AN INEQUALITY OF OSTROWSKI TYPE FOR MAPPINGS WHOSE SECOND DERIVATIVES ARE BOUNDED AND APPLICATIONS

P. CERONE, S. S. DRAGOMIR AND J. ROUMELIOTIS

1. Introduction

In 1938, Ostrowski (see for example [2, p. 468]) proved the following integral inequality:

THEOREM 1.1. Let $f: I \subseteq \mathbb{R} \to \mathbb{R}$ be a differentiable mapping on I° (I° is the interior of I), and let $a, b \in I^{\circ}$ with a < b. If $f': (a, b) \to \mathbb{R}$ is bounded on (a, b), i.e., $||f'||_{\infty} := \sup_{t \in (a, b)} |f'(t)| < \infty$, then we have the inequality:

$$(1.1) \left| f(x) - \frac{1}{b-a} \int_a^b f(t) dt \right| \le \left[\frac{1}{4} + \frac{\left(x - \frac{a+b}{2}\right)^2}{(b-a)^2} \right] (b-a) \|f'\|_{\infty}$$

for all $x \in [a, b]$. The constant $\frac{1}{4}$ is sharp in the sense that it can not be replaced by a smaller one.

For some applications of Ostrowski's inequality to some special means and numerical quadrature rules, we refer to the recent paper [1] by S.S. Dragomir and S. Wang.

In 1976, G.V. Milovanović and J.E. Pečarić proved a generalization of Ostrowski's inequality for n-time differentiable mappings (see for example [2, p.468]) from which we would like to mention only the case of twice differentiable mappings [2, p. 470].

Received August 22, 1998.

¹⁹⁹¹ Mathematics Subject Classification 26D15, 41A55

Key words and phrases. Ostrowski's inequality, numerical integration, special means.

THEOREM 1.2. Let $f:[a,b] \to \mathbb{R}$ be a twice differentiable mapping such that $f'':(a,b)\to\mathbb{R}$ is bounded on (a,b), i.e., $||f''||_{\infty}=\sup_{t\in(a,b)}|f''(t)|<\infty$. Then we have the inequality:

(1.2)
$$\left| \frac{1}{2} \left[f(x) + \frac{(x-a)f(a) + (b-x)f(b)}{b-a} \right] - \frac{1}{b-a} \int_{a}^{b} f(t)dt \right|$$

$$\leq \frac{\|f''\|_{\infty}}{4} (b-a)^{2} \left[\frac{1}{12} + \frac{\left(x - \frac{a+b}{2}\right)^{2}}{\left(b-a\right)^{2}} \right]$$

for all $x \in [a, b]$.

In this paper we point out an inequality of Ostrowski's type which is similar, in a sense, to Milovanović-Pečarić result and apply it for special means and in numerical integration.

2. Some Integral Inequalities

The following result holds.

THEOREM 2.1. Let $f:[a,b] \to \mathbb{R}$ be a twice differentiable mapping on (a,b) and $f'':(a,b) \to \mathbb{R}$ is bounded, i.e., $||f''||_{\infty} = \sup_{t \in (a,b)} |f''(t)| < \infty$. Then we have the inequality:

$$\left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t)dt - \left(x - \frac{a+b}{2}\right) f'(x) \right| \\
\leq \left[\frac{1}{24} (b-a)^{2} + \frac{1}{2} \left(x - \frac{a+b}{2}\right)^{2} \right] \|f''\|_{\infty} \\
\leq \frac{(b-a)^{2}}{6} \|f''\|_{\infty}$$

for all $x \in [a, b]$.

Proof. Let us define the mapping $K(\cdot,\cdot):[a,b]^2\to\mathbb{R}$ given by

$$K\left(x,t
ight) := \left\{ egin{aligned} rac{\left(t-a
ight)^2}{2} & ext{if } t \in [a,x] \ rac{\left(t-b
ight)^2}{2} & ext{if } t \in (x,b] \, . \end{aligned}
ight.$$

Integrating by parts, we have successively

$$\int_{a}^{b} K(x,t) f''(t)dt = \int_{a}^{x} \frac{(t-a)^{2}}{2} f''(t)dt + \int_{x}^{b} \frac{(t-b)^{2}}{2} f''(t)dt$$

$$= \frac{(t-a)^{2}}{2} f'(t)|_{a}^{x} - \int_{a}^{x} (t-a)f'(t)dt + \frac{(t-b)^{2}}{2} f'(t)|_{x}^{b}$$

$$- \int_{x}^{b} (t-b)f'(t)dt$$

$$= \frac{(x-a)^{2}}{2} f'(x) - \left[(t-a)f(t)|_{a}^{x} - \int_{a}^{x} f(t)dt \right]$$

$$- \frac{(b-x)^{2}}{2} f'(x) - \left[(t-b)f(t)|_{x}^{b} - \int_{x}^{b} f(t)dt \right]$$

$$= \frac{1}{2} \left[(x-a)^{2} - (b-x)^{2} \right] f'(x) - (x-a)f(x)$$

$$+ \int_{a}^{x} f(t)dt + (x-b)f(x) + \int_{x}^{b} f(t)dt$$

$$= (b-a)(x-\frac{a+b}{2})f'(x) - (b-a)f(x) + \int_{a}^{b} f(t)dt$$

from which we get the integral identity:

(2.2)
$$\int_{a}^{b} f(t) dt = (b-a) f(x) - (b-a) \left(x - \frac{a+b}{2}\right) f'(x) + \int_{a}^{b} K(x,t) f''(t) dt$$

for all $x \in [a, b]$.

Using the identity (22), we have

(2.3)
$$\left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t)dt - \left(x - \frac{a+b}{2}\right) f'(x) \right|$$

$$= \frac{1}{b-a} \left| \int_{a}^{b} K(x,t) f''(t)dt \right|$$

$$\leq \frac{1}{b-a} ||f''||_{\infty} \int_{a}^{b} |K(x,t)|dt$$

$$\begin{split} &= \frac{1}{b-a} \|f''\|_{\infty} \left[\int_{a}^{x} \frac{(t-a)^{2}}{2} dt + \int_{x}^{b} \frac{(t-b)^{2}}{2} dt \right] \\ &= \frac{1}{b-a} \|f''\|_{\infty} \left[\frac{(t-a)^{3}}{6} |_{a}^{x} + \frac{(t-b)^{3}}{6} |_{x}^{b} \right] \\ &= \frac{1}{b-a} \|f''\|_{\infty} \left[\frac{(x-a)^{3} + (b-x)^{3}}{6} \right]. \end{split}$$

Now, observe that

$$(x-a)^{3} + (b-x)^{3} = (b-a) \left[(x-a)^{2} + (b-x)^{2} - (x-a)(b-x) \right]$$

$$= (b-a)[(x-a+b-x)^{2} - 3(x-a)(b-x)]$$

$$= (b-a)[(b-a)^{2} + 3[x^{2} - (a+b)x + ab]]$$

$$= (b-a) \left[(b-a)^{2} + 3 \left[\left(x - \frac{a+b}{2} \right)^{2} - \left(\frac{b-a}{2} \right)^{2} \right] \right]$$

$$= (b-a) \left[\left(\frac{b-a}{2} \right)^{2} + 3 \left(x - \frac{a+b}{2} \right)^{2} \right].$$

Using (2.3), we get the desired inequality (2.1).

COROLLARY 2.2. Under the above assumptions, we have the midpoint inequality:

$$\left| f\left(\frac{a+b}{2}\right) - \frac{1}{b-a} \int_a^b f(t) dt \right| \leq \frac{(b-a)^2}{24} \left\| f'' \right\|_{\infty}.$$

This follows by Theorem 2.1, choosing $x = \frac{a+b}{2}$.

COROLLARY 2.3. Under the above assumptions we have the following trapezoid like inequality:

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_{a}^{b} f(t) dt - \frac{b - a}{4} (f'(b) - f'(a)) \right| \\ \leq \frac{(b - a)^{2}}{6} \|f''\|_{\infty}.$$

This follows using Theorem 2.1 with x = a, x = b, adding the results and using the triangle inequality for the modulus.

3. Applications in Numerical Integration

Let $I_n: a=x_0 < x_1 < ... < x_{n-1} < x_n = b$ be a division of the interval $[a,b], \quad \xi_i \in [x_i,x_{i+1}] \quad (i=0,...,n-1)$. We have the following quadrature formula:

THEOREM 3.1. Let $f:[a,b] \to \mathbb{R}$ be a twice differentiable mapping on (a,b) whose second derivative $f'':(a,b)\to\mathbb{R}$ is bounded, i.e., $\|f''\|_{\infty}<\infty$. Then we have the following:

(3.1)
$$\int_a^b f(x)dx = A(f, f', \xi, I_n) + R(f, f', \xi, I_n)$$

where

$$A\left(f,f',\xi,I_{n}\right)=\sum_{i=0}^{n-1}h_{i}f\left(\xi_{i}\right)-\sum_{i=0}^{n-1}f'\left(\xi_{i}\right)\left(\xi_{i}-\frac{x_{i}+x_{i+1}}{2}\right)h_{i}$$

and the remainder satisfies the estimation (3.2)

$$egin{aligned} |R(f,f',\xi,I_n)| &\leq \left[rac{1}{24}\sum_{i=0}^{n-1}h_i^3 + rac{1}{2}\sum_{i=0}^{n-1}h_i\left(\xi_i - rac{x_i + x_{i+1}}{2}
ight)^2
ight] \|f''\|_{\infty} \ &\leq rac{\|f''\|}{6}\sum_{i=0}^{n-1}h_i^3 \end{aligned}$$

for all ξ_i as above, where $h_i := x_{i+1} - x_i$ (i = 0, ..., n-1).

Proof. Apply Theorem 2.1 on the interval $[x_i, x_{i+1}]$ (i = 0, ..., n-1) to get

$$\left| \int_{x_{i}}^{x_{i+1}} f(t) dt - h_{i} f(\xi_{i}) + \left(\xi_{i} - \frac{x_{i} + x_{i+1}}{2} \right) h_{i} f'(\xi_{i}) \right|$$

$$\leq \left[\frac{1}{24} h_{i}^{3} + \frac{1}{2} h_{i} \left(\xi_{i} - \frac{x_{i} + x_{i+1}}{2} \right)^{2} \right] \|f''\|_{\infty} \leq \frac{\|f''\|_{\infty}}{6} h_{i}^{3}.$$

Summing over i from 0 to n-1 and using the generalized triangle inequality we deduce the desired estimation.

REMARK 3.2. Choosing $\xi_i = \frac{x_i + x_{i+1}}{2}$, we recapture the midpoint quadrature formula

$$\int_{a}^{b} f(x) dx = A_{M}(f, I_{n}) + R_{M}(f, I_{n})$$

where the remainder $R_M(f, I_n)$ satisfies the estimation

$$|R_M(f,I_n)| \le \frac{\|f''\|_{\infty}}{24} \sum_{i=0}^{n-1} h_i^3.$$

4. Applications for Special Means

Let us recall the following means:

(a) The arithmetic mean

$$A = A(a,b) := \frac{a+b}{2}, \quad a,b \ge 0;$$

(b) The geometric mean:

$$G = G(a,b) := \sqrt{ab}, \quad a,b \ge 0;$$

(c) The harmonic mean:

$$H=H\left(a,b
ight):=rac{2}{rac{1}{a}+rac{1}{b}},\qquad a,b\geq 0;$$

(d) The logarithmic mean:

$$L = L(a,b) := \begin{cases} a & \text{if } a = b; \\ \frac{b-a}{\ln b - \ln a} & \text{if } a \neq b, \end{cases}$$

where a, b > 0.

(e) The identric mean:

$$I=I\left(a,b
ight):=\left\{egin{array}{l} a & ext{if } a=b; \ rac{1}{e}\left(rac{b^b}{a^a}
ight)^{rac{1}{b-a}} & ext{if } a
eq b, \end{array}
ight.$$

where a, b > 0.

(f) The p-logarithmic mean:

$$L_{p} = L_{p}\left(a,b\right) := \left\{ \begin{bmatrix} \frac{b^{p+1} - a^{p+1}}{\left(p+1\right)\left(b-a\right)} \end{bmatrix}^{\frac{1}{p}} & \text{if } a \neq b; \\ a & \text{if } a = b, \end{bmatrix}$$

where $p \in \mathbb{R} \setminus \{-1, 0\}$, a, b > 0.

The following simple relationships are known in the literature

$$H \le G \le L \le I \le A$$
.

It is also known that L_p is monotonically increasing in $p \in \mathbb{R}$ with $L_0 = I$ and $L_{-1} = L$.

(1). Consider the mapping $f:(0,\infty)\to\mathbb{R},\ f(x)=x^r,\quad r\in\mathbb{R}\setminus\{-1,0\}$.

Then, we have, for 0 < a < b:

$$\frac{1}{b-a} \int_{a}^{b} f(x) dx = L_{r}^{r}(a,b)$$

and

$$\left\|f''\right\|_{\infty} = \left|r\left(r-1\right)\right| \delta_r\left(a,b
ight), \qquad r \in \mathbb{R} \setminus \left\{-1,0\right\},$$

where

$$\delta_r\left(a,b
ight) := \left\{ egin{aligned} b^{r-1} & ext{ if } r \in (1,\infty) \ a^{r-1} & ext{ if } r \in (-\infty,1) \setminus \{-1,0\} \, . \end{aligned}
ight.$$

Using the inequality (2.1) we have the result:

$$|x^{r} - L_{r}^{r}(a,b) - r(x-A)x^{r-1}|$$

$$\leq \frac{|r(r-1)|}{6} \left[\frac{1}{4}(b-a)^{2} + 3(x-A)^{2} \right] \delta_{r}(a,b)$$

$$\leq \frac{|r(r-1)|(b-a)^{2}}{6} \delta_{r}(a,b)$$

for all $x \in [a, b]$. If in (4.1) we choose x = A, we get

(4.2)
$$|A^{r} - L_{r}^{r}| \leq \frac{|r(r-1)|(b-a)^{2}}{24} \delta_{r}(a,b).$$

(2). Consider the mapping $f\left(x\right)=\frac{1}{x},\quad x\in\left[a,b\right]\subset\left(0,\infty\right)$. Then we have :

$$\frac{1}{b-a} \int_{a}^{b} f(x) dx = L_{-1}^{-1}(a,b)$$

and

$$\|f''\|_{\infty} = \frac{2}{a^3}.$$

Applying the inequality (2.1) for the above mapping, we get

$$\left| \frac{1}{x} - \frac{1}{L} + \frac{x - A}{x^2} \right| \le \frac{1}{3a^3} \left[\frac{1}{4} (b - a)^2 + 3 (x - A)^2 \right]$$

$$\le \frac{(b - a)^2}{3a^3}$$

which is equivalent to

$$|x(L-x) - L(A-x)| \le \frac{x^2 L}{3a^3} \left[\frac{1}{4} (b-a)^2 + 3(x-A)^2 \right] \\ \le \frac{x^2 L (b-a)^2}{3a^3}$$

for all $x \in [a, b]$. Now, if we choose in (4.3), x = A, we get

$$(4.4) 0 \le A - L \le \frac{(b-a)^2 A L}{12a^3}.$$

If in (4.3) we choose x = L, we get

$$(4.5) 0 \le A - L \le \frac{L^2}{3a^3} \left[\frac{1}{4} (b - a)^2 + 3 (L - A)^2 \right].$$

(3). Let us consider the mapping

$$f(x) = \ln x, \qquad x \in [a, b] \subset (0, \infty).$$

Then we have:

$$\frac{1}{b-a}\int_{a}^{b}f\left(x\right) dx=\ln I\left(a,b\right) ,$$

and

$$||f''||_{\infty}=\frac{1}{a^2}.$$

Inequality (2.1) gives us

(4.6)
$$\left| \ln x - \ln I - \frac{x - A}{x} \right|$$

$$\leq \frac{1}{6a^2} \left[\frac{1}{4} (b - a)^2 + 3 (x - A)^2 \right] \leq \frac{(b - a)^2}{6a^2}.$$

Now, if in (4.6) we choose x = A, we get

$$(4.7) 1 \leq \frac{A}{I} \leq \exp\left[\frac{1}{24a^2} \left(b - a\right)^2\right].$$

If in (4.6) we choose x = I, we get

$$(4.8) 0 \le A - I \le \frac{I}{6a^2} \left[\frac{1}{4} (b - a)^2 + 3 (A - I)^2 \right].$$

References

- [1] S. S. Dragomir and S. Wang, Applications of Ostrowski's inequality to the estimation of error bounds for some special means and some numerical quadrature rules, Appl. Math. Lett. 11 (1998), 105-109
- [2] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Inequalities for Functions and Their Integrals and Derivatives, Kluwer Academic, Dordrecht, 1994

P. Cerone and J. Roumeliotis

School of Communications and Informatics

Victoria University of Technology, PO Box 14428

MC Melbourne, Victoria 8001, Australia

E-mail: johnr@matilda.vut edu.au

S. S. Dragomir

Department of Applied Mathematics

University of Transkei

Private Bag X1, UNITRA, Umtata 5117, South Africa

E-mail: sever@getafix.utr ac.za