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CERTAIN CLASSES OF MEROMORPHIC 
FUNCTIONS WITH POSITIVE COEFFICIENTS

Sang Ho Lee, Nak Eun Cho and Oh Sang Kwon

1. Introduction

Let denote the class of functions of the form

1 oo

(LI) f(z) = - + £ "严(如 > 0)
Z n~1

which are analytic in D — — {0}, vdxere 〃 = {z : \z\ < 1}. Let
S*(ct) and 玖(a)(0 < a < 1) denote the subclasses of that are 
meromorphically star like of order a and meromorphically convex of 
order a, respectively. Analytically, a function/ of the form (1.1) is in 
S*(a) if and only if

(1.2) > Q(Z e UY
I f(z) J

Similarly, a function f € if and only if f is of the form (1.1) and 
satisfies

(1.3) —Re (1 + 纟/치)〉a (z G U}.

I /⑵J
The class £*(a) and related other classes have been extensively studied 
by Cluniefl], Libera[2], Pommerenke[4] and others.

Assume that 化曷芝。is a sequence of positive real numbers such 
that the series 2器％]&。饥2产 is absolutely convergent for every z E U 
Moreover, we suppose that cq < cn(n e N — (1,2, ••-)).
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Let Xp({cn}^o) be the class of functions that consists of all func
tions f belonging to such that

-Re f 으鸟츼) > a (0 < a < 1, 2 e W),
I cof(z) J —

where
£(/(z)) = -쩌 + 2仁二1以如2严 (z E 7)).

z
In particular, if co — 1 and Cn = n(n € N), then the class
reduces to the class S*(a) studied by Mogra, Reddy and Juneja[3]. 
In the present paper, we prove coefficient estimates, distortion the
orems, and convexity and staxlikeness properties for the elements of

Furthermore, modified Hadamard(or convolution) prod
ucts in Sp((cn}^o) 히@ investigated.

2. Coefficient Estimates

Theorem 2.1. Let f be in the class Sp. If f is given by (1.1), then 
f € 弔({c사酒)) if and only if

oo
(2.1) £(<心 + 以)如 V (1 ~

n=l

Moreover, the result (2.1) is sharp, since the equality holds true for the 
function f given by

(2.2) f(z) = - +。二잇에严 (m € N, z G P).
Z aCQ + Cm

Proof. Assume firstly that f e »器(仏사*%())• Then

(2-3)
_Re 挡四功 - 으!②豈즈으MJ

I 知伺 J lco(l + 如/+1) J
(0 < a < 1, z G 〃).

> a
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Choose the values of z on the real axis so that L(f(z))/cof(z) is real. 
Upon clearing the denominator in (2.3) and letting z 1一 through 
real values, we get

F A之 ac° [ 1 +〉丿 ci-fi I
n—1 \ n=l /

or, equivalently,
oo
E(aco + Cn)a，n < (1 - a)co.
n=l

We now prove that

(2.4)
|&而广」< 匕而+ 2。-1

(0 < a < 1, 0 < < 1, zeU\

provided that the condition (2.1) is satisfied. Note that (2.1) and (2.4) 
imply that f 尹 0 in Z)and f G ((cn}^_0), respectively Then we 
have 

= 1이 CO +（虹）（1，註2；

1끼(|乙(T(z)) + Co/(z)| - |L(/(z)) + (2a — 1)%)了(2시)
] 8 、

2(a — l)co—F，[[(2a — l)o)+ Cn]anzn
n~l /

OO 8
M，[(q)+ cn)an|z|n-t~1 — 2(1 — a)q)+一 1)cq + 弓小니히저" 

n—1 n—1
oo

=〉「：(2ac()+ 2cn)an|z|n+1 — 2(1 — Q)q). 
n—1

By letting |히 —> 1~, we get
8
〉：(사勺 + cn)an — (1 — a)co < 0, 
n=l

by (2.1). Therefore we conclude that f belongs to the class £敏({&}点o)・
It is clear that the equality (2.1) holds true for the function given by
(2.2),  which evidently completes the proof of Theorem 2.1.

From Theorem 2.1, we have the following results immediately.
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Corollary 2.1. If a function f of the form (1.1) belongs to the 
class £貲({闩}住o)，then

< (1 — a)co
—g 4- Cn

(n e N).

Corollary 2.2. The class £器({(%}剧o) is a convex subset of Sp.

3. Distortion Theorems

Before proving some distortion properties for functions belonging to 
the class we need to establish the following result.

Lemma 3.1. A function f is in 岑({&}呉°) if and only if there 
exist dn > 0(n £ No = N U {0}) such that 辭二o dn — 1 and f(z)=

G D), where

(3.1) f0(z)=-z
and

(3.2) fn(z) = - + Q.二(n e N).
2 aCQ + Cn

Proof. Let f € £；({(%}卷o) be given by (1.1). Define

心={1二商如心)

and d()= 1 — £斜二】dn. It is obvious that dn > 0(n e No) and 
£斜二0 &1 = L Moreover, we have

- oo
/(Z)= - + y^anzn 

z 72=1
1

=一 + z

oo
X? dn 
71 — 1

Q二으匡  ” 
ac（）+ c^i

『藉 + 以《 + Q二으W， 

z \z aco + c”
(Z e P).
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Conversely, if f(z) = € T>), where dn > 0(n € No)
and £淀=0。虹=1, then

+ 支心느罪孝 (湯。,

Z n=l 也0 十 Cn

where
(成二잇에 >0 (ne N).

ac。+ Cfi
Also, we have

勇 으으額 Q二의% = 如 = 1 _ d点 1.
J 1 一 a)co aco + cn 七 n=l n=l

Hence, by virtue of Theorem 2.1, we conclude that f €、辭({(扳}足二9).

We now obtain, distortion results for functions belonging to Sp((cn}^L0).

Theorem 3.1. Let f be in the 이ass Sp((cn}^0). (a) If cn > 
ci (n e N), then

"『 늖醤히 "(圳 M& +淙쁭 12 非).

(b) If {n/(a：co + is a decreasing sequence, then

(3.4) 点 一 Q二当 < |性)| + q書으 (z e
I기 2 qcq + Ci \Z\2 OfCQ + Ci

Equalities holds true in (3.3) and (3.4) for the function

(3.5) f(z) = 丄 + Q二二잇에z (0 < a < 1, 2 e©A(0)OO)).
z aco + ci

Proof. Let f € Sp((cn}^L0). According to Lemma 3.1, we can write

oo

(3.6) f(z) = dnfn(z) (z € V),
n=0
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where dn > 0(n € No) with = 1, and fn(n e No) are given
by (3.1) and (3.2). For every n € N, we obtain

<jfi + 顶히" <~ + 团 = A(kl) 伝 e p),
I 기 acQ + Cn I 기 aco + ci

because Cn > ci(n E N). Also, it is clear that |fo(^)| < 了1(|끼)(z G P). 
Hence we have

Lf(끼 玄 E^n|/n(^)| < /1(|히) = g + 느쓰团 (Z G P).

Moreover, since Cn > cy(n e N), (3.6) and some well-known inequalities 
lead to

勇注，£二이으孝

盆地0 +以

A『 支 儿(二의의히”
Pl M QC° + Cn

=E『如늖愛才

n=0 I 기 n=l QCo 十 C”
=支이¥「(二半或)+由土

% 니기 aeo + Cn ) I 기

弟 - 능『씌기 (心),
I기 QCq + Ci

which establishes the second part of (3.3).
We now investigate 바le derivative f'(z)(z £ 27) of f. By differenti

ating term by term in (3.6), we get

•f'(z) = £ dnfM = + £ dn&W쯔7리 (z G T>).
n=0 ' n=l aC° 十总

Therefore we obtain

点-max ( (丄二의의£ ) < (2시 < -i-+max( (丄二잇의" (zf P).
I히2 neN I aco + Cn J \z\2 nCN [ QCq + Cn )
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The desired result (3.4) follows by taking into account the hypothesis 
that the sequence {n/(ac()+ &)}辭顼 is decreasing. Finally, it is not 
hard to see that the inequalities (3.3) and (3.4) are sharp.

4. Convexity and Starlikeness

We will investigate the radii of convexity and starlikeness of func
tions in Sp((cn}^L0) in theorems below.

Theorem 4.1 Let f e £；({以}卷())be given by (1.1). Then f is 
meromorphically convex of order 8 in the disk {z ElA : \z\ < r}, where 

r=inf L—Q*攀으丈스LJ而 (0<5<l),
neN [ (1 — a)con(n + 2 — a) J 

provided that r > 0.
Proof. Let f be in >當(仏曷住()). To see 나lat f is meromorphically 

convex of order d in the disk {z E U~: \z\ < r}, it is sufficient厂to prove 
that
(4.1) 2+糸$卜17,

provided that |히 V t. If f is given by (1.1), then

2+小
•尸⑵

W) + (z 心
扩⑵
n(n + 1) W-L 

_ 去 + £ 辭=i nan2n-1 
£鮮1 n(n + 1)如同中 

1 — £愷히 *
<

Hence (4.1) is satisfied for \z\ < r, provided that
oo oo
22 + l)flnkr+1 < (1 - 22 na』히7나')(1 - <5) (I히 < r, z e ZV)
n—1 n=l

or, equivalently,
8

(4.2) £ n(n + 2 — 5)an|z|n+1 <1 — 6 (0《 d V 1, |끼 V z € U).

Finally, by virtue of Theorem 2.1, (4.2) holds true.
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Theorem 4.2. Let f e 哗({qj*%。). Then f is meromorphically 
starlike of order 6 in the disk {z E 〃 : |기 V r}, where

r = inf (... .(1 一 研aco +어] '广盐 

neN ( (1 — a)co(n + 2 — 8))

provided that r > 0.
Proof. Let f be in〉峯({<%}旗二()). It is sufficient to show that

(4-3) 1+碧 <1-5,
J\z)

provided that |히 V If f is given by (1.1), then we note that

],2尸(z) I = 1)如z”
I 기 捉江心

/ 工理竺土互쓰!也i
- 1一疔，시기*
<1-6,

and so
oo

(4.4) £ (侃 + 2 —句 an\z\n+1 <1-5.
n=l

Therefore, from Theorem 2.1, (4.3) holds true.

5. Hadamard (or Convolution) Products

1短九£否(如}酒))0=1,2). If

] 00(5.1) £(Z)= - + £ (anil < 0(i = 1,2),Z e P),
Z n=l

we define the modified Hadamard(or convolution) product /i * 龙 of /i 
and /2 by

] oo

(fl * E)(z) = 一 + £： anjiant2zn (z 6 D).
Z n=l

We now prove
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Theorem 5.1. Let fz e S^({cn}^L0)(i = 1,2). If {&}酒)is an 
increasing sequence, then /i * /2 S^({cn)^L0), where

_ (eg + 力)2 -(1 - a)2qg
7 (1 - a)2诺 + (aco + ci)2

Proof. According to Theorem 2.1, if &(z = 1, 2) is defined by (5.1), 
then

8 .
(5.2) E 腭 @胃%以-1 0 f 2).

We must show that

▼으二 ws -k
(5-3) 2“ 尸 ' 아以晚,2 < I-

£(Dc。

By virtue of the Cauchy-Schwarz inequality, (5.2) leads to

(5.4) 言号으쁘 E"

Hence, in order to prove (5.3), it is sufficient to establish that

(物 (1 —小))晚,1如,2 Y(1 — a)c()\/Si"2 (n C N).

Moreover, from (5.4), we deduce that

(5-6) < Q二의쯔 (n € N).
OLCq +cn

therefore, by combining (5.4) and (5.6), we will obtain (5.5) when we 
have proved that

(1 — a)。。v 1 一 1 eg + 以

aco + cn 1 — oi [Co + cn
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or, equivalently, that

(5-7)
(aco + Cn)2 —(1 一 a)2q)Cn N) 

一 (1 一 a)2诺 + (aco + Cn)2 { )

Inequality (5.7) is true because is an increasing sequence and
the function 

"时(1 — 0沪(略 + (aco + x)2(1 —。沪用 + (aco + x)2

is increasing for positive real numbers x. This completes the proof of 
Theorem 5.1.

Remark. Taking & = n(n 6 No) in Theorem 5.1, we have the 
result of Mogra, Reddy and Juneja[3].

This work was partially snppOTted by the 
Korea Research Foiindatioii(Project No.: 1998-015-D00039).
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