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A NOTE ON CONTIGUOUS FUNCTION RELATIONS

Young Joon Cho, Tae Young Seo and Junesang Choi

1. Introduction and Preliminaries

In the theory of special functions, it is presumably safe to say that 

the hypergeometric series is one of the important functions. The so- 

called hypergeometric series is defined by

(1.1) 2Fl (a, b; c; z) = 2瓦
a, b,

zC； —I （。爲「布

^here a, b and c are complex constants aM. (ai)n denotes

the Pochhammer symbol (or the generalized factorial, since (l)n = n!) 

defined by

/\ ra(a+l)---(a! + n-l)if n e N := (1, 2, 3,
g) S = f 1 if n = 0.

From the fundamental functional relation of the Gamma function「 

r(z + 1) — zf(z), we have

(1.3) 
r(a + n)

where I? is the well-known Gamma function whose Weierstrass canon­

ical product form is given by

oo
(1-4) ｛「⑵广=ze"[[(l + f)eY,

k=l
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7 being the Euler-Mascheroni's constant defined by

(L5) 7 = lim 
n—>oo

? - log n ) 으 0.577215664 . . • .

From definitions (1.2) and (1.3), we can easily deduce the following 

formulas:

(1.6)

S) , _(T)*(a)n . 
{a)n~k - (1 ~ a - n)k^ 

((—1)%!

(-n)fc = < (^ - "시

0

if Q < k < n

if k > n.

In this paper we first give more contiguous relations besides 15 Gauss's 

contiguous relations among hypergeometric functions. Weidien sppiy 

some of these identities to obtain, various identities involved in Jacobi 

polynomials. We also point out how some of those identities presented 

here were applied elsewhere.

2. 모he Contiguous Function Relations in 2F[

Gauss defined as contiguous to F(ay b, c; z) each of the six functions 

defined by increasing or decreasing one of the parameters by unity. For 

simplicity in printing, we use the notations

(2.1)

F = 2^1 (a, 6; c; z), 

F(a+) = F(a + 1, b; c; z), 

F(a，—) = F(a — 1, b; c; z)

together with similar notations F(&+), F(ft-), F(c+), and F(c—).

Put 8n =(°*?爲咅 so that F = Sn and
I n n=0

(2.2)
F(a+) = f 어바亳” = £ 으土흐弘

(a)n 匕一七 an=0 、 n=0
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By using differential operator 0 = z(£), we readily find that

oo
(0 + a)F = £(a + n)5n, 

n=0

(2-3)
nF _ (a + n)(b + n) $
匕(c + n)如

oo 1 -
0F(a-) = (a — 으土%n.

匕一I c + n 
n=0

Gauss proved that between F and any two of its contiguous functions, 

there exists a linear relation with coefficients at most linear in z. He 

obtained 15 relations among contiguous hypergeometric functions (see 

Rainville [6, p. 71]).

Indeed, in_ vi^v of (22) 河d (23), the_fcdlo5axig-：five reiatioi^ are 

obtained:

(tz 一 b)F = aF(a+) — bF(b+),

(a — c + 1)F = aF(a+) — (c — l)F(c—),

(2.4) [a+ (b — c)z\F = a(l — z)F(a+) — c-1(c — a)(c — b)zF(c+)y

(1 一 z)F = F(a，—) — c-1(c — b)zF(c+)?

(1 一 z)F = F(b—) 一(「L(c — a)zF(c+).

We then obtain the remaining ten such relations by combining relations 

in (2.4):

[2q — c + (b — a)z\F = a(l — z)F(a+) — (c — a)F(a—), 

(a + b — c)F = a(l — z)F(a+) — (c — b)F(&—), 

(c — a — b)F — (c — a)F(a—) — b(l — z)F(6+),

(6 — a)(l — z)F = (c 一 a)F(a-) 一(c 一 &)F(b-),

[1 — a + (c — & — 1) 히 F = (c — a)F(a—) — (c — 1)(1 — z)F(c—),

[2b — c + (a — b)히= &(1 一 z)F(d+) — (c — b)F(b-),

[5 + (a — c) 히 F = 6(1 — z)F(&+) — c-1(c — a)(c — b)z

x F(c+),
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(b — c + 1)F = bF(b+) — (c — l)F(c—),

[1 - 6 + (c - a - 1)히F = (c- 6)F(6-) -(c- 1)(1 - z)F(c-), 
(2句 [c- l + (a + fe+l - 2c) 히 F = (c- 1)(1- z)P(c-)

— c-1(c — a)(c — 고 (c+).

The notation used in (2.4) and (2.5) is extended as in the following 

examples

F(a-, b+) := F{a- 1, 6+ l;c; z),

•F(b+> c+) := F{cl^ b + 1;c + 1; z),

and so on. Next, we obtain more contiguous function relations involv­

ing those just defined by making use of identities in (2.4) and (2.5):

F = F(a—,&+) + c-1(6 + 1 - a)(c 一 6)zF(6+,c+),

(。— 고 = (a — b _ 1)F(q—) + bF^d—y 사):

(b — 1)F = (b — q + 1)F(6—) + ajF1(a+,6—),

(a — 1)F = (a — c)F(a-) + (c — l)F(a—, c—),

cF = (c — a)F(c+) + aF(a+,c+),

(a — 1)(1 — z)F = [a — 1 + (6 — c) 히 H(a-) + c-1(c — a + 1)

x (c — 6)zF(a—,c+),

(i 艾广)* = [(c T_ l)z - a]F(C-) + «(1 -砂

x c—),

(2.6) f = (1 — z)F(a+) + c~1(c — b)zF(a+,아),

(c - I)"-b-l)zF ={z- l)J'(c-) + F(a-, c—),

F = (1 — z)E(b+) 4- c-1(c — a)zF(6+,c+),

(c - l)T(c-a-l)zF = (z — l)F(c—) + F(&-, c-),

(a — 1)(1 -z)F = (a + 6-c - l)F(a-) + (c — b)F(a—, &-),

(c — 6 — 1)F = (c — a — b — 1)F(&+) + a(l — ^)F(a+, 6+),

(c — a — 1)F = (c 一 a — b — l)F(a+) + 6(1 — ^)F(a+,&+),

(b — 1)(1 — z)F = (a + b — c — 1)F(6—) + (c — a)F(a—

(c — a — 1)F = (b — a — 1)(1 — z)F(a+) + (c — b)F(a+,&—),

(c — 6 — 1)F = (a — b — 1)(1 一 z)F(b+) + (c — a)F(a—, 6+),
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(c — a — 1)F = [~a + (c — b — 1) 히 F(a+) + (c — 1)(1 — z)F(a+,c—), 

c(l — z)F = [a — 1 - (c — b)히F(어-) + (c — a + l)F(a—,c+), 

(b — 1)(1 — z)F — [6 — 1 + (a — c) 히 P0_) + c-1(c — a)(c — 6 + l)z

x F(&—,c+),

(C)n

= H> — (a - c + l)^F(c-) + 6(1 - z)

x F(b+)c—))

(b - 1)F = (b — c)F(b-) + (c — l)F(b—, c-).

cF = (c — b)F(c+) + &F(6+,c+),

(c — 6 — 1)F = [—b + (c — a — 1) 히 F(b+) + (c — 1)(1 — z)F(b+,c—), 

c(l — z)F — [6 — 1 — (c — q) 히 F(c+) +• (c — 6 + 1)F(6—,c+).

The first identity of which was posed as a problem in [6, p. 72, Exercise 

2괴. Indeed, 切 i珞big (2.3), ^^4ind two rontiguous^nmction relations

(2 3 ]) OF(a-) = (a — l)zF - c-1(a - l)(c - b)zF(c+), 

(..) 0F(a-) = (a- 1)F -(a- l)F(a-).

In view of (2.3.1), we can easily find that

(2.3.2) (1 - z)F = F(a-) — c~* x{c 一 6)zF(c+).

Similarly, we may write

(2.3.3) (1 — z)F = F(b-) 一 c~l(c — gF(c+).

We now have a contiguous function relation, together with (2.3.2) and

(2.3.3) ,

(2.4.1) (a 一 b)F = aF(a+) — bF(b+), 

which, with replaced a by a — 1, yields

(宀一疙虹甲心—…支垮빠*

勺(c 爲 n! * (c)n 川

苹、(a — l)n(b + l)n zn
_ J 一一瓦LF'
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from which we obtain

(2.6.1) (a 一 1)F = (q — b - l)F(a—) + &F(a—, b+),

which is the second identity of (2.6).

Others can readily be obtained by using (2.3) and combining suitable 

identities in (2.4) and (2.5).

3. Applications

Consider Jacobi polynomials (see Szego [9, pp. 23-29]) P；씨” (x) 

which may be defined by

(3.1) F*邛)(硏=Q 片爲 2呂(一n, l + a + /3 + n-,l + a-崎艾

It fbliews, with the usual differential operator D = 이d入 that

(3.2) S감이%) = |(l + a + /3 + 끼吧严+%).

By simple transformation, we found that

(3-3) n

理逆)(/= 늑/끄 (끙丄) 见(-n, 或-n;l + a；m；)， 

")传) = 늑/끄 (능)” 泪 ；1 + 0；芝项.

If we use (3.2) and (3.3), we obtain

(3 4) (Q + /3 + n +1)7감히中 3

' =(月 + 孔 + l)P^)(x) + (q + n)/晋-眼+i)3).

Now we show how the principles presented in Section 2 can be applied 

to obtain some identities involving Jacobi polynomials. Consider the 

second identity of (2.6), that is, (2.6.2):

(a — l)F(a, b; c; z)

—(a — & — l)F(a — 1, b; c, z) + bF(a — 1, & + 1; c; z).
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Put a = —n + l,b=l + Q + /3 + n,c=l + a, z = |(1 — x) in (2.6.2) 

to obtain

(。+ 0 + 2仇+1)玲이3)(幻

=(a + (3 +n + l)J^a,/3+1)(x) + (q + n)P^ti+1\x).

Finally, combining (3.4) and (3.5) yields

(3-6) P紀同(硏 = 唯广)(끼 + 空-却+%).

Similarly, using the last two contiguous function relations in (2.4), we 

obtain from (2.6.1),

F(a,6; c; z) = F(a — 1,6+ l;c; z) 4- c~l(b + 1 — a)zF(a,b + 1; c + 1; z).

In view of (2.6.1), as in (3.6) (see also Rainville [6, pp. 263-265]), we 

obtain

(3.7) (1 + 对玲이3H)(z) + (1- 炉+却)(游 = 27각이3)(以

Choi et al. [5] applied the fourth identity of (2.4) and the first one 

of (2.6), respectively, to obtain two useful contiguous analogues of the

+ 刼 + 抑. 

r(| + 扣)「(* + 拘

Kummer's summation formula

'b ;

9(a + b + 1)；
-厶

1

2
(3-8) 2 Fi

a, b
i

2-Fi 1 5
(3.9) [项a + 切；

] ]

I、(板+ *) I、(*b)I、(*a，+ *)

2-Fl
(3 10)

b ；「 

1+ -(a + b); 2 - z -
{r(|a)r(i& +1)

쁘糸（；）「侈+9）
I、（昇）「（韧 +1）
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Vowe et al. [1 이 proved the following identity

(3.11)

)비% T) ] = 2"(n _ 1)! n!

£广丿I k丿"E + i广―両一

n—n
—

n

by evaluating the integral

(3-12)

We show the identity (3.11) by making use of one of the contigu­

ous function relations presented here, and another form of Kummer's 

summation formula:

(3.13)
2-F1!

「（으）I、（擊） 

I、（崎으）I、（으二笋勺

(b 丰 0,-1,-2,

and Legendre duplication formula for the Gamma function

(3-14)
I、G)「(&) = 2&-圮(冲("+?).

Indeed, it is a routine work to see that the right side of (3.11) (say, 

Sn ) is

(3.15) Sn := —- 2-^1 n + l,n+l;n + 2; — j .

Now, in view of the second formula in (2.4), we obtain

n 2Fi (1 + n, 1 — n; n + 2; = (1 + n)

(3.16) ' 2 7

x 2Fi n,l-n; 1 + n; i j - 2Fi (n,l - n; 2 + n;-
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Now first applying (3.13) to the first and second series in (3.16), and 

then using (3.14) in the resulting equation immediately leads to

s”、 ◎ 2n(n-l)! n! 2~n z 心、
(3.17) Sn =亠、------- n € N ,

(2n)! n

which is just our desired evaluation (3.11) (see also Srivastava [8]).

We conclude this note by noting the principles of Section 2 are no 

bound and so are their applications.
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