \left|\frac{L(f(z))}{c_{0} f(z)}+1\right|<\left|\frac{L f(z))}{c_{0} f(z)}+2 \alpha-1\right| \tag{2.4}\\
& (0 \leq \alpha<1,0<\beta \leq 1, z \in \mathcal{U}),
\end{align*}
$$

provided that the condtion (2.1) is satisfied. Note that (2.1) and (2.4) imply that $f \neq 0$ in \mathcal{D} and $f \in \Sigma_{p}^{\alpha}\left(\left\{c_{n}\right\}_{n=0}^{\infty}\right)$, respectively Then we have

$$
\begin{aligned}
& |z|\left(\left|L(f(z))+c_{0} f(z)\right|-\left|L(f(z)\rangle+(2 \alpha-1) c_{0} f(z)\right|\right) \\
& =|z|\left(\left|\sum_{n=1}^{\infty}\left(c_{0}+c_{n}\right) a_{n} z^{n}\right|-\left|2(\alpha-1) c_{0} \frac{1}{z}+\sum_{n=1}^{\infty}\left[(2 \alpha-1) c_{0}+c_{n}\right] a_{n} z^{n}\right|\right) \\
& \leq \sum_{n=1}^{\infty}\left(c_{0}+c_{n}\right) a_{n}|z|^{n+1}-2(1-\alpha) c_{0}+\sum_{n=1}^{\infty}\left[(2 \alpha-1) c_{0}+c_{n}\right] a_{n}|z|^{n+1} \\
& =\sum_{n=1}^{\infty}\left(2 \alpha c_{0}+2 c_{n}\right) a_{n}|z|^{n+1}-2(1-\alpha) c_{0} .
\end{aligned}
$$

By letting $|z| \rightarrow 1^{-}$, we get

$$
\sum_{n=1}^{\infty}\left(\alpha c_{0}+c_{n}\right) a_{n}-(1-\alpha) c_{0} \leq 0
$$

by (2.1). Therefore we conclude that f belongs to the class $\Sigma_{p}^{\alpha}\left(\left\{c_{n}\right\}_{n=0}^{\infty}\right)$. It is ciear that the equality (2.1) holds true for the function given by (2.2), which evidently completes the proof of Theorem 2.1 .

From Theorem 2.1, we have the following results immediately.

Corollary 2.1. If a function f of the form (1.1) belongs to the class $\Sigma_{p}^{\alpha}\left(\left\{c_{n}\right\}_{n=0}^{\infty}\right)$, then

$$
a_{n} \leq \frac{(1-\alpha) c_{0}}{\alpha c_{0}+c_{n}}(n \in \mathbb{N})
$$

Corollary 2.2. The class $\Sigma_{p}^{\alpha}\left(\left\{c_{n}\right\}_{n=0}^{\infty}\right)$ is a convex subset of Σ_{p}.

3. Distortion Theorems

Before proving some distortion properties for functions belonging to the class $\Sigma_{p}^{\alpha}\left(\left\{c_{n}\right\}_{n=0}^{\infty}\right)$, we need to establish the following result.

Lemma 3.1. A function f is in $\Sigma_{p}^{\alpha}\left(\left\{c_{n}\right\}_{n=0}^{\infty}\right)$ if and only if there exist $d_{n} \geq 0\left(n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}\right)$ such that $\sum_{n=0}^{\infty} d_{n}=1$ and $f(z)=$ $\sum_{n=0}^{\infty} d_{n} f_{n}(z)(z \in \mathbb{D})$, where

$$
\begin{equation*}
f_{0}(z)=\frac{1}{z} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{n}(z)=\frac{1}{z}+\frac{(1-\alpha) c_{0}}{\alpha c_{0}+c_{n}} z^{n} \quad(n \in \mathbb{N}) \tag{3.2}
\end{equation*}
$$

Proof. Let $f \in \Sigma_{p}^{\alpha}\left(\left\{c_{n}\right\}_{n=0}^{\infty}\right)$ be given by (1.1). Define

$$
d_{n}=\frac{\alpha c_{0}+c_{n}}{(1-\alpha) c_{0}} a_{n}(n \in \mathbb{N})
$$

$\sum_{\infty}^{\text {and }} d_{0}=1-\sum_{n=1}^{\infty} d_{n}$. It is obvious that $d_{n} \geq 0\left(n \in \mathbb{N}_{0}\right)$ and $\sum_{n=0}^{\infty} d_{n}=1$. Moreover, we have

$$
\begin{aligned}
f(z) & =\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} z^{n} \\
& =\frac{1}{z}+\sum_{n=1}^{\infty} d_{n} \frac{(1-\alpha) c_{0}}{\alpha c_{0}+c_{n}} z^{n} \\
& =d_{0} \frac{1}{z}+\sum_{n=1}^{\infty} d_{n}\left(\frac{1}{z}+\frac{(1-\alpha) c_{0}}{\alpha c_{0}+c_{n}} z^{n}\right) \quad(z \in \mathcal{D}) .
\end{aligned}
$$

Conversely, if $f(z)=\sum_{n=0}^{\infty} d_{n} f_{n}(z)(z \in \mathcal{D})$, where $d_{n} \geq 0\left(n \in \mathbb{N}_{0}\right)$ and $\sum_{n=0}^{\infty} d_{n}=1$, then

$$
f(z)=\frac{1}{z}+\sum_{n=1}^{\infty} d_{n} \frac{(1-\alpha) c_{0}}{\alpha c_{0}+c_{n}} z^{n} \quad(z \in \mathcal{D})
$$

where

$$
d_{n} \frac{(1-\alpha) c_{0}}{\alpha c_{0}+c_{n}} \geq 0 \quad(n \in \mathbb{N})
$$

Also, we have

$$
\sum_{n=1}^{\infty} \frac{\alpha c_{0}+c_{n}}{1-\alpha) c_{0}} \frac{(1-\alpha) c_{0}}{\alpha c_{0}+c_{n}} d_{n}=\sum_{n=1}^{\infty} d_{n}=1-d_{0} \leq 1 .
$$

Hence, by virtue of Theorem 2.1, we conclude that $f \in \Sigma_{p}^{\alpha}\left(\left\{c_{n}\right\}_{n=0}^{\infty}\right)$.
We now obtain distortion results for functions belonging to $\Sigma_{p}^{\alpha}\left(\left\{c_{n}\right\}_{n=0}^{\infty}\right)$.
Theorem 3.1. Let f be in the class $\sum_{p}^{\alpha}\left(\left\{c_{n}\right\}_{n=0}^{\infty}\right)$. (a) If $c_{n} \geq$ $c_{1}(n \in \mathbb{N})$, then

$$
\begin{equation*}
\frac{1}{|z|}-\frac{(1-\alpha) c_{0}}{\alpha c_{0}+c_{1}}|z| \leq|f(z)| \leq \frac{1}{|z|}+\frac{(1-\alpha) c_{0}}{\alpha c_{0}+c_{1}}|z| \quad(z \in \mathcal{D}) . \tag{3.3}
\end{equation*}
$$

(b) If $\left\{n /\left(\alpha c_{0}+c_{n}\right)\right\}_{n=1}^{\infty}$ is a decreasing sequence, then

$$
\begin{equation*}
\frac{1}{|z|^{2}}-\frac{(1-\alpha) c_{0}}{\alpha c_{0}+c_{1}} \leq\left|f^{\prime}(z)\right| \leq \frac{1}{|z|^{2}}+\frac{(1-\alpha) c_{0}}{\alpha c_{0}+c_{1}} \quad(z \in \mathcal{D}) \tag{3.4}
\end{equation*}
$$

Equalities holds true in (3.3) and (3.4) for the function

$$
\begin{equation*}
f(z)=\frac{1}{z}+\frac{(1-\alpha) c_{0}}{\alpha c_{0}+c_{1}} z(0 \leq \alpha<1, z \in \mathcal{D} \cap(0, \infty)) \tag{3.5}
\end{equation*}
$$

Proof. Let $f \in \Sigma_{p}^{\alpha}\left(\left\{c_{n}\right\}_{n=0}^{\infty}\right)$. According to Lemma 3.1, we can write

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} d_{n} f_{n}(z)(z \in \mathcal{D}) \tag{3.6}
\end{equation*}
$$

where $d_{n} \geq 0\left(n \in \mathbb{N}_{0}\right)$ with $\sum_{n=0}^{\infty} d_{n}=1$, and $f_{n}\left(n \in \mathbb{N}_{0}\right)$ are given by (3.1) and (3.2). For every $n \in \mathbb{N}$, we obtain

$$
\left|f_{n}(z)\right| \leq \frac{1}{|z|}+\frac{(1-\alpha) c_{0}}{\alpha c_{0}+c_{n}}|z|^{n} \leq \frac{1}{|z|}+\frac{(1-\alpha) c_{0}}{\alpha c_{0}+c_{1}}|z|=f_{1}(|z|) \quad(z \in \mathcal{D})
$$

because $c_{n} \geq c_{1}(n \in \mathbb{N})$. Also, it is clear that $\left|f_{0}(z)\right| \leq f_{1}(|z|)(z \in \mathcal{D})$. Hence we have

$$
|f(z)| \leq \sum_{n=0}^{\infty} d_{n}\left|f_{n}(z)\right| \leq f_{1}(|z|)=\frac{1}{|z|}+\frac{(1-\alpha) c_{0}}{\alpha c_{0}+c_{1}}|z| \quad(z \in \mathcal{D}) .
$$

Moreover, since $c_{n} \geq c_{1}(n \in \mathbb{N})$, (3.6) and some well-known inequalities lead to

$$
\begin{aligned}
|f(z)| & \geq \frac{1}{|z|}-\left|\sum_{n=1}^{\infty} d_{n} \frac{(1-\alpha) c_{0}}{\alpha c_{0}+c_{n}} z^{n}\right| \\
& \geq \frac{1}{|z|}-\sum_{n=1}^{\infty} d_{n} \frac{(1-\alpha) c_{0}}{\alpha c_{0}+c_{n}}|z|^{n} \\
& =\sum_{n=0}^{\infty} d_{n} \frac{1}{|z|}-\sum_{n=1}^{\infty} d_{n} \frac{(1-\alpha) c_{0}}{\alpha c_{0}+c_{n}}|z|^{n} \\
& =\sum_{n=1}^{\infty} d_{n}\left(\frac{1}{|z|}-\frac{(1-\alpha) c_{0}}{\alpha c_{0}+c_{n}}|z|^{n}\right)+d_{0} \frac{1}{|z|} \\
& \geq \frac{1}{|z|}-\frac{(1-\alpha) c_{0}}{\alpha c_{0}+c_{1}}|z| \quad(z \in \mathcal{D}),
\end{aligned}
$$

which establishes the second part of (3.3).
We now investigate the derivative $f^{\prime}(z)(z \in \mathcal{D})$ of f. By differentiating term by term in (3.6), we get

$$
f^{\prime}(z)=\sum_{n=0}^{\infty} d_{n} f_{n}^{\prime}(z)=-\frac{1}{z^{2}}+\sum_{n=1}^{\infty} d_{n} \frac{(1-\alpha) c_{0}}{\alpha c_{0}+c_{n}} n z^{n-1}(z \in \mathcal{D}) .
$$

Therefore we obtain

$$
\frac{1}{|z|^{2}}-\max _{n \in \mathbb{N}}\left\{\frac{(1-\alpha) c_{0} n}{\alpha c_{0}+c_{n}}\right\} \leq\left|f^{\prime}(z)\right| \leq \frac{1}{|z|^{2}}+\max _{n \in \mathbb{N}}\left\{\frac{(1-\alpha) c_{0} n}{\alpha c_{0}+c_{n}}\right\} \quad(z \in \mathcal{D})
$$

The desired result (3.4) follows by taking into account the hypothesis that the sequence $\left\{n /\left(\alpha c_{0}+c_{n}\right)\right\}_{n=1}^{\infty}$ is decreasing. Finally, it is not hard to see that the inequalities (3.3) and (3.4) are sharp.

4. Convexity and Starlikeness

We will investigate the radii of convexity and starlikeness of functions in $\Sigma_{p}^{\alpha}\left(\left\{c_{n}\right\}_{n=0}^{\infty}\right)$ in theorems below.

Theorem 4.1 Let $f \in \Sigma_{p}^{\alpha}\left(\left\{c_{n}\right\}_{n=0}^{\infty}\right)$ be given by (1.1). Then f is meromorphically convex of order δ in the disk $\{z \in \mathcal{U}:|z|<r\}$, where

$$
r=\inf _{n \in \mathbb{N}}\left\{\frac{(1-\delta)\left(\alpha c_{0}+c_{n}\right]}{(1-\alpha) c_{0} n(n+2-\alpha)}\right\}^{\frac{1}{n+1}} \quad(0 \leq \delta<1)
$$

provided that $r>0$.
Proof. Let f be in $\Sigma_{p}^{\alpha}\left(\left\{c_{n}\right\}_{n=0}^{\infty}\right)$. To see that f is meromorphically convex of order δ in the disk $\{z \in \mathcal{U}:|z|<r\}$, it is sufficient to prove that

$$
\begin{equation*}
\left|2+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq 1-\delta \tag{4.1}
\end{equation*}
$$

provided that $|z|<r$. If f is given by (1.1), then

$$
\begin{aligned}
\left|2+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| & =\left|\frac{f^{\prime}(z)+\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}\right| \\
& =\left|\frac{\sum_{n=1}^{\infty} n(n+1) a_{n} z^{n-1}}{-\frac{1}{z^{2}}+\sum_{n=1}^{\infty} n a_{n} z^{n-1}}\right| \\
& \leq \frac{\sum_{n=1}^{\infty} n(n+1) a_{n}|z|^{n+1}}{1-\sum_{n=1}^{\infty} n a_{n}|z|^{n+1}}
\end{aligned}
$$

Hence (4.1) is satisfied for $|z|<r$, provided that

$$
\sum_{n=1}^{\infty} n(n+1) a_{n}|z|^{n+1} \leq\left(1-\sum_{n=1}^{\infty} n a_{n}|z|^{n+1}\right)(1-\delta) \quad(|z|<r, z \in \mathcal{U})
$$

or, equivalently,
(4.2) $\quad \sum_{n=1}^{\infty} n(n+2-\delta) a_{n}|z|^{n+1} \leq 1-\delta \quad(0 \leq \delta<1,|z|<r, z \in \mathcal{U})$.

Finally, by virtue of Theorem 2.1, (4.2) holds true.

Theorem 4.2. Let $f \in \Sigma_{p}^{\alpha}\left(\left\{c_{n}\right\}_{n=0}^{\infty}\right)$. Then f is meromorphically starlike of order δ in the disk $\{z \in \mathcal{U}:|z|<r\}$, where

$$
r=\inf _{n \in \mathbb{N}}\left\{\frac{(1-\delta)\left(\alpha c_{0}+c_{n}\right]}{(1-\alpha) c_{0}(n+2-\delta)}\right\}^{\frac{1}{n+1}} \quad(0 \leq \delta<1)
$$

provided that $r>0$.
Proof. Let f be in $\Sigma_{p}^{\alpha}\left(\left\{c_{n}\right\}_{n=0}^{\infty}\right)$. It is sufficient to show that

$$
\begin{equation*}
\left|1+\frac{z f^{\prime}(z)}{f(z)}\right| \leq 1-\delta \tag{4.3}
\end{equation*}
$$

provided that $|z|<r$. If f is given by (1.1), then we note that

$$
\begin{aligned}
\left|1+\frac{z f^{\prime}(z)}{f(z)}\right| & =\left|\frac{\sum_{n=1}^{\infty}(n+1) a_{n} z^{n}}{\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} z^{n}}\right| \\
& \leq \frac{\sum_{n=1}^{\infty}(n+1) a_{n}|z|^{n+1}}{1-\sum_{n=1}^{\infty} a_{n}|z|^{n+1}} \\
& \leq 1-\delta,
\end{aligned}
$$

and so

$$
\begin{equation*}
\sum_{n=1}^{\infty}(n+2-\delta) a_{n}|z|^{n+1} \leq 1-\delta \tag{4.4}
\end{equation*}
$$

Therefore, from Theorem 2.1, (4.3) holds true.

5. Hadamard (or Convolution) Products

Let $f_{2} \in \sum_{p}^{\alpha}\left(\left\{c_{n}\right\}_{n=0}^{\infty}\right)(i=1,2)$. If

$$
\begin{equation*}
f_{2}(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n, 2} z^{n} \quad\left(a_{n, 2} \leq 0(i=1,2), z \in \mathcal{D}\right) \tag{5.1}
\end{equation*}
$$

we define the modified Hadamard(or convolution) product $f_{1} * f_{2}$ of f_{1} and f_{2} by

$$
\left(f_{1} * f_{2}\right)(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n, 1} a_{n, 2} z^{n} \quad(z \in \mathcal{D})
$$

We now prove

Theorem 5.1. Let $f_{2} \in \Sigma_{p}^{\alpha}\left(\left\{c_{n}\right\}_{n=0}^{\infty}\right)(i=1,2)$. If $\left\{c_{n}\right\}_{n=0}^{\infty}$ is an increasing sequence, then $f_{1} * f_{2} \in \Sigma_{p}^{\gamma}\left(\left\{c_{n}\right\}_{n=0}^{\infty}\right)$, where

$$
\gamma=\frac{\left(\alpha c_{0}+c_{1}\right)^{2}-(1-\alpha)^{2} c_{0} c_{1}}{(1-\alpha)^{2} c_{0}^{2}+\left(\alpha c_{0}+c_{1}\right)^{2}}
$$

Proof. According to Theorem 2.1, if $f_{2}(\imath=1,2)$ is defined by (5.1), then

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\alpha c_{0}+c_{n}}{(1-\alpha) c_{0}} a_{n, 2} \leq 1 \quad(i=1,2) . \tag{5.2}
\end{equation*}
$$

We must show that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\gamma c_{0}+c_{n}}{(1-\gamma) c_{0}} a_{n, 1} a_{n, 2} \leq 1 \tag{5.3}
\end{equation*}
$$

By virtue of the Cauchy-Schwarz inequality, (5.2) leads to

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\left(\alpha c_{0}+c_{n}\right)}{(1-\alpha) c_{0}} \sqrt{a_{n, 1} a_{n, 2}} \leq 1 . \tag{5.4}
\end{equation*}
$$

Hence, in order to prove (5.3), it is sufficient to establish that

$$
\begin{equation*}
\frac{\gamma c_{0}+c_{n}}{\left.(1-\gamma) c_{0}\right)} a_{n, 1} a_{n, 2} \leq \frac{\alpha c_{0}+c_{n}}{(1-\alpha) c_{0}} \sqrt{a_{n, 1} a_{n, 2}} \quad(n \in \mathbb{N}) . \tag{5.5}
\end{equation*}
$$

Moreover, from (5.4), we deduce that

$$
\begin{equation*}
\sqrt{a_{n, 1} a_{n, 2}} \leq \frac{(1-\alpha) c_{0}}{\alpha c_{0}+c_{n}} \quad(n \in \mathbb{N}) \tag{5.6}
\end{equation*}
$$

Therefore, by combining (5.4) and (5.6), we will obtain (5.5) when we have proved that

$$
\frac{(1-\alpha) c_{0}}{\alpha c_{0}+c_{n}} \leq \frac{1-\gamma}{1-\alpha} \frac{\alpha c_{0}+c_{n}}{\gamma c_{0}+c_{n}}
$$

or, equivalently, that

$$
\begin{equation*}
\gamma \leq \frac{\left(\alpha c_{0}+c_{n}\right)^{2}-(1-\alpha)^{2} c_{0} c_{n}}{(1-\alpha)^{2} c_{0}^{2}+\left(\alpha c_{0}+c_{n}\right)^{2}} \quad(n \in \mathbb{N}) \tag{5.7}
\end{equation*}
$$

Inequality (5.7) is true because $\left\{c_{n}\right\}_{n=0}^{\infty}$ is an increasing sequence and the function

$$
\zeta(x)=\frac{\left(\alpha c_{0}+x\right)^{2}-(1-\alpha)^{2} c_{0} x}{(1-\alpha)^{2} c_{0}^{2}+\left(\alpha c_{0}+x\right)^{2}}
$$

is increasing for positive real numbers x. This completes the proof of Theorem 5.1.

Remark. Taking $c_{n}=n\left(n \in \mathbb{N}_{0}\right)$ in Theorem 5.1, we have the result of Mogra, Reddy and Juneja[3].

Acknowiedgement. This work was partially supporbed by the Korea Research Foundation(Project No.: 1998-015-D00039).

References

[1] J Clunie, On meromorphic schlucht functions, J. London Math. Soc. 34 (1959), 215-216
[2] R. J. Libera, Meromorphzc close-to-convex functions, Duke Math J. 32 (1965), 121-128.
[3] M L. Mogra, T. R Reddy and O P. Juneja, Meromorphic unvvalent functions with positive coefficzents, Bull. Austral Math Soc. 32 (1985), 161-176.
[4] Ch. Pommerenke, On meromorphic starlzke functzons, Pacific J Math 13 (1963), 221-235.

Sang Ho Lee and Nak Eun Cho
Department of Applied Mathematics
Pukyong National University
Pusan 608-737, Korea
Oh Sang Kwon
Department of Mathematics
Kyungsung University
Pusan 608-736, Korea

