ON PRIME SUBMODULES

A. AZIZI AND H. SHARIF

Dept. of Mathematics,

College of Science, Shiraz University, Shiraz 71454, Iran.

E-mail: azizi@math.susc.ac.ir.

E-mail: sharif@sun01.susc.ac.ir.

Abstract The height of a prime submodule and a module version of the Krull dimension are studied.

1. Introduction

Throughout this paper all rings are commutative with identity and all modules are unitary. A proper submodule N of a module M over a ring R is said to be prime (P-prime) if $ra \in N$ for $r \in R$ and $a \in M$ implies that either $a \in N$ or $r \in (N : M) = P$ (see, for example, [4], [6].)

Let K be a prime submodule of an R-module M. We say that K is minimal prime over a submodule N of M if $N \subseteq K$ and there does not exist a prime submodule L of M such that $N \subseteq L \subset K$. It is said that ht K = n, if there exists a chain $K_n \subset \cdots \subset K_2 \subset K_1 \subset K_o = K$ of prime submodules $K_i (o \leq i \leq n)$ of M, but there is no longer such chain.

It is said that the generalized principal ideal theorem (the GPIT) holds for M, if for every positive integer n and prime submodule N of M minimal over a submodule generated by n elements, ht $N \leq n$.

2. The generalized principal ideal theorem for modules

From now on, S is a multiplicatively closed subset of R.

Received December 16, 1997.

¹⁹⁹¹ AMS Subject Classification: 13E05.

Key words and phrases: Prime submodules, weak multiplication modules, Envelope and radical of submodules, rank and dimension of modules.

LEMMA 1. Let P be a prime ideal of R such that $P \cap S = \emptyset$ and M be an R-module. Then there exists a one-to-one correspondence between the P-prime submodules of M and the $S^{-1}P$ -prime submodules of $S^{-1}M$.

Proof. See [5] §1 Proposition 1.

In the following lemma R is an integral domain and K is the field of quotients of R.

LEMMA 2. If M is an R-module and B a submodule of M such that $KB \neq KM$, then

- (i) $N = KB \cap M$ is a 0-prime submodule and KN = KB.
- (ii) B is prime if and only if $B = KB \cap M$.

Proof. See [5] §1 corollaries after Propositions 2 and 3.

LEMMA 3. Let M be an R-module and B a submodule of M. If $S^{-1}B \neq S^{-1}M$, then $(B:M) \cap S = \emptyset$. Conversely, if $(B:M) \cap S = \emptyset$ and B is a prime submodule of M, then $S^{-1}B \neq S^{-1}M$, and $ht B = ht S^{-1}B$. Also the following conditions are equivalent.

- (i) B is a prime submodule of M and $S^{-1}B \neq S^{-1}M$.
- (ii) $S^{-1}B$ is a prime submodule of $S^{-1}M$ and $B = S^{-1}B \cap M$.

Proof. The proof is easy by use of the above lemmas and [5], §1 Proposition 2.

We know that if N is a prime submodule of an R-module M, then (N:M) is a prime ideal of R (see, for example, [4]).

THEOREM 2.1. Let M be an R-module and B be a submodule of M which is generated by n elements. If N is a minimal prime submodule over B such that (N:M) is a minimal prime ideal of R, then $ht N \leq n$.

Proof. First let (N:M)=0, that is R is an integral domain. Let K be the field of quotients of R. It is easy to see that the rank of the subspace KB of the vector space KA over the field K is not greater than n. That is, $rankKB \le n$. Now by Lemmas 2 and 3, $KN \cap M = N$. Hence $B \subseteq KB \cap M \subseteq KN \cap M = N$ and since $KB \subseteq KN \subset KM$, by Lemma 2, $KB \cap M$ is a prime

submodule of M. So $KB \cap M = N$ and so KB = KN. One can see that in a vector space every proper subspace W is prime and ht W = rank W. By Lemma 3 we have that ht N = ht KN. So $ht N = ht KN = ht KB = rank KB \le n.$

Now we return to the general case. Let the following chain be a chain of prime submodules of M, $N_{n+1} \subset N_n \subset \cdots \subset N_1 \subset N_o =$ N. As (N:M) is a minimal prime ideal, $(N_i:M)=P \ \forall \ i=1$ $1, 2, \dots, n+1$. It is straightforward to prove the following,

- (i) $\frac{N}{N_{n+1}}$ is a minimal prime submodule over the submodule $\frac{B+N_{n+1}}{N_{n+1}} \text{ of the } \frac{R}{P} \text{ -module } \frac{M}{N_{n+1}}.$ (ii) $\frac{B+N_{n+1}}{N_{n+1}} \text{ is generated by } n \text{ elements.}$

(iii)
$$\left(\frac{N}{N_{n+1}}:_{\frac{R}{P}}\frac{M}{N_{n+1}}\right) = \frac{(N:_{R}M)}{P} = 0.$$

Therefore, by the first case, $ht \frac{N}{N_{n+1}} \leq n$ which is a contradiction with the following chain of prime submodules

$$0 = \frac{N_{n+1}}{N_{n+1}} \subset \frac{N_n}{N_{n+1}} \subset \cdots \subset \frac{N_2}{N_{n+1}} \subset \frac{N_1}{N_{n+1}} \subset \frac{N}{N_{n+1}}.$$

COROLLARY 1. The GPIT holds for every divisible module over an integral domain.

Proof. Let M be a divisible R-module and N be a proper submodule of M. Then easily one can show that (N:M)=0.

In [2] it is proved that if R is an integral domain, then the PIT holds for every R-module if and only if R is a field. (*)

Now we prove the following result.

COROLLARY 2. Let R be a ring. Then the GPIT (or the PIT) holds for every R- module if and only if dim R = 0.

Proof. We only need to prove that if the PIT holds for every R module, then dim R = 0. If P is a prime ideal of R, we show that the PIT holds for every $\frac{R}{P}$ -module, and so by (*) in above $\frac{R}{P}$ is a field.

Let B be a cyclic submodule of the $\frac{R}{P}$ -module M and N be minimal prime over B. It is obvious that N is minimal prime over the cyclic submodule B of M as an R-module. So $ht_R N \leq 1$ and hence $ht_R N \leq 1$.

The next lemma is due to McCasland and Moore [6], however, we shall provide a simpler proof for it.

LEMMA 4. Let M be a finitely generated R-module and B a submodule of M. If $(B:M) \subseteq P$, where P is a prime ideal of R, then there exists a prime submodule N of M containing B such that (N:M) = P.

Proof. Let $S = \{C \leq M : B \subseteq C, (C:M) \subseteq P\}$. By Zorn's Lemma S has a maximal element N. We show that N is prime and (N:M) = P. Let $ra \in N$ such that $r \notin (N:M)$ and $a \notin N$. So $N \subset N + rM$ and $N \subset N + Ra$. Let $r_1 \in (N + Ra:M) - P$, and $r_2 \in (N + rM:M)$. Then $r_1M \subseteq N + Ra$. Hence $r_1rM \subseteq N$. Since $r_2M \subseteq N + rM$, $r_1r_2M \subseteq N + rr_1M \subseteq N$. So $r_1r_2 \in (N:M) \subseteq P$ and hence $r_1 \in P$ or $r_2 \in P$, which is a contradiction. Now if $\bar{M} = \frac{M}{N}$, we have $(N + PM:M) = (P\bar{M}:\bar{M}) = Ann(\frac{\bar{M}}{P\bar{M}}) \subseteq \sqrt{Ann(\frac{\bar{M}}{P\bar{M}})} = \sqrt{Ann(\bar{M}) + P} = \sqrt{(N:M) + P} = P$. So $(N + PM:M) \subseteq P$. Thus N = N + PM. Hence $PM \subseteq N + PM = N$. That is, (N:M) = P.

Recall that an R-module M is called a weak multiplication module provided that for every prime submodule N of M there exists an ideal I of R such that N = IM [1]. In this case we have N = (N:M)M and it is easy to see that $ht N \leq ht (N:M)$.

THEOREM 2.2. Let R be a Noetherian domain, M be a finitely generated weak multiplication R -module and N be a minimal prime submodule over Ra for $a \in M$. Then $ht \ N = 1$, if (Ra : M)M = Ra and Ann(a) = 0.

Proof. i) Let (N:M)=P and S=R-P. Then $S^{-1}M$ is a finitely generated weak multiplication module over the Noetherian domain $S^{-1}R$ and $Ann_{S^{-1}R}(\frac{a}{1})=0$. Moreover, $ht\ N=ht\ S^{-1}N$ by Lemma 3, and $S^{-1}N$ is a minimal prime over $S^{-1}R(\frac{a}{1})$. So we can assume that R is a local domain with the maximal ideal m. We show that (Ra:M) is a principal ideal and (N:M) is a minimal prime ideal over (Ra:M). Since (Ra:M)M=Ra, let

 $a = \sum_{i=1}^{n} r_i m_i$, where $r_i \in (Ra : M)$ and $m_i \in M$. We consider two cases.

Case 1: n = 1, we claim that $(Ra:M) = Rr_1$. Let $r \in (Ra:M)$. So $rM \subseteq Ra$. Hence $rm_1 = ta = tr_1m_1$ for some $t \in R$ and so $(r - tr_1)m_1 = 0$. Thus $(r - tr_1)a = r_1(r - tr_1)m_1 = 0$. Therefore, $(r - tr_1) \in Ann(a) = 0$, and so $r = tr_1$. That is, $(Ra:M) \subseteq Rr_1$, and $r_1 \in (Ra:M)$. Therefore, $(Ra:M) = Rr_1$.

Case 2: n > 1, let $r_i m_i = t_i a$, for some $t_i \in R$ for all i. One can assume that $t_j \notin m$ for some j, since if $t_i \in m$ for all i, then $a = \sum_{i=1}^n t_i a$ and hence $1 = \sum_{i=1}^n t_i \in m$ which is a contradiction. Now if $t_j \notin m$, for some j, we have $a = t_j^{-1} r_j m_j$ and the result follows by case 1.

Now we show that (N:M) is a minimal prime ideal over the principal ideal (Ra:M). If $(Ra:M)\subseteq Q\subseteq (N:M)$, where Q is a prime ideal, by Lemma 4 there is a prime submodule N_1 of M containing Ra such that $(N_1:M)=Q$. Since M is weak multiplicative, $N_1=(N_1:M)M=QM\subseteq N$, and hence $N_1=N$. So $Q=(N_1:M)=(N:M)$. Now (N:M) is a minimal prime ideal over the principal ideal (Ra:M), so by the Krull Principal Ideal Theorem ht $(N:M) \le 1$ and obviously we have ht $N \le ht$ $(N:M) \le 1$. Since $AnnM \subseteq Ann(a) = 0$, by Lemma 4 there exists a prime submodule T such that $(T:M) = 0 \subset (N:M)$ and hence $T=(T:M)M \subset (N:M)M=N$, so ht N=1.

PROPOSITION 1. Let R be a PID, F a free R-module of finite rank and B a submodule of F which has a minimal generator with n elements. Let N be minimal prime over B. If (N:F)=0, then $ht \ N=n$.

Proof. We know that there exists a basis $\{x_1, x_2, \dots, x_m\}$ of F, an integer $d(1 \le d \le m)$ and nonzero elements r_1, r_2, \dots, r_d of R such that $r_1|r_2|\cdots|r_d$ and $\{r_1x_1, r_2x_2, \cdots, r_dx_d\}$ is a basis of N.

For all $1 \leq i \leq d$, $r_i x_i \in N$ and $0 \neq r_i \notin (N:F) = 0$. Then $x_i \in N$ and so $\{x_1, x_2, \cdots, x_d\}$ is a basis of N. Let $N_k = Rx_1 + Rx_2 + \cdots + Rx_k$, $1 \leq k \leq d$. We show that N_k is a prime submodule of F. If $ry \in N_k$, $y = \sum_{i=1}^m t_i x_i$. Then $ry = \sum_{i=1}^m rt_i x_i \in N_k$, and hence $rt_i = 0$ for all $i, i = k + 1, \cdots, m$. If

r=0, then $r \in (N_k : F)$, otherwise $t_i=0$ for all $i=k+1, \dots, n$. Therefore, $y \in N_k$. By the following chain,

$$0 \subset N_1 \subset \cdots \subset N_{d-2} \subset N_{d-1} \subset N_d = N$$

we have $d \le ht$ N. So $n \le d \le ht$ N $\le n$ by Theorem 2.1.

Now we show that the condition (N : F) = 0 in Proposition 9 is necessary.

EXAMPLE. Let $\{x_1, x_2, \dots, x_m\}, m > 2$ be a basis of F and N be generated by $x_1, px_2, px_3, \dots, px_m$. One can easily show that $ht \ N = 2$, although N is minimal over N which is generated by m elements.

3. A module version of Krull dimension

DEFINITION 3.1. The dimension of a module M (dim M) is defined by

 $\sup\{ht \ N : N \text{ is a prime submodule of } M\}.$

if $\operatorname{spec}(M) \neq \emptyset$, otherwise it is defined to be -1.

Let S be a multiplicatively closed set. Then by Lemmas 1 to 3 one can easily show that $dim S^{-1}M \leq dim M$. Also if M is a finitely generated faithful module, then by Lemma 4, if $P_0 \subset P_1 \subset P_2 \subset \cdots \subset P_m$ is a chain of prime ideals in the ring R, then there exists a chain of prime submodules $N_0 \subset N_1 \subset N_2 \subset \cdots \subset N_m$ in M and hence $dim R \leq dim M$.

We recall that if R is an integral domain with the quotient field K, the rank of an R-module M is defined to be the maximal number of elements of M linearly independent over R. We have rank M= the dimension of the vector space KM over K [8].

THEOREM 3.1. If R is a Dedekind domain which is not a field and M is a finitely generated torsion-free R-module, then if N is a prime submodule,

$$([)(i)] dim M = rank M.$$
 $([)(ii)] ht N + dim \frac{M}{N} = dim M.$

Proof. i) First let R be a PID and M be a free module of finite rank over R. If N is a prime submodule of M, we have two cases. If (N:M)=0, by the proof of Proposition 1, $ht \ N \leq rankM$. If $(N:M)\neq 0$, let $(N:M)=. One can prove that there is a basis <math>\{x_1,x_2,\cdots,x_m\}$ for M such that $N=< x_1,x_2,\cdots,x_k,px_{k+1},px_{k+2},\cdots,px_m>$ and $k\leq m-1$, besides $ht \ N=k+1$. So $dim M\leq rank M$.

If $\{x_1, x_2, \dots, x_m\}$ is a basis of M, one can easily prove that $N = \langle x_1, x_2, \dots, x_{m-1}, px_m \rangle$ is a prime submodule and ht N = m and hence $m = rankM \leq dimM$.

Now we prove (i) for every finitely generated torsion-free module M over the Dedekind domain R. Let $0 \neq P$ be a prime ideal of R, and S = R - P, then by Lemmas 2 and 3, we have $dim S^{-1}M \leq dim M$. Since $S^{-1}M$ is finitely generated torsion-free over the PID $S^{-1}R$, it is a free module, so by the first step $rank S^{-1}M = dim S^{-1}M$. Also obviously one can check that $rank M = rank S^{-1}M$. Hence $rank M \leq dim M$.

Let N be a prime submodule of M. If $(N:M) = P \neq 0$, then let S = R - P, so $ht \ N = ht \ S^{-1}N \leq dim S^{-1}M$, and since $S^{-1}M$ is free, $dim S^{-1}M = rank S^{-1}M = rank M$. If (N:M) = 0, then there exists a prime ideal P such that $(N:M) \subset P$. By Lemma 4 there exists a prime submodule N_1 such that $N \subset N_1$ and $(N_1:M) = P$. From above we have $ht \ N < ht \ N_1 \leq rank M$.

ii) Evidently $ht \ N + dim \frac{M}{N} \leq dim M$. If (N:M) = 0, then $\frac{M}{N}$ is a finitely generated torsion-free R-module, so $dim \frac{M}{N} = rank \frac{M}{KN} = rank_K KM - rank_K KN = rank M - rank_K KN = dim M - rank_K KN$. One can show that in a vector space V, for every proper subspace W, $rank W = ht \ W$, and hence $rank_K KN = ht \ KN$. Also by Lemma 3 $ht \ KN = ht \ N$. So $dim \frac{M}{N} = dim M - ht \ N$.

If $(N:M) \neq 0$, then let (N:M) = P and S = R - P. By Lemma 3, $ht \ N = ht \ S^{-1}N$. Also we show that $dimS^{-1}\frac{M}{N} = dim\frac{M}{N}$. As we said $dimS^{-1}\frac{M}{N} \leq dim\frac{M}{N}$. Let $dim\frac{M}{N} = t$. So there is a chain of prime submodules $N \subset N_1 \subset \cdots \subset N_t$. So by Lemma 3, $S^{-1}N \subset S^{-1}N_1 \subset \cdots \subset S^{-1}N_t$ is a chain of prime submodules of $S^{-1}M$. So $dimS^{-1}\frac{M}{N} = dim\frac{M}{N}$. Similarly it is proved that $dimM = dimS^{-1}M$. Thus we can as-

sume that M is a free module of finite rank over the local PID R. Let dimM=m. So $0 \neq (N:M)=$ where p is a prime element in R and by part (i) dimM=rankM=m. It is easy to show that there is a basis $\{x_1,x_2,\cdots,x_m\}$ such that $N=< x_1,x_2,\cdots,x_k,px_{k+1},px_{k+2},\cdots,px_m>$ and ht N=k+1. Then the following is a chain of prime submodules of $\frac{M}{N}, \frac{N}{N} \subset \frac{< x_1,\cdots,x_{k+1},px_{k+2},\cdots,px_m>}{N} \subset \frac{< x_1,\cdots,x_{k+2},px_{k+3},\cdots,px_m>}{N} \subset \frac{< x_1,\cdots,x_{m-1},px_m>}{N}$. Therefore $dim \ \frac{M}{N} \geq m-k-1$, then ht $N+dim \frac{M}{N} \geq m=dimM$ as required.

For a submodule B of an R-module M, the envelope of B, E(B) is defined to be the set of all $x \in M$ for which there exist $r \in R$, $a \in M$ such that x = ra and $r^n a \in B$ for some non-negative integer n. The intersection of all prime submodules of M containing B is denoted by rad B. We say that M satisfies the radical formula (s.t.r.f.) if for every submodule B of M, rad B = < E(B) >.

PROPOSITION 2. Let R be an integral domain and M a divisible R-module. Let B be a proper submodule of M. Then

- (i) E(B) is a submodule of M.
- (ii) If $E(B) \neq M$, then E(B) is the only minimal prime submodule of M over B.
- (iii) Let $E(Rx) \neq M$. If Ann(x) = 0, then ht E(Rx) = 1 and if $Ann(x) \neq 0$, then ht E(Rx) = 0.
 - (iv) M s.t.r.f.
 - (v) If M is finitely generated, then rank M=dim M+1.
- Proof. i) Let $ra, sb \in E(B)$, for nonzero elements $r, s \in R$ and $a, b \in M$ and $n \in \mathbb{N}$ such that $r^n a, s^n b \in B$. Since M is divisible, there exists $c \in M$ such that rsc = ra sb. Hence $(rs)^{n+1}c = s^n r^{n+1}a r^n s^{n+1}b \in B$. It means that $ra sb \in E(B)$. Hence E(B) is a submodule of M.
- ii) First we show that if $ra \in E(B)$, where $0 \neq r \in R$, $a \in M$ and $r^n a \in B$ for some $n \in \mathbb{N}$, then $a \in E(B)$. (**)

There exists an element c of M such that rc = a. So $r^{n+1}c = r^na \in B$, that is, $a = rc \in E(B)$. Now let $ra \in E(B)$ and $0 \neq r \in R$ and $a \in M$. Then there exist $s \in R$ and $b \in M$ such that ra = sb and $s^nb \in B$ for some $n \in \mathbb{N}$.

If s = 0, then $ra = 0 \in B$ and so by (**), $a \in E(B)$. Otherwise since $rs \neq 0$ and $(rs)^{n+1}a = r^ns^{n+2}b \in B$, by (**) we have $a \in E(B)$. Therefore, E(B) is a prime submodule of M.

Let N be a minimal prime submodule of M over B. So $B \subseteq E(B) \subseteq N$. Since E(B) is prime, N = E(B).

iii) By Corollary 1 and ii) we have $ht E(Rx) \leq 1$. Also $E(0) \subseteq E(Rx)$.

Now if Ann(x) = 0 and $ht \ E(Rx) = 0$, then E(Rx) = E(0). Since $x \in E(Rx) = E(0)$, there exist $r \in R$ and $n \in \mathbb{N}$ such that x = ra and $r^n a = 0$. So $r^n \in Ann(x) = 0$ and hence r = 0. That is, x = 0 and hence Ann(x) = R which is a contradiction.

Let $Ann(x) \neq 0$, and $0 \neq r \in Ann(x)$. Then $rx \in E(0)$ and by the proof of Corollary 1, (E(0):M)=0. So $x \in E(0)$, since E(0) is prime. That is, $Rx \subseteq E(0) \subseteq E(Rx)$ and by (ii) E(0) = E(Rx). Therefore, $ht \ E(Rx) = 0$.

iv)Let B be a submodule of M. If E(B) = M, then $M = E(B) \subseteq rad \ B \subseteq M$. So let $E(B) \neq M$. From (i) and (ii) we have

$$E(B) \subseteq radB = \bigcap_{\substack{Nprime \ B \subset N}} N \subseteq E(B).$$

v) Obviously rankM = rankKM. Also for the vector space KM over K we have rankKM = dimKM + 1 and as we said $dimKM \le dimM$. So $rankM \le dimM + 1$. If $N_0 \subset N_1 \subset \cdots \subset N_t$ is a chain of prime submodules of M, then since $(N_i : M) = 0$, by Lemma 3, $KN_0 \subset KN_1 \subset \cdots \subset KN_t$ is a chain of prime submodules of KM, so $dimM \le dimKM = rankKM - 1 = rankM - 1$. That is, rankM = dimM + 1 as required.

We recall that if R is a Prüfer domain and S is a multiplicatively closed subset of R, then $S^{-1}R$ is a valuation ring [3].

THEOREM 3.2. Let R be a Prüfer domain and M a torsion-free weak multiplication R-module.

- (i) If N is a prime submodule of M, then ht N = ht (N : M).
- (ii) M s.t.r.f.
- (iii) If M is finitely generated, then dimM = dim R.

Proof. i) Obviously $ht \ N \leq ht \ (N:M)$. Let P = (N:M) and S = R - P. Then $S^{-1}M$ is a torsion-free weak multiplication module over the valuation ring $S^{-1}R$ and $ht \ N = ht \ S^{-1}N$ by Lemma 3. By [5], Corollary 1 of Proposition 1, $(S^{-1}N:S^{-1}M) = S^{-1}(N:M) = S^{-1}P$. Moreover, $ht \ S^{-1}P = ht \ P$. So by localization we can assume that M is a torsion-free weak multiplication module over the valuation ring R. First, we show that:

If P is a prime ideal of R and $PM \neq M$, then PM is a prime submodule of M and (PM : M) = P, indeed, we show that if $ra \in PM$, then $r \in P$ or $a \in PM$. (***)

Let $ra \in PM$, so $ra = \sum_{i=1}^{n} p_i m_i$, $p_i \in P$, $m_i \in M$. If $r \notin P$, then $P \subseteq \langle r \rangle$. So let $p_i = rr_i$, for all $1 \leq i \leq n$, $p_i \in P$. So $r_i \in P$. Now $ra = \sum_{i=1}^{n} rr_i m_i$ and hence $a = \sum_{i=1}^{n} r_i m_i \in PM$. Let $m \in M - PM$. If $r \in (PM : M)$, then $rm \in PM$, so $r \in P$. That is, (PM : M) = P.

Now let ht P = n and the following be a chain of prime ideals in R

$$P_0 \subset P_1 \subset \cdots \subset P_{n-1} \subset P_n = P$$
.

Hence $P_iM \subseteq PM = (N:M)M = N \subset M$. So by (***) for all $0 \le i \le n$, P_iM is a prime submodule of M and if $P_iM = P_jM$, then by (***), $P_i = (P_iM:M) = (P_jM:M) = P_j$. Hence i = j and we have the following chain of prime submodules in M

$$P_0M \subset P_1M \subset \cdots \subset P_{n-1}M \subset P_nM = (N:M)M = N.$$

So ht(N:M) = n < ht N.

ii) By [7] we know that if the $S^{-1}R$ -module $S^{-1}M$ s.t.r.f., then the R-module M s.t.r.f. So by localization we can assume that M is a torsion-free weak multiplication R-module, where R is a valuation ring. Let B be a submodule of M. We consider two cases.

Case 1. There exists a minimal prime ideal P over (B:M) such that PM=M.

In this case, as R is a valuation ring, rad(B:M) = P. So

$$M = PM = (rad(B:M))M \subseteq \langle E(B) \rangle \subseteq rad B \subseteq M.$$

Case 2. For every minimal prime ideal P over (B:M), $PM \neq M$.

Since M is a weak multiplication module, by (***) we have $\{P: P \text{ is minimal prime over } (B:M)\} \subseteq \{(N:M): B\subseteq N, N \text{ is prime in } M\} \subseteq \{P: P \text{ is prime containing } (B:M)\}$. Thus,

$$(rad \ B:M) = (\bigcap_{\substack{B \subseteq N \\ Nprime}} N:M) = \bigcap_{\substack{B \subseteq N \\ Nprime}} (N:M)$$

$$= \bigcap_{\substack{Pminimal \ prime \\ over(B:M)}} P = rad(B:M).$$

Now we show that $rad\ B$ is a prime submodule. Let $ra \in rad\ B$. If $a \notin rad\ B$ and $r \notin (rad\ B:M)$, then there exist prime submodules N and T containing B such that $a \notin N$ and $r \notin (T:M)$. So $r \in (N:M)$ and $a \in T$. If $(T:M) \subseteq (N:M)$, then $a \in T = (T:M)M \subseteq (N:M)M = N$, but if $(N:M) \subseteq (T:M)$, then $r \in (N:M) \subseteq (T:M)$ which is impossible. Hence $rad\ B = (rad\ B:M)M = (rad(B:M))M \subseteq (E(B) > \subseteq rad\ B$.

iii) Since M is a weak multiplication module, $dimM \leq dimR$ and the proof follows easily by Lemma 4.

Note that R can be an arbitrary ring in (iii).

We know that if R is a Noetherian ring and $\dim R = 0$, then R is Artinian. Now we prove a generalisation of this theorem for modules.

PROPOSITIION 3. If M is a Noetherian module and dim M = 0, then M is an Artinian module.

Proof. First let M be a Noetherian faithful R-module. Since $\frac{R}{AnnM}=R$, R is a Noetherian ring. We show that dim R=0. If $P_1\subset P_2$ is a chain of prime ideals of R, then by Lemma 4 there is a chain of prime submodules $N_1\subset N_2$ such that $(N_i:M)=P_i$ and this is a contradiction. So R or indeed $(\frac{R}{AnnM})$ is an Artinian ring, thus M is an Artinian module.

Now M is a Noetherian faithful $\frac{R}{AnnM}$ -module, and it is easy to show that $dim_{\frac{R}{AnnM}}M=0$, so by the above, $dim_{\frac{R}{AnnM}}=0$ and since $\frac{R}{AnnM}$ is a Noetherian ring, then it is an Artinian ring.

Therefore, M is an Artinian module as an $\frac{R}{AnnM}$ -module and obviously M is an Artinian R-module.

The converse of Proposition 3 is not true even if M is a finitely generated module, for example, if M is a vector space of rank n, where n > 1, then dim M = n - 1.

References

- 1. S. Abu-Saemeh, On dimension of finitely generated modules, Comm. Algebra 23 (1995), 1131-1144.
- A. M. George, R. L. McCasland and P. F. Smith, A principal ideal theorem analogue for modules over commutative rings, Comm. Algebra 22 (1994), 2083-2099.
- 3. M. D. Larsen and P. J. McCarthy, Multiplicative Theory of Ideals, Academic Press, Inc., New York, 1971.
- 4. C. P. Lu, Prime submodules of modules, Comment. Math. Univ. St. Paul 33(1) (1984), 61-69.
- 5. C. P. Lu, Spectra of modules, Comm. Algebra 23(10) (1995), 3741-3752.
- 6. R. L. McCasland and M. E. Moore, *Prime submodules*, Comm. Algebra **20(6)** (1992), 1803-1817.
- 7. Y. Sharifi, H. Sharif and S. Namazi, Rings satisfying the radical formula, Acta Math. Hungar. 71 (1996), 103-108.
- 8. H. Matsumura, Commutative Ring Theory, Cambridge University Press, Cambridge, 1990.