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Abstract The height of a prime submodule and a module version of the
Krull dimension are studied.

1. Introduction

Throughout this paper all rings are commutative with identity
and all modules are unitary. A proper submodule N of a module
M over a ring R is said to be prime ( P-prime) if ra € N for
r € R and @ € M implies that eithera € Norr € (N : M) =P
(see, for example, [4], [6].) |

Let K be a prime submodule of an R-module M. We say that
K is minimal prime over a submodule N of M if N C K and there
does not exist a prime submodule L of M such that N C L C K.
It is said that At K = n, if there exists a chain K,, C --- C K5 C
K, ¢ K, = K of prime submodules K;(0 < i < n) of M, but
there is no longer such chain.

It is said that the generalized principal ideal theorem (the
GPIT) holds for M, if for every positive integer n and prime
submodule N of M minimal over a submodule generated by n
elements, ht N < n.

2. The generalized principal ideal theorem for modules

From now on, S is a multiplicatively closed subset of R.
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LEMMA 1. Let P be a prime ideal of R such that PNS = { and
M be an R -module. Then there exists a one-to-one correspon-
dence between the P-prime submodules of M and the S—! P-prime
submodules of ST'M.

Proof. See [5] §1 Proposition 1.

In the following lemma R is an integral domain and K is the
field of quotients of R.

LEMMA 2. If M is an R-module and B a submodule of M such
that KB #* KM, then

(i) N= KBnNM is a 0-prime submodule and KN = KB.
(ii) B is prime if and only if B= KBN M.

Proof. See [5] §1 corollaries after Propositions 2 and 3.

LeEMMA 3. Let M be an R-module and B a submodule of M.
IfS™1B # S™'M, then (B : M)NS = 0. Conversely, if (B : M)N
S = (0 and B is a prime submodule of M, then S™'B # S~M, and
ht B = ht S™'B. Also the following conditions are equivalent.

(i) B is a prime submodule of M and S™'B # S~ M.
(ii) S~'B is a prime submodule of S™*M and B = S"'BN M.

Proof. The proof is easy by use of the above lemmas and [5],
§1 Proposition 2.

We know that if N is a prime submodule of an R -module M,
then (N : M) is a prime ideal of R (see, for example, [4]).

THEOREM 2.1. Let M be an R-module and B be a submodule
of M which is generated by n elements. If N is a minimal prime
submodule over B such that (N : M) is a minimal prime ideal of
R, then ht N < n.

Proof. First let (N : M) = 0, that is R is an integral domain.
Let K be the field of quotients of R. It is easy to see that the
rank of the subspace K B of the vector space K A over the field
K is not greater than n. That is, rankK B < n. Now by Lemmas
2and 3, KNNM = N.Hence BC KBNM CKNNM=N
and since KB C KN Cc KM, by Lemma 2, KBN M is a prime
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submodule of M. So KBNM = N and so KB = KN. One can
see that in a vector space every proper subspace W is prime and
ht W = rank W. By Lemma 3 we have that ht N = ht KN . So
ht N=ht KN = ht KB =rank KB < n.

Now we return to the general case. Let the following chain be a
chain of prime submodules of M, N1 C N, C---C Ny C N, =
N. As (N : M) is a minimal prime ideal, (N; : M) = PV 1 =
1,2,--- ,n+ 1. It is straightforward to prove the following,

(i) N,.N+1 is a minimal prime submodule over the submodule

—B—-]"—[,—Iyl‘—i‘— of the £ -module L
n+1 n+1

(ii) %‘—;ﬂ is generated by n elements.

N_ . _M_y_ (N:gM)

(iii) (N,.+1 ¥ N,;H) = 5~ =0.

Therefore, by the first case, ht 2 — < n which is a contradiction
. . . - Nn+l

with the following chain of prime submodules

Nn+1 Nn Nz N1 N
C C---C - C .
Nn+1 Nn+1 Nn+1 Nn+l Nn+1

0=

COROLLARY 1. The GPIT holds for every divisible module
over an integral domain.

Proof. Let M be a divisible R-module and N be a proper sub-
module of M. Then easily one can show that (N : M) = 0.

In [2] it is proved that if R is an integral domain, then the PIT
holds for every R-module if and only if R is a field. (*)

Now we prove the following result.

COROLLARY 2. Let R be a ring. Then the GPIT (or the PIT)
holds for every R- module if and only if dim R = 0.

Proof. We only need to prove that if the PIT holds for every
R module, then dim R = 0. If P is a prime ideal of R, we show
that the PIT holds for every %—module, and so by (*) in above %
is a field.

Let B be a cyclic submodule of the %—module M and N be
minimal prime over B. It is obvious that /N is minimal prime over
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the cyclic submodule B of M as an R-module. So ht gk N < 1 and
hence ht %N <1

The next lemma is due to McCasland and Moore [6], however,
we shall provide a simpler proof for it.

LEMMA 4. Let M be a finitely generated R-module and B a
submodule of M. If (B : M) C P, where P is a prime ideal of R,
then there exists a prime submodule N of M containing B such
that (N : M) =P

Proof. Let S ={C <M :BCC, (C:M)C P}. By Zorn’s
Lemma S has a maximal element N. We show that N is prime
and (N : M) = P. Let ra € N such that r ¢ (N : M) and
agN.SoNCN+rMand NCN+ Ra. Let r; € (N + Ra:
M)—-P,and ro € (N+rM : M). Then r1M C N + Ra. Hence
rirM € N. Since oM C N+ rM, riraoM C N +rriM C N.
So ryrg € (N : M) C P and hence ry € Por ry € P, which
is a contradiction. Now if M = 2 we have (N+PM : M) =

(PM : M) = Ann(3%) € /Ann(#%) = VAn(M)+ P =

VIN:M)+P= PSo N+PM M) C P. Thus N = N+ PM.
Hence PM C N+ PM = N. That is, (N : M) = P.

Recall that an R-module M is called a weak multiplication
module provided that for every prime submodule N of M there
exists an ideal I of R such that N = IM [1]. In this case we have

= (N : M)M and it is easy to see that ht N < ht (N : M).

THEOREM 2.2. Let R be a Noetherian domain, M be a finitely
generated weak multiplication R -module and N be a minimal
prime submodule over Ra for a € M. Then ht N = 1, if (Ra :
M)M = Ra and Ann(a) = 0.

Proof. i) Let (N: M)=Pand S= R - P. Then S"'M is a
finitely generated weak multiplication module over the Noetherian
domain S™'R and Anng-15($) = 0. Moreover, ht N = ht S™'N
by Lemma 3, and S™!'N is a minimal prime over S™'R(%). So
we can assume that R is a local domain with the maximal ideal
m. We show that (Ra : M) is a principal ideal and (N : M) is a
minimal prime ideal over (Ra : M). Since (Ra: M)M = Ra, let
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a=Y . ,rim; where r; € (Ra: M) and m; € M. We consider
two cases. ‘

Case 1: n = 1, we claim that (Ra : M) = Rry. Let r € (Ra :
M). So rM C Ra. Hence rmy = ta = trym,; for some t € R
and so (r —try)my = 0. Thus (r — tr1)a = ri(r — tr1)m; = 0.
Therefore, (r — tr1) € Ann(a) = 0, and so r = ¢ry. That is,
(Ra: M) C Rry, and ry € (Ra: M). Therefore, (Ra: M) = Rr,.

Case 2: n > 1, let r;m; = t;a, for some t; € R for all . One
can assume that t; € m for some j, since if ¢; € m for all 7, then
a=) . t;aand hencel = 3" | ¢, € m which is a contradiction.
Now if t; € m, for some j, we have a = t;‘lrjmj and the result
follows by case 1.

Now we show that (/V : M) is a minimal prime ideal over the
principal ideal (Ra : M). If (Ra : M) C @ C (N : M), where
Q is a prime ideal, by Lemma 4 there is a prime submodule N,
of M containing Ra such that (N; : M) = Q. Since M is weak
multiplicative, Ny = (N, : M)M = QM C N, and hence N; = N.
So@Q = (Ny: M)=(N:M). Now (N : M) is a minimal prime
ideal over the principal ideal (Ra : M), so by the Krull Principal
Ideal Theorem ht (N : M) < 1 and obviously we have ht N <
ht (N : M) < 1. Since AnnM C Ann(a) = 0, by Lemma 4 there
exists a prime submodule T such that (T : M) = 0 C (N : M)
and hence T'= (T : M)M C (N: M)M = N,so ht N = 1.

PrROPOSITION 1. Let R be a PID, F a free R-module of finite
rank and B a submodule of F which has a minimal generator with
n elements. Let N be minimal prime over B. If (N : F) = 0, then
ht N = n.

Proof. We know that there exists a basis {z1,z2, - ,Zp} of
F, an integer d(1 < d < m) and nonzero elements ry,7g, -+, 74 of
R such that ri|rg|---|rq and {riz1, 7222, -+ ,rqza} is a basis of
N.

Forall 1 <i<d, mz; € Nand 0 # r; & (N : F) = 0.
Then z; € N and so {z1,x2, -+ ,Z4} is a basis of N. Let Ny =
Rz, + Rxy + -+ Rxy, 1 < k < d. We show that N, is a
prime submodule of F. If ry € Ny, y = >.0", t;z;. Then ry =
S rtix; € Ng, and hence rt; =0 forall ¢, i =k+ 1,--- ,m. If
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r =0, thenr € (Ny : F), otherwise t; =0 forall i=k+1,.--- ,n.
Therefore, y € Ni. By the following chain,

OCN,C---CN3g2CNg_1CNg=N

we have d < ht N. Son < d < ht N < n by Theorem 2.1.

Now we show that the condition (N : F') = 0 in Proposition 9
is necessary.

EXAMPLE. Let {z1,z2, - ,Zm},m > 2 be a basis of F and N
be generated by x1, px3,pxs3,- - ,pT;,. One can easily show that
ht N = 2, although N is minimal over N which is generated by
m elements.

3. A module version of Krull dimension

DEFINITION 3.1. The dimension of a module M (dimM) is
defined by

sup{ht N : N is a prime submodule of M}.

if spec(M) # 0, otherwise it is defined to be —1.

Let S be a multiplicatively closed set. Then by Lemmas 1 to
3 one can easily show that dimS™'M < dimM. Also if M is a
finitely generated faithful module, then by Lemma 4, if P, C P, C
P, C --- C P, 18 a chain of prime ideals in the ring R, then there
exists a chain of prime submodules Ny € Ny C Ny C -+ C N, in
M and hence dimR < dimM.

We recall that if R is an integral domain with the quotient
field K, the rank of an R-module M is defined to be the maximal
number of elements of M linearly independent over B. We have
rank M= the dimension of the vector space KM over K [8].

THEOREM 3.1. If R is a Dedekind domain which is not a field
and M is a finitely generated torsion-free R-module, then if N is
a prime submodule,

(D (i)] dimM = rankM. ([)(i)] ht N + dim¥ = dimM.
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Proof. 1) First let R be a PID and M be a free module of
finite rank over R. If N is a prime submodule of M, we have two
cases. If (N : M) = 0, by the proof of Proposition 1, ht N <
rankM. If (N : M) # 0, let (N : M) =< p > . One can prove
that there is a basis {z1,z2, - ,Zm} for M such that N =<
T1,T2," ", ThyPLh+1,PTk+2, " »PTm > and k& < m — 1, besides
ht N=k+ 1. So dimM < rankM.

If {zy,%2, -+ ,Zm} is a basis of M, one can easily prove that
N =< 21,22, ,Tm—1,PT,m > is a prime submodule and ht N =
m and hence m = rankM < dimM.

Now we prove (i) for every finitely generated torsion-free mod-

ule M over the Dedekind domain R. Let 0 # P be a prime

ideal of R, and § = R — P, then by Lemmas 2 and 3, we have
dimS—'M < dimM. Since S~'M is finitely generated torsion-
free over the PID S~ 'R, it is a free module, so by the first step
rankS—'M = dimS~'M. Also obviously one can check that

rankM = rankS~1M. Hence rankM < dimM.

Let N be a prime submodule of M. If (N : M) = P # 0, then
let S= R—P,soht N =ht S7'N < dimS~*M, and since S~!M
is free, dimS—'M = rankS~*M = rankM.If (N : M) = 0, then
there exists a prime ideal P such that (N : M) C P. By Lemma
4 there exists a prime submodule N; such that N C N; and
(Ny : M) = P. From above we have ht N < ht N; < rankM.

ii) Evidently ht N + dzm% < dimM. I (N : M) = 0, then
%— is a finitely generated torsion-free R-module, so dzm—-ﬁ =
rankM = rankx K4 KN = rankx KM — rankg KN = rankM —
rankKKN = dimM — rankgKN. One can show that in a vec-
tor space V, for every proper subspace W, rankW = ht W, and
hence rankx KN = ht KN. Also by Lemma 3 ht KN = ht N. So
dim = dimM ~ ht N.

If (N: M) #0,thenlet (N:M)=Pand S =R~ P By
Lemma 3, ht N = ht S'N. Also we show that dimS~'%4 =
dim®. As we said dimS~ LM < dim&f. Let dsz = t. So
there is a chain of prime submodules N ¢ N; C -+ C N;. So
by Lemma 3, S™'N c S7'N; Cc -+ C SN isachain
of prime submodules of S~'M. So dimS~'¥ = dim . Sim-
ilarly it is proved that dimM = dimS~'M. Thus we can as-
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sume that M ia a free module of finite rank over the local PID
R. Let dimM = m. So 0 # (N : M) =< p > where p is a
prime element in R and by part (i) dimM = rankM = m.
It is easy to show that there is a basis {zi,z2,---,Zm} such
that N =< 21,23, " , Tk, PTht1, PTh42, - 1 Py > and bt N =
k + 1. Then the following is a chain of prime submodules of
M N <ZTy, s Th41,PTh+2, P > c <€L‘1y“‘1mh+2a1ﬁk+3a"‘vam> C
¢ STnfmeiPin2  Therefore dim > m — k — 1, then
ht N + dim¥% > m = dimM as required.

For a submodule B of an R-module M, the envelope of B, E(B)
is defined to be the set of all x € M for which there exist r € R, a €
M such that r = ra and r"a € B for some non-negative integer
n. The intersection of all prime submodules of M containing B is
denoted by rad B. We say that M satisfies the radical formula (
s.t.r.f.) if for every submodule B of M, rad B =< E(B) >.

2R

PROPOSITION 2. Let R be an integral domain and M a divis-
ible R-module. Let B be a proper submodule of M. Then

(i) E(B) is a submodule of M.

(ii) If E(B) # M, then E(B) is the only minimal prime sub-
module of M over B.

(iii) Let E(Rz) # M. If Ann(z) = 0, then ht E(Rz) =1 and if
Ann(z) # 0, then ht E(Rzx) = 0.

(iv) M s.t.r.f. _

(v) If M is finitely generated, then rank M =dimM + 1.

Proof. i) Let ra,sb € E(B), for nonzero elements r,s € R
and a,b € M and n € N such that »"a, s"b € B. Since M
is divisible, there exists ¢ € M such that rsc = ra — sb. Hence
(rs)"*le = s"rmtlg—rnsntlh € B. It means that ra—sb € E(B).
Hence E(B) is a submodule of M.

ii) First we show that if ra € E(B), where 0 #r € R, a e M
and r"a € B for some n € N, then a € E(B). (*x*)

There exists an element ¢ of M such that rc = a. So r*tlc =
r"a € B, that is, a = r¢ € E(B). Now let ra € E(B) and
0#r € Rand a € M. Then there exist s € R and b € M such
that ra = sb and s™b € B for some n € N.
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If s =0, then ra =0 € B and so by (xx), a € E(B). Otherwise
since rs # 0 and (rs)"*la = r"s"*%b € B, by (xx) we have
a € E(B). Therefore, E(B) is a prime submodule of M.

Let N be a minimal prime submodule of M over B. So B C
E(B) C N. Since E(B) is prime, N = E(B).

iii) By Corollary 1 and ii) we have ht E(Rz) < 1. Also E(0) C
E(Rzx).

Now if Ann(z) = 0 and ht E(Rz) = 0, then E(Rz) = E(0).
Since z € E(Rzx) = E(0), there exist r € R and n € N such that
z =ra and r"a = 0. So ™ € Ann(z) = 0 and hence r = 0. That
is, z = 0 and hence Ann(z) = R which is a contradiction.

Let Ann(z) # 0, and 0 # r € Ann(z). Then rz € E(0) and by
the proof of Corollary 1, (E(0) : M) = 0. So z € E(0), since E(0)
is prime. That is, Rz C E(0) C E(Rz) and by (ii) E(0) = E(Rxz).
Therefore, ht E(Rz) = 0.

iv)Let B be a submodule of M. If E(B) = M, then M =
E(B) Crad BC M. So let E(B) # M. From (i) and (ii) we have

E(B)CradB= () NCE(B).

Nprime
BCN

v) Obviously rankM = rankK M. Also for the vector space
KM over K we have rankKM = dimKM + 1 and as we said
dimKM < dimM. So rankM < dimM + 1. If NgoC Ny C ---C
N, is a chain of prime submodules of M, then since (V; : M) = 0,
by Lemma 3, KNy C KN, C --- C KN; is a chain of prime
submodules of KM, so dimM < dimKM = rankKM —~ 1 =
rankM — 1. That is, rankM = dimM + 1 as required.

We recall that if R is a Priifer domain and S is a multiplicatively
closed subset of R, then S~'R is a valuation ring [3].

THEOREM 3.2. Let R be a Priifer domain and M a torsion-free
weak multiplication R-module.

(i) If N is a prime submodule of M, then ht N = ht (N : M).

(ii) M s.t.r.f.

(iii) If M is finitely generated, then dimM =dim R.
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Proof. i) Obviously ht N < ht (N : M). Let P = (N : M)
and § = R— P. Then S™'M is a torsion-free weak multiplication
module over the valuation ring SR and ht N = ht S~IN by
Lemma 3. By [5], Corollary 1 of Proposition 1, (S™!N : S~1M) =
S~Y(N : M) = S"1P. Moreover, ht S~ P = ht P. So by localiza-
tion we can assume that M is a torsion-free weak multiplication
module over the valuation ring R. First, we show that:

If P is a prime ideal of R and PM # M, then PM is a prime
submodule of M and (PM : M) = P, indeed, we show that if
ra € PM,thenr € Pora € PM. (xxx)

Let rae PM,sora= 3y . pimi, i € P, mie M. Ifr ¢ P,
then P C<r >. Soletp; =rr;, foralll <i<n,p, € P. So
r; € P. Now ra = Y rrym; and hence a = Y i, rim; € PM.
Letme M - PM. If r € (PM : M), then rm € PM,sor € P.
That is, (PM : M) = P.

Now let ht P = n and the following be a chain of prime ideals
in R

PBchcCc---CcP,,CP, =P
Hence PM C PM = (N : M)M = N C M. So by (* ) for all
0 <i<n, KM is a prime submodule of M and if M = P;M,
then by (x ), P, = (PM : M) = (P;M : M) = P;. Hence i = j
and we have the following chain of prime submodules in M

PMcPMc.---CP,_iMCP,M=(N:M)M=N.

So ht (N: M)=n < ht N.

ii) By [7] we know that if the $~! R-module S~'M s.t.r.f., then
the R-module M s.t.r.f. So by localization we can assume that
M is a torsion-free weak multiplication R-module, where R is a
valuation ring. Let B be a submodule of M. We consider two
cases.

Case 1. There exists a minimal prime ideal P over (B : M)
such that PM = M.

In this case, as R is a valuation ring, rad(B : M) = P. So

M =PM = (rad(B: M))M C< E(B) >C rad BC M.

Case 2. For every minimal prime ideal P over (B : M), PM #
M.
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Since M is a weak multiplication module, by (* * x) we have
{P : P is minimal prime over (B : M)} C {(N : M) : B C
N, N isprimein M} C {P: P is prime containing (B : M)}.
Thus,

(radB:M)=( ()} N:M)= [) (N:M)
BCN BCN
Nprime Nprime
= ﬂ P =rad(B: M).

Pminimal prime
over(B:M)

Now we show that rad B is a prime submodule. Let ra € rad B.
If a ¢ rad B and 7 ¢ (rad B : M), then there exist prime sub-
modules N and T containing B such thata ¢ N and r ¢ (T : M).
Sore (N:M)anda € T.If (T : M) C (N : M), then
a€T=(T:MMC(N:MM=N,butif (N: M) (T:M),
then r € (N : M) C (T : M) which is impossible. Hence
rad B = (rad B: M)M = (rad(B : M))M C< E(B) >C rad B.

iii) Since M is a weak multiplication module, dimM < dimR
and the proof follows easily by Lemma 4.

Note that R can be an arbitrary ring in (iii).

We know that if R is a Noetherian ring and dim R = 0, then
R is Artinian. Now we prove a generalisation of this theorem for
modules.

ProprosITIION 3. If M is a Noetherian module and dimM = 0,
then M is an Artinian module.

Proof. First let M be a Noetherian faithful R-module. Since
42+ = R, R is a Noetherian ring. We show that dimR = 0. If
P, C P, is a chain of prime ideals of R, then by Lemma 4 there
is a chain of prime submodules Ny C N; such that (N; : M) = P,
and this is a contradiction. So R or indeed (3;%1‘7) is an Artinian
ring, thus M is an Artinian module.

Now M is a Noetherian faithful m‘%ﬁ-module, and it is easy
to show that dim_ﬁ;%ﬁM = 0, so by the above, dimm%ﬁ =0

. R . . . . . . . .
and since ;757 is a Noetherian ring, then it is an Artinian ring.
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Therefore, M is an Artinian module as an Z-;I%M-—-module and
obviously M is an Artinian R-module.

The converse of Proposition 3 is not true even if M is a finitely
generated module, for example, if M is a vector space of rank n,
where n > 1, then dimM =n — 1.
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