
Kyeoung-Ju Haa), Kyo-Min Ku, Hae-Kyeong Park, Young-Kook Kim, and Kwan-Woo Ryu

In this paper, we derive an efficient parallel
algorithm to solve the single function coarsest
partition problem. This algorithm runs in O(log2n)
time using O(nlogn) operations on the EREW
PRAM with O(n) memory cells used. Compared
with the previous PRAM algorithms that consume
O(n1+ε) memory cells for some positive constant
ε＞0, our algorithm consumes less memory cells
without increasing the total number of operations.

I. INTRODUCTION

The single function coarsest partition problem can be
described as follows. Given a set S of n elements, an
initial partition B = {B 1,B 2,…,B k } of S , and a function f

on S , the problem is to form a new partition Q = {Q 1,

Q 2,…,Q m } in which each set Q i∈Q is a subset of some

set B j∈B , and each image set f [Q i] is a subset of some

set Q l∈Q. Q is the coarsest such a partition (i.e., Q has

the fewest number of sets that satisfy the above constraints).
There are two well-known sequential algorithms to solve

this problem. An O (nlog n) time algorithm is given in [1],
and a linear time algorithm appeared later in [2]. Several
parallel algorithms have also appeared in the literature.
In [3], JáJá and Kosaraju provide an O (n) time algorithm
on a n n mesh of processors. Srikant describes an
O (log 2n) time algorithm that uses O (nlog 2n) operations
on the CREW PRAM [4]; Galley and Iliopoulos describe
an O (log n) time algorithm that uses O (nlogn) operations
on the Arbitrary CRCW PRAM [5]; Cho and Huynh provide
an O (logn) time algorithm that requires O (n 3) operations
on the EREW PRAM and O (n 2) operations on the CREW

PRAM [6]. Recently, JáJá and Ryu provide an O (logn)

time algorithm that requires O (nloglog n) operations on
the Arbitrary CRCW PRAM [7]. Note that these parallel
algorithms except in [4] use O (n 1+) memory cells,
where ε is a positive constant.

An Efficient Parallel Algorithm for the Single
Function Coarsest Partition Problem

on the EREW PRAM

Kyeoung- Ju Ha et al. ETRI Journal, Vol. 21, No. 2, June 199922

Manuscript received February 16, 1998; revised March 23, 1999.
This work was supported by GRANT No. KOSEF 951-0100-001-2
from the Korea Science and Engineering Foundation.
a)Electronic mail: kjha@etri.re.kr

In this paper, we present a parallel algorithm that solves
the single function coarsest partition problem in O (log 2n)

time using O (nlog n) operations on the EREW PRAM. The
algorithm uses only O (n) memory cells.

The rest of this paper is organized as follows. In
Section Ⅱ, the PRAM model is reviewed briefly and some
well known results on the model are described. The overall
strategy of our algorithm is explained in Section Ⅲ. The
special case when the graph induced by function f consists
of a set of cycles is handled in Sections Ⅳ and Ⅴ. The
tree nodes and some remaining details are covered in
Section Ⅵ. In Section Ⅶ, some concluding remarks are
presented.

II. PRELIMINARIES

The model of parallel computation used in this paper is
the EREW (Exclusive-Read Exclusive-Write) PRAM (Parallel
Random Access Machine). The PRAM consists of p

synchronous processors, P 0, P 1,…,P p - 1 , all having access

to and exchanging data through a large shared memory.
An EREW PRAM does not allow simultaneous access by
more than one processor to the same memory location.
The detail of this model is referred to [8], [9].

Given a sequence of n elements (x 1 , x 2,…,x n) and an

associative operator + , the prefix sum problem is to
compute the n partial sums defined by s i = x 1 + x 2+…

+ x i, 1≤ i≤n . The optimal algorithm for solving this

problem is given in the following lemma.

Lemma 2.1. [10] The prefix sums of a sequence of n

elements can be computed in O (log n) time using O (n)

operations on the EREW PRAM. □

Sorting a list of n elements can also be performed
optimally as follows.

Lemma 2.2. [11] Given a list of n elements drawn from a
linearly ordered set, the list can be sorted in O (log n) time
using O (nlogn) operations on the EREW PRAM. □

Given a linked list, the list ranking problem is to
compute the distance of each node to the end of the list.

Lemma 2.3. [12] Given a linked list of n nodes, the list
ranking problem can be solved in O (logn) time using O (n)

operations on the EREW PRAM. □

III. THE OVERALL STRATEGY

Given a set S of n elements, an initial partition
B = {B 1, B 2,…, B k } of S , and a function f on S , we

seek a new partition Q = {Q 1, Q 2,…, Q m } of S that

satisfies the following conditions:

1. Each set Q i∈Q is a subset of some set B j∈B .

2. Each image set f [Q i] = {f(x)｜x∈Q i} is a subset of

some set Q l∈Q.

3. Q is the coarsest partition, i.e., Q has the fewest
number of sets that satisfy the above two conditions.

Without loss of generality, we assume that S = {1,2,

…,n } . Hence the input can be specified by two arrays
A f [1..n] and A B [1..n] of size n respectively such that

A f [x] = f(x) , and A B [x] = A B [y] if and only if both x

and y are in the same set of B , for all x and y in S . We
expect to determine the output as an array A Q [1..n] of

size n such that A Q [x] = A Q [y] if and only if both x

and y are in the same set of Q. Thus, the single function
coarsest partition problem can be regarded as a labeling
problem which labels each element of S according to the
final partition Q (Q-labeling), given the function f and the
initial partition B (B -labels). Let f0(x) = x and
f i(x) = f(f i - 1(x)) for i 〉0 . The following simple lemma
from [2] is helpful in motivating our solution.

Lemma 3.1.

(i) ∀x,y S ,A Q [x] = A Q[y] if and only if

A B [x] = A B [y] and A Q [f(x)] = A Q [f(y)] .

(ii) ∀x,y S ,A Q [x] = A Q[y] if and only if

A B [f i(x)] = A B [f i(y)], i = 0,1,…,n . □

We can translate this problem into the following graph
problem (cf. [3]). Construct a directed graph G = (V ,E)

such that V = S = {1,2,…,n} and (x, f(x)) E , ∀x V .
Each node x is B -labeled, i.e., assigned the label A B [x] .

Our objective is to relabel each node such that any two
nodes x and y are assigned the same Q-label if and only if
both x and y are in the same set of Q .

Since the outdegree of each vertex in G is one, the
graph G is a pseudo-forest. Each component of G is a
pseudo-tree in which there is exactly one cycle and all the
paths end in the cycle. Clearly, statements (i) and (ii) of
Lemma 3.1 can be expressed as follows:

ETRI Journal, Vol. 21, No. 2, June 1999 Kyeoung- Ju Ha et al. 23

(i) Any two nodes x and y in V have the same Q-label
if and only if x and y have the same B -label, and
the parents of x and y have the same Q-label.

(ii) Let x = (x 0 , x 1,…, x n) and y = (y 0 , y 1,…, y n) be

two directed paths of length n starting from x and y

respectively. Note that x i = f i(x) and y i = f i(y) ,

i = 0,1,…,n . Then, nodes x and y have the same
Q-label if and only if nodes x i and y i have the

same B -label, where i = 0,1,…,n .

Example 3.1. Given a function f and a partition B repre-
sented by the arrays A f [1..16] = [2,4,6,8,10,12,1,3,5,

7,9,11,14,15,16,13] and A B [1..16] = [1,2,1,1,2,2,3,

3,1,1,3,1,1,2,1,3] . Then, B ={B 1, B 2, B 3} and B 1 =

{1,3,4,9,10,12,13,15}, B 2 = {2,5,6,14} and B 3 = {7,8,

11,16} . The corresponding digraph is shown in Fig. 1.
Note that it consists of two simple cycles. The B -label of
a node is given just outside of the circle. Note that nodes
1, 3, 9 and 13 will have the same Q-label, and nodes 1
and 4 will not have the same Q-label. □

Determining the Q-labels of all the nodes in G can be
done by implementing the following strategy on the directed
graph.

[Step 1] Mark all the cycle nodes in the pseudo-forests.
[Step 2] Assign the Q-labels to the cycle nodes.
[Step 3] Assign the Q-labels to the remaining tree nodes.

We will explain the implementations of these steps in
the next three sections respectively.

Fig. 1. The digraph corresponding to the instance given in
Example 3.1.

IV. FINDING CYCLE NODES

Recall that the input consists of the two arrays A f [1..n]

and A B [1..n] representing the function f and the B -labels
respectively, and these two arrays can be interpreted as a
directed graph whose nodes have been assigned the B -labels.
The following algorithm identifies all the nodes in a cycle
of . G

Algorithm 4.1: Finding Cycle Nodes

Input: Two arrays A f [1..n] and A B [1..n] , and G .
Output: All the cycle nodes are marked.

Step 1: For each edge (x, f(x)) , create its buddy
(f(x) , x) .

Step 2: Construct an adjacency list of the modified
graph and find the Euler tours in the pseudo-
forest by using the procedure in [8], [13]. Then
each pseudo-tree has two Euler tours. Now, a
close observation of the resulting tours as
determined by the successor function of [8], [13]
indicates that there are two Euler cycles for
each pseudo-tree, and each cycle edge (x, f(x))

and its buddy (f(x),x) appear in different Euler
cycles, while each tree edge (y , f(y)) and its
buddy (f(y),y) appear in the same Euler cycle.
See Example 4.1.

Step 3: Determine and mark the nodes on the cycles.

The correctness of Algorithm 4.1 follows the statements
in Step 2 of the algorithm. Step 2 can be done by sorting
the edges to construct an appropriate adjacency list; the
corresponding Euler tours can be constructed easily from
that adjacency list. Hence, Step 2 can be done in O (log n)

time using O (nlog n) operations. Step 3 can be done by
Lemma 2.3 in O (log n) time using O (n) operations. Hence,
we have the following lemma.

Lemma 4.1. Given two arrays A f [1..n] and A B [1..n] ,

Algorithm 4.1 correctly marks all the cycle nodes in
O (logn) time using O (nlogn) operations on the EREW
PRAM. □

Example 4.1. Given a function f represented by the arrays
A f [1..16] = [2,3,4,1,1,2,3,4,1,2,3,4,8,6,8,6] . The

corresponding digraph G is shown in Fig. 2(b). The
modified digraph by Algorithm 4.1(Step 1) is Fig. 2(c). An
adjacency list of the modified digraph G' is Fig. 2(d). Euler
tours from the adjacency list is Fig. 2(e). The cycle nodes

Kyeoung- Ju Ha et al. ETRI Journal, Vol. 21, No. 2, June 199924

(a) Input array.

(b) The digraph G corresponding to Af.

cycle cdge :
{<1,2>,<2,1>,<2,3>,<3,2>,<3,4>,<4,3>,<4,1>,<1,4>}

tree edge :
{<1,9>,<9,1>,<1,5>,<5,1>,<2,10>,<10,2>,<2,6>,<6,2>,
<6,14>,<14,6>,<6,16>,<16,6>,<3,7>,<7,3>,<3,11>,
<11,3>,<4,12>,<12,4>,<8,4>,<4,8>,<8,13>,<13,8>,
<8,15>,<15,8>}

can be identified from the Euler tours, using the property
that a cycle edge and its reverse belong to different Euler
tours while a tree edge and its reverse belong to the same
Euler tour. For example, cycle edges < 1,2 > and < 2,1 >

belong to Euler tours E 2 and E 1 respectively, and tree
edges < 2,6 > and < 6,2 > belong to E 2 alone. The cycle and
tree nodes in the digraph G (Fig. 2(b)) are shown in Fig.
2(f). □

V. LABELING CYCLE NODES

In this section, we consider the coarsest partition problem
for a function whose graph representation consists of a set
of cycles. We begin with a few definitions. Given a string
S and a positive integer i, S i represents the string S
concatenated with itself i times. The smallest repeating
prefix of a string S is the shortest prefix P of S such that
P j = S , for some j 〉0. Note that in this case P is a

Fig. 2. Steps of cycle node detection.

ETRI Journal, Vol. 21, No. 2, June 1999 Kyeoung- Ju Ha et al. 25

(d) Adjacency list.

[E1] :
{<1,5>,<5,1>,<1,4>,<4,12>,<12,4>,<4,3>,<3,7>,

<7,3>,<3,2>,<2,10>,<10,2>,<2,1>,<1,5>,...}

[E2] :
{<1,9>,<9,1>,<1,2>,<2,6>,<6,14>,<14,6>,<6,16>,
<16,6>,<6,2>,<2,3>,<3,11>,<11,3>,<3,4>,<4,8>,

<8,13>,<13,8>,<8,15>,<15,8>,<8,4>,<4,1>,<1,9>,...}

(e) Euler tours E1 and E2 generated from the representation (d).

Cycle nodes :

{1, 2, 3, 4}

Tree nodes :

{5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}

(f) Cycle nodes and tree nodes in the digraph G (Fig. 2(b)).(c) The modified digraph G' by Algorithm 4.1 (Step 1).

period of S. If x is any node of a cycle C of length k,
then C can be represented as the circular string (x, f(x),

f 2(x),…, f k - 1(x)) , together with the B -label string
(A B [x], A B [f(x)], A B [f 2(x)],…, A B [f k - 1(x)]) . Let P be

the smallest repeating prefix of the B -label string of C.
Consider the sets

C i = {f j(x)｜j = 0,…,k - 1 and j = i mod | P | }

where, i = 0,…, | P | - 1 .

Then, by Lemma 3.1 (ii), any two nodes x and y from
the same set C i have the same Q-label, since

A B [f l(x)] = A B [f l(y)], l = 0,1,…,n . Similarly, any two
nodes from different such sets can not have the same
Q-label. Thus, given any two nodes x and y in C,
A Q [x] = A Q[y] if and only if x,y C i , for some i .
If | P | = | C | , the B -label string of C is not repeating, and
hence every node in C has a different Q-label.

Example 5.1. Given the function f and the partition B

introduced in Example 3.1, the corresponding graph has
two cycles C and D. Cycle C and its B-label string are
given by (1, 2,4,8,3,6,12,11,9,5,10,7) and (1, 2,1,

3,1,2,1,3,1,2,1,3) respectively. Hence, the smallest
repeating prefix P of the B -label string is (1, 2,1,3) , and
C 0 = {1,3,9} , C 1 = {2,6,5} , C 2 = {4,12,10} , C 3 = {8,11,7} .
Cycle D and its B -label string are given by (13,14,15,16)

and (1, 2,1,3) respectively, and hence D 0 = {13} ,
D 1 = {14} , D 2 = {15} , D 3 = {16} . Note that the nodes in
C i∪D i, i = 0,1,2,3 , have the same Q-label. If we set
Q i +1 = C i∪D i for i = 0,1,2,3 , the output is given by
A Q [1..16] = [1,2,1,3,2,2,4,4,1,3,4,3,1,2,3,4] . □

Given two distinct cycles C and D, let B C and B D be
their corresponding B -label strings, and let P C and P D be
the smallest repeating prefixes of B C and B D respectively.
We say that P C and P D are cyclic shift equivalent (or
P C≡P D) if and only if one is the cyclic shift of the
other. We also define two cycles C and D to be equivalent
if and only if P C≡P D. Note that C and D need not have
the same length, even if C and D are equivalent. For
example, cycles C and D of Example 5.1 are equivalent.

Let x and y be a pair of nodes such that x∈C and
y ∈D, where C and D are equivalent, and let | P C | = | P D |

= l . Assume that P C = (A B [x],A B [f(x)],…,A B [f l - 1(x)])

and P D = (A B [y],A B [f(y)],…,A B [f l - 1(y)]) and A B [f i(x)]

= A B [f i(y)], i = 0,1,…, l - 1 . Clearly, this can be
achieved by shifting P C or P D cyclically whenever C and

D are equivalent. Then, f i(x) and f i(y) must have the
same Q-label, i = 0,1,…, l - 1 . Moreover, if we let

C i = { f j(x) | j = 0,…, |C | 1 and j = i mod l },
where, i = 0,…, l 1 ,

and
D i = { f j(y) | j = 0,…, |D | 1 and j = i mod l },

where, i = 0,…, l 1 ,

then all the nodes in C i∪D i have the same Q-label. That
is, ∀x,y ∈C∪D , A Q [x] = A Q [y] if and only if both x

and y are in C i∪D i, for some i .
Now, we describe an algorithm for solving the single

function coarsest partition problem when the input consists
of a set of cycles.

Algorithm 5.1: Cycle Node Labeling

Input: Two arrays A f [1..n] and A B [1..n]

representing the input function f and the initial
partition B respectively. The graph
representation of f consists of a set of cycles.

Output: An array A Q [1..n] such that A Q[x] = A Q [y] if
and only if both x and y have the same Q-label.

Step 1: Rearrange the input arrays Af and AB such that
each cycle (x, f(x),…, fk - 1(x)) and its B -label
string (A B [x], A B [f(x)],…, A B [fk - 1(x)])

occupy consecutive memory locations.
Step 2: Partition the input cycles according to the

cyclic shift equivalence relation defined above,
and assign the appropriate Q-labels as above.

The correctness of Algorithm 5.1 follows the discussion
preceding the introduction of the algorithm. We now
consider the implementation of the algorithm. Step 1 can
be implemented as follows. First, we label each cycle with
one of the indices of the cycle, and then rank all the
nodes in the cycle starting from the chosen index. We can
do this by using the list ranking which runs in O (logn)

time using O (n) operations. Once this information is
available, we rearrange the input arrays A f and A B so that
each cycle and its B -label string occupy consecutive
memory locations according to the cyclic ordering. Hence,
Step 1 can be done in O (logn) time using O (n) operations.

Kyeoung- Ju Ha et al. ETRI Journal, Vol. 21, No. 2, June 199926

Step 2 can be divided into two substeps. In the first
substep, we find the smallest repeating prefix of the
B -label string of each cycle that can be done in O (logn)

time using O (n) operations on the EREW PRAM [14]. In
the second substep, we partition the cycles into equivalence
classes and deduce the Q-label of the nodes. This substep
can be done by first computing a minimal starting point
for each cycle and then by sorting the B -label strings
in O (log 2n) time using O (nlogn) operations. Please refer to
[15] for detailed information. Hence, we have the following
lemma.

Lemma 5.1. The single function coarsest partition problem
can be solved in O (log 2n) time using O (nlogn) operations
on the EREW PRAM if the graph representation of the
function is a set of cycles. □

VI. LABELING TREE NODES

Let G = (V ,E) be the directed graph corresponding to
an instance of the single function coarsest partition problem.
Assume that all the cycle nodes have already been Q-labeled.
In this section, we describe how to Q-label the remaining
unlabeled nodes in G. The unlabeled nodes can be classified
into two types; type one consists of the nodes having the
same Q-labels as the cycle nodes, and type two consists
of the remaining nodes. The following lemma is important
to Q-label type one tree nodes. We assume that each tree
T has been rooted at an arbitrary node of the cycle.

Lemma 6.1. Let T ⊂G be a tree whose root r belongs to
the cycle C = (r = f0(r), f(r),…, fk - 1(r)) of length k . Let
x be any node at level l in T , where the level of r is
zero. Then, A Q [x] = A Q [f ((k - (l mod k)) mod k)(r)] if and only

if A B [f j(x)] = A B [f ((k - (l mod k) + j) mod k)(r)] , j = 0,…, l . In

other words, x has the same Q-label as one of the cycle
nodes of its pseudo-tree if and only if each node in the
path from x to r has the same B -label as its corresponding
node in the cycle.

Proof: The proof follows Lemma 3.1 (ii). See Example
6.1. □

Example 6.1. Given a function f and a partition B

represented by the arrays A f [1..13] = [2,3,4,5,6,7,8,

1,1,9,9,11,12] and A B [1..13] = [1,2,1,3,1,2,1,3,3,

Fig. 3. The digraph corresponding to the instance given
in Example 6.1.

1,1,3,1] . Then B = {B 1, B 2, B 3} , and B 1 = {1,3,5,7,10,

11,13} , B 2 = {2,6} , and B 3 = {4,8,9,12} . The corresponding
digraph is shown in Fig. 3. The B -label of a node is
given just outside the circle representing the node. Note
that node 4, 8, 9 will have the same Q-label by lemma
3.1 (ii). Nodes 5 and 13 can not have the same Q-label
since the B -labels of their parents are different. □

Lemma 6.1 implies that if x is a tree node at level l

such that A B [x]≠A B [f ((k - (l mod k)) mod k)(r)] , then no
descendant node of x has a Q-label that appears in any of
the cycles in G. Below is our algorithm to Q-label type 1
tree nodes.

Algorithm 6.1: Type 1 Tree Node Labeling

Input: A pseudo-forest G = (V, E). All nodes in the
cycles of G have been Q-labeled and stored in
consecutive memory locations. Each tree has been
rooted at a node of its cycle.

Output: The Q-labels of type 1 tree nodes, and a forest
F' consisting of type 2 tree nodes.

Step 1: For each tree node x, compute its level.
Step 2: Each tree node reads the B -label and the

Q-label of its corresponding node in the cycle
(Lemma 6.1), and compares its B -label with
that of the cycle node. Mark x if they are the
same.

Step 3: For each unmarked node, unmark all of its
descendants. Note that, after this step, all the
marked nodes are type 1 tree nodes, and the
remaining tree nodes are type 2 tree nodes.

ETRI Journal, Vol. 21, No. 2, June 1999 Kyeoung- Ju Ha et al. 27

Step 4: Q-label all the marked nodes with the Q-labels
of their corresponding nodes in the cycles.

Step 5: Let F be the forest consisting of type 2 tree
nodes. Partition F into sets of trees
{S 1, S 2,…,S k } such that the parents of the

roots of the trees in each set S i have the

same Q-label, i = 1,2,…,k . Construct a new
forest F′by combining the trees of S i into a

single tree T i . The root of T i is a dummy

node with the roots of the trees in S i as its

children. Note that any two nodes from different
such trees can not have the same Q-label.

Lemma 6.2. Algorithm 6.1 correctly finds the Q-labels of
all type 1 tree nodes and constructs the forest F′with
type 2 tree nodes, it runs in O (logn) time using O (nlog n)

operations on the EREW PRAM.

Proof: The correctness of Algorithm 6.1 is clear by
Lemma 6.1. Steps 1 and 3 can be easily done by using
the Euler tour technique in O (log n) time using O (nlogn)

operations. Step 4 is trivial to do. To handle the read
conflicts in Step 2, we can use the sorting algorithm in
Lemma 2.2. Step 5 can also be done by using the sorting
algorithm, the lemma then follows. □

Now, we Q-label type 2 tree nodes. We can consider
each tree in F ' separately since any two nodes from
different trees in F ' cannot have the same Q-label. Let x
and y be any two nodes in a tree T of F'. Then, we can
easily show that x and y have the same Q-label if and
only if the level l of x is the same as that of y in T
and f i(x) = f i(y) , for all i = 0,1,…, l 1 . The following
algorithm computes the Q-labels of type 2 tree nodes by
utilizing this property.

Algorithm 6.2: Type 2 Tree Node Labeling

Input: Tree T with n nodes represented in A f [1..n]

and A B [1..n] . We assume that the B -label and

the Q-label of the root are unique values and
the parent of the root is the root. We also
assume that every node v knows its own level
level(v).

Output: An array A Q [1..n] such that A Q[x] = A Q [y] if

and only if both x and y have the same Q-label.

Step 1: If the depth of the tree T is < 2, Q-label
the nodes in level 1 in such a way that nodes
with the same B -label should have the
same Q-label. Return.

Step 2: Let N E and N O be the numbers of nodes in

even levels and in odd levels respectively. If
depth(T) = 2 or N E < N O, then select even

levels. Select odd levels otherwise.
Step 3: Assign new B -labels to the nodes on the

selected levels in such a way that nodes
whose B -labels are the same and whose

parents have the same B-label should have the
same new B -label. For each selected node v ,
set A f[v] as A f[A f[v]] , and set level(v) as

level(v)/ 2 .
Step 4: Let T S be the tree composed of the root and

the selected nodes in Step 2. Perform Steps 1, 2,
and 3 recursively to Q-label the nodes of T S .

Step 5: Q-label the nodes that were not selected in
Step 2 in such a way that nodes whose B-labels
are the same and whose parents have the same

Q-label should have the same Q-label.

Lemma 6.3. Algorithm 6.2 computes the Q-labels of all
type 2 tree nodes correctly. The algorithm runs in O (log n)

time using O (nlogn) operations on the EREW PRAM.

Proof: The correctness of Algorithm 6.2 is also obvious.
Steps 1, 2, 3, and 5 can be done easily in O (logn) time
using O (nlogn) operations on our model by using Lemmas
2.1 and 2.2. When depth(T) 〉2, the number of nodes in
T S is at most the half number of nodes in tree T . Hence

the total execution time T (n) and the total number of
operations W (n) can be described by the following
recurrence relations,

T (n) = T (n/ 2) + O (logn),

W (n) = W (n/ 2) + O (nlogn).

Clearly, T (n) = O (log 2n) and W (n) = O (nlog n) . □

Also we show without difficulty that the memory needed
for performing our algorithms is only O (n) . Hence, we
have the following theorem.

Theorem 6.1. The single function coarsest partition problem
can be solved in O (log 2n) time using O (nlogn) operations

Kyeoung- Ju Ha et al. ETRI Journal, Vol. 21, No. 2, June 199928

on the EREW PRAM. The memory used for the algorithm
is O (n) . □

VII. CONCLUSION

In this paper we devised an efficient parallel algorithm
to solve the single function coarsest partition problem
which runs in O (log 2n) time using O (nlog n) operations on
the EREW PRAM with only O (n) memory cells. Compared
with the previous PRAM algorithms that consume O (n 1+)

memory cells for some constant > 0, our algorithm
consumes less memory cells without increasing the total
number of operations.

The multi-function coarsest partition problem may be a
more interesting problem, since its efficient solution can be
applied for regular language recognition, text editor
construction and string matching, etc. However this
problem is not easy to solve, hence there is no known
efficient parallel algorithm for solving the problem yet. Any
efficient parallel algorithm for the coarsest partition
problem is meaningful and is worthy of a future research.

REFERENCES

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design
and Analysis of Computer Algorithms, Addison-Wesley,
Reading, MA, 1974.

[2] R. Paige, R. E. Tarjan, and R. Bonic, "A Linear Time
Solution to the Single Function Coarsest Partition Problem,"
Theoretical Computer Science, Vol. 40, 1985, pp. 67－84.

[3] J. JáJá and S. R. Kosaraju, "Parallel Algorithms and Planar
Graph Isomorphism and Related Problems," IEEE Trans. on
Circuits and Systems, Vol. 35, No. 3, 1988, pp. 304－311.

[4] Y. N. Srikant, "A Parallel Algorithm for the Minimization
of Finite State Automata," Intern. J. Comput. Math., Vol.
32, 1990, pp. 1－11.

[5] C. N. Galley and C. S. Iliopoulos, "A Simple O(nlogn)
Cost Parallel Algorithm for the Single Function Coarsest
Partition Problem," Parallel Processing Letters, 1994.

[6] S. Cho and D. T. Huynh, "The Parallel Complexity of
Coarsest Set Partition Problems," Information Processing
Letters, Vol. 42, 1992, pp. 89－94.

[7] J. JáJá and K.W. Ryu, "An Efficient Parallel Algorithm for
the Single Function Coarsest Partition Problem," Theoretical
Computer Science, Vol. 129, 1994, pp. 293－307.

[8] J. JáJá, An Introduction to Parallel Algorithms, Addison-
Wesley, 1992.

[9] R. M. Karp and V. Ramachandran, "Parallel Algorithms for
Shared-Memory Machines," J. Van. Leewen, Ed., Handbook
of Theoretical Computer Science, Vol. A: Algorithms and
Complexity, MIT Press, Cambridge, MASS, 1990.

[10] R. E. Lander and M. J. Fisher, "Parallel Prefix
Computation," J. ACM, 27, 1980, pp. 831－838.

[11] R. Cole, "Parallel Merge Sort," SIAM J. Computing, 17(4),
1988, pp. 770－785.

[12] R. J. Anderson and G. L. Miller, "Deterministic Parallel
List Ranking," Algorithmica, Vol. 6, No. 6, 1991, pp.
859－868.

[13] R. E. Tarjan and U. Vishkin, "An Efficient Parallel
Biconnectivity Algorithms," SIAM J. Computing, 14(4),
1985, pp. 862－874.

[14] A. Czumaj et al., "Work-Time-Optimal Parallel Algorithms
for String Problems," Proc. 27th ACM Symp. on Theory of
Computing, 1995, pp. 713－722.

[15] K. J. Ha and K. W. Ryu, "An Optimal-Work Parallel
Algorithm for String Sorting on the EREW PRAM,"
Journal of KISS(A): Computer Systems and Theory, Vol.
23, No. 6, June 1996, pp. 563－572.

Kyeoung-Ju Ha received the B.S., M.S.
and Ph. D. degrees in computer
engineering from Kyungpook National
University, Taegu, Korea, in 1991, 1993
and 1996, respectively. She joined ETRI
in 1996, and she is currently working as
a senior member of engineering staff in
Information Security Technology Division.

Her research interests are design and analysis of parallel
algorithms for combinatorial problems, information and network
security.

Kyo-Min Ku received his B.S. and M.S.
degrees in computer engineering from
Kyungpook National University in 1993
and 1995, respectively. From 1995 to
1999, he worked as a researcher at the
Korea Research and Development
Information Center (KORDIC). He is
currently a full time instructor in Taegu

National University of Education, Taegu, Korea. His research
interests include parallel processing, security, and multimedia.

Hae-Kyeong Park received the B.S.
degree in computer science from the
Changwon National University, Changwon
in 1990, and the M.S. and Ph.D. degree
in computer engineering from the
Kyungpook National University, Taegu in
1992 and 1997, respectively. In 1997, she
joined ETRI as a Senior Member of
Research Staff. She is presently in Internet

Technology Department, Switching and Transmission Laboratory,
ETRI. Her research interests are design and analysis of parallel
algorithms for combinatorial problems and fast address lookup
algorithm for IP routing.

ETRI Journal, Vol. 21, No. 2, June 1999 Kyeoung- Ju Ha et al. 29

Young-Kook Kim received the B.S. and
M.S. degree in electrical engineering from
Kyungpook National University, Taegu,
Korea, in 1983 and 1987, respectively. He
worked as a researcher at the Naval and
Ship Research Institute. From 1987 to
1998, he worked for ETRI as a senior
member of engineering staff in
Information Security Technology Division.

He has been established From 2 Information & Communications
Corporation, Taejon, Korea, in 1998, where he is currently the
president. His research interests are design and analysis of
parallel processing, information data security and network
computing.

Kwan-Woo Ryu received the B. S.
degree in electrical engineering from
Kyungpook National University, Taegu,
Korea, in 1980, and the M.S. degree in
computer science from the Korea
Advanced Institute of Science and
Technology, Seoul, in 1982. He received
his Ph.D. degree from the Department of
Computer Science at the University of

Maryland, College Park, in 1990. Currently, he is an associate
professor in the Department of Computer Engineering,
Kyungpook National University, Korea. His main research
interests are design and analysis of parallel algorithms for
combinatorial problems, and computer graphics.

Kyeoung- Ju Ha et al. ETRI Journal, Vol. 21, No. 2, June 199930

