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AN INEQUALITY OF OSTROWSKI TYPE FOR
MAPPINGS WHOSE SECOND DERIVATIVES
ARE BOUNDED AND APPLICATIONS

P. CeErRONE, S. S. DRAGOMIR AND J. ROUMELIOTIS

1. Introduction

In 1938, Ostrowski (see for example {2, p. 468]) proved the following
integral inequality"

THEOREM 1.1. Let f: I CR — R he a differentiable mapping on
I° (I° is the interior of I}, and let a,b € I° witha < b. If f' : (a,b) = R
is bounded on (a,b), i.e., || f'lloo := supP,e(q,p) 1f'{t)] < 00, then we have

the inequality:
_a+b)
[ - }(b-allfl{m

(1.1) Rt

flz ———/ Flt)dt| <

for all x € {a,b]. The constant § is sharp in the sense that it can not
be replaced by a smaller one.

For some applications of Ostrowski’s inequality to some special means
and numerical quadrature rules, we refer to the recent paper [1] by S.5.
Dragomir and S. Wang.

In 1976, G.V. Milovanovié¢ and J.E. Peéari¢ proved a generalization
of Ostrowski’s inequality for n-time differentiable mappings (see for
example {2, p.468]) from which we would like to mention only the case
of twice differentiable mappings (2, p. 470].
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THEOREM 1.2. Let f : [a,b] — R be a twice differentiable map-
ping such that f” : (a,b) — R is bounded on (a,b}, ie., [|f'flec =
SUD¢e(q,p) 1/ (£)] < 00. Then we have the inequality:

b
! [ fa) 4 @) + (b—z)f(b)] - / f(t)dt

b—a
(1.2)
Mgy [1 +(w~9—2ﬂ’)’]
i2 (b—a)2

for all z € {a,b].

In this paper we point out an inequality of Ostrowski’s type which
is similar, in a sense, to Milovanovié¢-Peéarié result and apply it for
special means and in numerical integration.

2. Some Integral Inequalities

The following result holds.

THEOREM 2.1. Let f : [a,b] — R be a twice differentiable mapping
on(a,b) and f": (a,b) — Ris bounded, i.e., [ f*|loco = SUP¢e(ap) I f” (2}
< co. Then we have the inequality:

f(a:)—rlafabf(t)dt—( “+b) C )|
(2.1) < [2_14 (b—a)® + %( ‘”b) } 1l

< 2 10

for all z € {a,b].
Proof. Let us define the mapping K {-,-) : [a, b]2 — R given by

(t - a)’
2

if ¢ € [a, 2]
K (z,t) :=

2
(t;b) if1e(z,b).
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Integrating by parts, we have successively

b z .
/K z t)f”(t)dt:/ E"—a)2 "(t}a‘t+/b Q{:E)_an(t)dt
(t - 5}2

- - [Ce-aroars S
- ] (t - b)'(2)de

~ & ) - |e- sk - [ o
( sl )—[(t—b)f(t)l" /f dt]
[ — 0 — (b - 2] 7'(2) - (= - @) f(2)

b
+ / fO)dt + (z - b)Y f(z) + f f(&)dt

IOI pad

~ - a)a- 0@ - 6@ + [ 1o

from which we get the integral identity :

b
/f(t)dt=(b—a)f(m)—(b—a>(x-“;"’)f'm
(2.2) a

b
+ / K (z,t) f/(t)dt

for all x € [a,d].
Using the identity (2 2), we have

o) - 5 [ s - (+-57) £

1t

(2.3)

i’
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" f(zaf ‘/uw dﬁ
= e [+ C5
o [Em 0]
6

Now, observe that
(z—a)+(b-2)°=@0-a) [(:v—a)2+(b—x)2 - (:r:—a)(b—:z:)]
=(b-a)(zx—a+b—2)*-3(z - a)(b—z))
= (b—a)[(b — a)* + 3[z® — (a + b)z + ab]]

= (b-a) [(b-—a)2+3{(x-—a;b>2— (bg“)z”
— (b—a) t(b;“)2+3(x~“;b)2].

Using (2.3}, we get the desired inequality (2.1).

COROLLARY 2.2. Under the above assumptions, we have the mid-
point inequality:

b b
f(“'; )—bia/a f(tyd <

This follows by Theorem 2.1, choosing = = %£2.

N2
@l

COROLLARY 2.3. Under the above assumptions we have the follow-
ing trapezoid like inequaﬁty'

@16 /fuwt

cb—a)y a)

) = f'(a))

1" Neo

This follows usmg Theorem 2.1 with z = a, z = b, adding the
results and using the triangle inequality for the modulus.
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3. Applications in Numerical Integration

Let In:a =2 < 2y < ... < Tpn_1 < & = b be a division of the
interval [a,b], & € [z.,2,41] (¢ =0,...,n — 1). We have the following
quadrature formula:

THEOREM 3.1. Let f - [a,b] — R be a twice differentiable mapping
on (a,b) whose second derivative f” : {a,b) — R is bounded, ie.,
1l < co. Then we have the following :

b
(3.1) / f@)dz = A(f, £,6, 1) + R(f, 1,6, In)
where
= — T, + Ty41
A(f,fl7§,1n) = thf(gz) - Zf,(ft) (éz - ""““2““—> h'L
1=0 1 =0

and the remainder satisfies the estimation .
(3.2)

n—1 n—1 2
1 1 Z, + Ty "
‘ < el 3 - o Do
RU 56 )] < {24 LSS I (6 - 252 ] T
1£71 %= ;5
< 1 E

B 6 =0 hhl'

for all ¢, as above, where h, == z,41 ~ 2z, (2=0,..,n—1).

Proof. Apply Theorem 2.1 on the interval [z, z,41] (¢ =0,...,n — 1)
to get

[T roa-nre) (6 2 nr )

1 4 1 T+ Zp1 \ |y e 1/ Mo ;5
< lﬂhz + 5"% ({a - ———‘) } 17 < 6 hy-

3

2

Summing over ¢ from 0 to n — 1 and using the generalized triangle
inequality we deduce the desired estimation.
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REMARK 3.2. Choosing &§; = x—"rzi“f—‘, we recapture the midpoint
quadrature formula

b
] F (@) de = Ay (f, In) + Bag (f, 1)

where the remainder Ry (f, I,,) satisfies the estimation

Rue (1)) < W Lo § Sh

1=0
4. Applications for Special Means
Let us recall the following means :
(a) The arithmetic mean
A= Ala,b) _%'—b, a,b > 0;

(b) The geometric mean:
G = G(a,b):=Vab, a,b>0;
{(c¢) The harmonic mean:

H = H (a,b) := ~—?——, a,b>0;

L1
b

£

(d) The logarithmic mean:

a ifa=2b;
L ="L(ab):= -
(2,) _f}._a__ifa#b’

Inb—-Ina

where a,b > 0.
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(e) The identric mean:
a if a =105

I=1I(ab):= A=
(a.0) -1-(2‘;) if a # b,
€

a
where a,b > 0.
(f} The p-logarithmic mean:

bp+1_ap+1 %

if b;

Ly = Ly(a,b) = [@H)(b—a)] fao?
a ifa =0b,

where p € R\ {-1,0}, a,b>0.
The following simple relationships are known in the literature

H<CG<L<I<A

It 15 also known that L, is monotonically increasing in p € R with
Lo =1 and L_l = L.

(1). Consider the mapping f : (0,00) — R, f(z) = 2", r €
R\ {-1,0}.

Then, we have, for 0 < a < b:

b
b%/ f(z) dz = L (a,b)

and
1Moo = Ir (r = 1)|6r (a,b), r € R\ {-1,0},

S vl ifr e (1,00)
O = o e (con )\ (1,0

Using the inequality (2.1) we have the result:
" — L7(a,b) — r(z — A)z"'|

(1) < M o 02 4 3 - 7] 8:0)

_ Ir(r = 1)l(b - a)?
6

where

dr(a, b}
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for all z € [a,b]. If in (4.1) we choose z = A, we get

r r 11' (T’ - l)l (b — 0-)2
4.2) jA" — LT| < L 5. (a,b).

(2). Consider the mapping f(z) = £, =z € [a,b] C (0,00). Then we
have :
I 4
b_a/ £(z)dz = L=} (a,b)

and 5
1l = =5~

Applying the inequality (2.1) for the above mapping, we get

z— A

L !
L 2

g%-s-[i(b—a)%s(:c-mﬂ

(b—a)’
- 3a3

1_
T

which is equivalent to

|z (L —z) - L{(A—-=z)| < %Zﬁi [‘—ll(b—a)2+3(x—A)2]
4.3
(43) 22L (b — a)?
pgpotmt. e 2N

3a3

for all x € [a,b]. Now, if we choose in (4.3), z = A , we get

(b— a)zAL'

4.4 0<A-L<
(4.4) cA-L< 1203

If in (4.3) we choose r = L, we get

2
(4.5) ogA—ng% ;l(b—a)2+3(L—A)2].

(3). Let us consider the mapping

f{z) =Inz, z € [a,b] C (0,00).
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Then we have :

b
b—i—;] f(z)dz=1nI{a,b),

and )
1 = =
Inequality (2.1) gives us
nz-nl- 2%
(4.6) :
' 1 [1 b—a)®
<3 [Z(b—a)2+3(x—A)2] < ( o
Now, if in (4.6} we choose z = A, we get
A 1 2
. 1< =< —— (b — .
(4.7) < [—eXp[24a,2(b a)]
If in (4.6) we choose z = I, we get
I 1 9 2
4. 0<A-—T< —1-(b— — 7.
(4.8) < _6a2{4(b a)’ +3(A )]
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