East Asian Math. J. 15(1999), No. 1, pp. 26-38

A NOTE ON CONTIGUOUS FUNCTION RELATIONS

YOUNG JOON CHO, TAE YOUNG SEO AND JUNESANG CHOI

1. Introduction and Preliminaries

In the theory of special functions, it is presumably safe to say that
the hypergeometric series is one of the important functions. The so-
called hypergeometric series is defined by

, b, o 2
(1.1) o (a,b,¢2) = oy [a ] = Z (a)n)(f)

2
o * (¢ nt’

wiere «, b and ¢ are arbitrary complex constants and {&}, depotes
the Pochhammer symbol (or the generalized factorial, since (1), = n!)
defined by

n=0

ala+1)---(a+n-1}if neN:={1, 2, 3, ---}

(12) (a)n = { 1 if n=0.

From the fundamental functional relation of the Gamma function T,
I'(z + 1) = 2I'(z), we have

(1.3) (@) = %"—)

where T is the well-known Gamina function whose Weierstrass canon-
ical product form is given by

(14) {r@)} " =z ﬁ (1+g)ets
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~ being the Euler-Mascheroni’s constant defined by

(1.5) v = lim < llc log n) 2~ 0.577215664 - - -
k=

n—oo

From definitions (1.2) and (1.3), we can easily deduce the following
formulas:

_ (“l)k(a)n .
(@)t = (T:E—_n);’
1.6 —1)kn! )
(1.6) () — %;:ZW if 0<k<n
0 if £>n.

In this paper we first give more contiguous relations besides 15 Gauss’s
contiguous refations among hypergeometric functions. We then apply
some of these identities to obtain various identities involved in Jacobi
polynomials. We also point out how some of those identities presented
here were applied elsewhere.

2. The Contiguous Function Relations in ,F}

Gauss defined as contiguous to F(a,b,c; 2) each of the six functions
defined by increasing or decreasing one of the parameters by unity. For
simplicity in printing, we use the notations

F= 2Fl(a,b;C;z))
(2.1) Fla+) = F(a + 1,b;¢; 2),
Fla-)= F(a - l,b; c )

together with similar notations F (b+), F(b-), F(ct), and F(c—).

Put 6, —QZJ)-EL,sothatF Za and

n=0

(2.2) Fla+) = Z (“ + Ung — i “‘Z " .

n=_0 n=0
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By using differential operator 8 = z(%), we readily find that

(0 +a)F = Z(a + n)8y,

2.3) Z (a Jr(fi(i;” Vs,

n=0

0F(a~)=(a—1)z Yy i+ :5,,.
n=0

Gauss proved that between F' and any two of its contiguous functions,
there exists a linear relation with coefficients at most linear in 2. He

obtained 15 relations among contiguous hypergeometric functions (see
Rainville [6, p. 71]).

Indeed, in view of {2.2) and {2.3), the following. five relations are

obtained:

(a — b})F = aF(a+) — bF(b+),

(@ —c+ 1)F =aF(a+) — (¢ — 1) F{c-),

(2.4) [a+ (b—c)2]F = a(l — 2)F(a+) — ¢ e — a){c— b)zF(c+),

(1 -2)F = F{a—) — ¢ Y{c - b)zF(c+),

(1-2)F =F(b-) —cYec—a)zF{ct).
We then obtain the remaining ten such relations by combining relations
n (2.4):

[2a — ¢+ (b — a)z]F = a(l - 2)F(a+) — (¢ — a)F(a—),
(a+b—c)F =a(l —z)F(at) — (c—b)F(b-),
(c—a—-bF = (c—a)F(a-)—b(1 — 2)F(b+),

(b—a)(1 - 2)F = (c—a)F(a—) ~ (c — b}F(b-),
l—a+(c—b—1)2]F =(c—a}F(a—) — (c—-1)(1 — z)F(c—),
[2b—c+ (a - b)z]F = b() - 2)F(b+) - (¢ — b)F(b-),
b+ (a—e)2]F=b6(1—-2)F(b+) —c {c—a)(c—b)z
x F(ct),
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(2.5)
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(b—c+1)F =bF(b+) — (c — 1)F(c—),
1-b+(c—a~1)2]F = (c-b)F(b-) — (c— 1)(1 — 2)F(c-),
c—14+(a+b+1—2c)2)F =(c— 1)1 —2}F(c—)

—c¢ e —a)(c—b)zF(c+).

The notation used in (2.4) and (2.5) is extended as in the following
examples

and so on. Next, we obtain more contiguous function relations involv-

F(a—, b+):=F(a—1, b+ 1;¢ 2),
F(b+, c¢+):=F(a, b+ 1;¢c+1;2),

ing those just defined by making use of identities in (2.4) and (2.5):

(2.6)

F =F(a—,b+) +c b+ 1 —a)(c— b)zF(b+,ct),

(a-1)F=(a—b—-1)F(a-) + bF(a—,b+),

b-1D)F=(b-a+ 1)F(-)+aF(at+,b-),

(e —1)F =(a—c})F(a—) + (c - 1)F(a—,c~),

cF = (¢ - a)F(c+) + aF(a+,ct),

(a-1)1-2)F=[a—1+(b-c)z]Fla—)+c c—a+1)
x (¢ — b)zF(a—,c+),

(c—a—1)(c—b—-1)zF

(c—1)

={lc—=b—-1)z-a]F(c—)+a(l —2)

x Fla+,c-),
F=(1~2)F(a+)+ ¢ (c—b)zF(a+,ct),
(e— 1) Ye=—b-1)2F = (z = 1)F(c—) + F(a—, c-),
F=Q1-2)F(b+)}+c ¢ - a)zF(b+,ct),
(c~1)"Ye—a—1)2F = (z —1)F(c—) + F(b—,c-),
(e—1)(1-2)F=(a+b-c—1)F(a—) + (c —b)F(a—,b-),
{c—b—1)F={(c—a—-b-1)F(b+)+a(l — 2)F(a+,b+),
(c—a—~1)F=(c—a~-b-1)F(a+) + b(l — 2)F(a+,b+),
(b—1)(1 - 2)F = (a+b - c— 1)F(b-) + (¢ — a)Fla—,b-),
(c—a-1)F=(—-—a-1)(1~2)F(at)+ (¢~ b)F(a+,b-),
(c=b-1)F=(a—-b~1)(1 - 2)F(b+) + (c — a)F(a—,b+),
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(c~a—1)F =[-a+ (c~b—1)z]F{a+) + (c— 1)(1 — 2)F(a+,c—),
(1l -2)F=[a—1~(c~b)2]F(ct)+ (c—a+ 1)F(a—,c+),
b-D(1-2)F=pb-1+(a—c)2)F(-)+c Hc—a)(c—b+ 1)z

x F(b—,c+),
(c—a— ii(f ;)b —1)zF _ [-b—(a —c+1)2)F{c=) + b(1 - 2)
x F(b+,c~),

(b—1)F =(b—c)F(b—) + (c— 1)F(b—,c—),

cF = (c = b)F(c+) + bF(b+,c+),

(c—b-1F =[-b+ (c—a-1)2|Fb+) + (¢ — V(1 — 2)F(b+,c—),

c(l-2)F=[b-1-{c—-a)z]F(ct}+ (c—b+ 1)}F(b—,c+).
The first identity of which was posed as a problem in [6, p. 72, Exercise
22]. Indeed, by using (2.3}, wefimd-two contiguous function relations
8F(a—) = (a — 1)2F — ¢ Ya — 1)(c — b)zF(c+),

(2.3.1) 8F(a—) = (a — 1)F — (a — 1)F(a—).

In view of {2.3.1), we can easily find that

(2.3.2) (1—2)F = Fla=) — ¢ Yc~b)zF(c+).
Similarly, we may write
(2.3.3) (1—2)F = F(b=) — ¢ {c — a)zF(c+).

We now have a contiguous function relation, together with (2.3.2) and
(2.3.3),

(2.4.1) {a—bF =aF(a+) — bF(b+),
which, with replaced a by a — 1, yields

(a 11— b) Z (G, (ign(b)n ( _ 1) Z

n=0 nl n=0 (C) TL‘
(@ = 1)n(b+ 1)n 2"
- bz ©)n nE

n=0
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from which we obtain
(2.6.1) {a —1D)F =(a-b-1)F(a—) + bF{a—,b+),

which is the second identity of (2.6).
Others can readily be obtained by using (2.3) and combining suitable
identities in (2.4) and (2.5).

3. Applications

Consider Jacobi polynomials (see Szegé (9, pp. 23-29}) ples) (z)
which may be defined by

1 -
(3.1) P,Ea'm(x) Q—-;ai o Fy (-n,l +a+ B+ nl+ a; 3 m) )

It follows, with the usual differential operator D = d/dxr, that

(3.2) DPER) (z) = %(1 b ot B+ n)PEtLAD ()

By simple transformation, we found that

(3.3)
- 55 (50 et rn)
P,ga»ﬁ)(x) = ( _;!a)" (:c;l)" 2oy ( n,—a—n;1+ G, xt i)

If we use (3.2) and (3.3), we obtain

(e+B8+n+ 1)P,£“’ﬂ+1)(:z:)

(3.4) = (B+n+ )P (z) + (a+ n) P18+ (),

Now we show how the principles presented in Section 2 can be applied
to obtain some identities involving Jacobi polynomials. Consider the
second identity of (2.6), that is, (2.6.2) :
{(a — 1)F(a,b;c; 2)
={a~b—1)F(a—1,b;¢,2) +bF(a—1,b+1;¢; 2).
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Puta=-n+1,b=1+a+B+nc=1+aqa,z=3(1-2)in (2.6.2)
to obtain )

(35) (a+ B+ 2n+ 1)P*P)(z)

= (a+ B+ n+ PO () 4 (o + n) PPV (2).
Finally, combining {3.4) and (3.5) yields
(36) PeP@) = PEY(a) + Pt (a),

Simitarly, using the last two contiguous function relations in (2.4), we
obtain from (2.6.1),

Fla,b;c;2) = Fla~1,b+ 1;¢2) + ¢ b+ 1 —a)zF(a,b+ t;c+ 1; 2).

In view of (2.6.1), as in (3.6) (see also Rainville {6, pp. 263-265]), we
obtain

(3.7) (1 + 2) PLB+Y () + (1 — 2) Pt 1P (2) = 2PL*P) ().

Choi et al. {5] applied the fourth identity of (2.4) and the first one

of (2.6), respectively, to obtain two useful contiguous analogues of the
Kummer’s summation formula

;b
68 on [ ’ 1] _LITG 4 Jat )
2

1 = :
§@+b+1y I(1+1a)0(3 + 2b)
“ by 1 i1
2 [ 1] @)
(3‘9) §(a+b); 2 2 2 2

“{rrten i)
Fda)r(lo+1) TEHIEa+3)

% b " b /1 11
— . a —

x { L1 }
Tar3e+L) TEHT(a+ 5
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Vowe et al. {10] proved the following identity

S _kfn—1 1 _ 2*(n - 1)! nl
(3.11) kzzo( g ( k )Qk(n+k+1)— (2n)!
2—n

- T(HGN)

by evaluating the integral

1 t n—1
(3.12) / (1 - -> trdt.
0 2

We show the identity (3.11) by making use of one of the contigu-
ous function relations presented here, and another form of Kummer’s
summation formula:

1) Il
(3.13) 2 (“’1 b ’2’) - r(b—’é)l‘(@)

(b # 0:—1:_27 ),

and Legendre duplication formula for the Gamma function

(3.14) r (:,12-) I'(2z) = 2%~ 10(2)1 (z + %) :

Indeed, it is a routine work to see that the right side of (3.11) (say,
Sn ) is

1
(3.15) Sp = o Fy (-n+1,n+l;n+2;l).

T n+1 2

Now, in view of the second formula in (2.4), we obtain

n o Fy (1+n,l—n;n+2; %) =(14+n)
(3.16)

1
X oy (n,lvn; 14 n; -2-) — oF} (n,l—n;2+n; %)
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Now first applying (3.13} to the first and second series in (3.16), and
then using (3.14) in the resulting equation immediately leads to

_™n-Nial 27"
(3.17) Sp = G

(n € N,

which is just our desired evaluation (3.11) (see also Srivastava [8}).
We conclude this note by noting the principles of Section 2 are no
bound and so are their applications.
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