
Given two sorted lists A = (a0, a1, …, al-1) and
B = (b0, b1, …, bm-1), we are to merge these two
lists into a sorted list C = (c0, c1, …, cn-1), where
n = l + m. Since this is a fundamental problem
useful to solve many problems such as sorting and
graph problems, there have been many efficient
parallel algorithms for this problem. But these
algorithms cannot be performed efficiently in the
postal model since the communication latency λ,
which is of prime importance in this model, is not
needed to be considered for those algorithms.
Hence, in this paper we propose an efficient merge
algorithm in this model that runs in

2 log n
log ( + 1) + - 1 time by using a new

property of the bitonic sequence which is crucial
to our algorithm. We also show that our algorithm
is near-optimal by proving that the lower bound

of this problem in the postal model is f ( n
2 ) ,

where
log n - log 2

log ( + 1 ) ≤f ( n
2 )≤2 + 2 log n - log 2

log ( + 1) .

I. INTRODUCTION

In many message-passing systems, such as distributed-
memory parallel computers and high-speed communication
networks, the exact structure of the underlying communication
network may be ignored [1] [4], [7] [11], [13], [15], [17].

In such systems it is assumed that the network corresponds
to a complete communication graph among processors, in
which passing messages is associated with communication
latency.

The postal model proposed by Bar-Noy and Kipnis
describes well such characteristics of communications in
those message-passing systems with the assumption that all
the processors are completely connected [4], [5]. This model
incorporates a latency parameter ≥1 that measures the
inverse of the ratio between the time when a processor
prepares and sends a message to another processor and the
time when this recipient processor receives and stores the
message. More specifically, we assume that a processor p

prepares a message M in a unit time to send it to its
destination processor q. Message M later arrives at its
destination q, and q spends a unit time to receive and
handle it. Each processor p can simultaneously send one
message to processor q and receive another message from
processor γ. The communication latency is the total time
during which p prepares message M , sends it to q, and
finally q receives and stores M . After processor p sends M ,
i.e., after a unit time, it is free to perform other functions
including preparing other messages.

Bar-Noy and Kipnis developed in this model an optimal
algorithm for the single-message broadcasting problem that
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runs in f ( n) time [4], and efficient algorithms for the

multiple-message broadcasting problem [5]. Park and Ryu
developed another optimal algorithm for the single-message
broadcasting problem, and presented an optimal algorithm
for the prefix-sums problem by utilizing this broadcast
algorithm [16].

The merge problem is, given two sorted lists A = ( a 0,

a 1,…,a l - 1) and B = ( b 0,b 1,…,b m - 1) , to produce a sorted

list C = ( c 0,c 1,…c n - 1) of A and B , where n = l + m . This

problem is a very important problem since an efficient
algorithm for this problem is useful to solve the sorting
problem, graph problems, and many other problems. A lot
of efficient parallel algorithms for this problem have been
developed in several parallel computational models. Batcher
developed an odd-even merge algorithm that can run in
O ( log n) time using O ( n log n) operations on the EREW

PRAM model, and can also be implemented on the bitonic
merge network with O ( log n) depth and O ( n log n)

comparators [6]. Tompson and Kung implemented the odd-
even merge algorithm on n× n mesh in O ( n) time [19].
Valiant and Kruskal respectively presented an optimal
merge algorithm that runs in Θ( log log n) time using Θ( n)

operations on the CREW PRAM model [14], [20]. Snir
proved that the merge problem requires at least Ω( log n)

time on the EREW PRAM model [18], and Hagerup and
Rub proposed an optimal merge algorithm that runs in
Θ( log n) time using Θ( n) operations on the EREW PRAM
model [12].

But these merge algorithms can not be performed
efficiently in the postal model since they do not consider
the communication latency which is of crucial importance
in this model. For example, Batcher's odd-even merge
algorithm would take O ( log n) time if it is implemented
in the postal model.

Hence, in this paper, we present a new property of the
bitonic sequence, and develop by using this property a

near-optimal merge algorithm running in 2 log n
log ( + 1)

+ - 1 time. We also prove that this algorithm is almost
optimal by showing that the merge problem requires at least

f ( n
2 ) time in the model, where

log n - log 2
log ( + 1) ≤ f ( n

2 ) ≤ 2 + 2 log n - log 2
log ( + 1)

as shown in [4].
The rest of this paper is organized as follows. In

Section Ⅱ, a new property of the bitonic sequence is

presented. In Section Ⅲ, the lower bound of the merge
problem in the postal model and our almost optimal
algorithm for solving the problem are described.

II. BITONIC SEQUENCE

Let X = ( x 0,x 1,…,x n - 1) be a sequence of elements
drawn from a linearly ordered set. The sequence X is
called bitonic if, for some non-negative integers j , l〈n ,
we have x j mod n ≤ x ( l+2) mod n ≤…≤ x l mod n and
x ( l+1) mod n ≥ x ( l+2) mod n ≥…≥ x ( l+n - 1) mod n . When
Low( X ) and H ig h( X ) of a bitonic sequence X are
defined as

Low ( X ) = ( min { x 0, x n
2

}, min { x 1, x n
2 +1

}, …,

min { x n
2 - 1

, x n - 1 }) and

H igh( X ) = ( max { x 0, x n
2

}, max { x 1, x n
2 +1

}, …,

max { x n
2 - 1

, x n - 1 }),

Low( X ) and H ig h( X ) are bitonic, and each element of
Low( X ) is no greater than each element of H igh( X ) [6].

Batcher developed an odd-even merge algorithm that can
run in O ( log n) time using O ( n log n) operations on the
EREW PRAM model by using this property of the bitonic
sequence [6]. However, if the Batcher's algorithm is imple-
mented in the postal model, it requires log n time since it
does not consider the communication latency . Hence, in
this section, we propose a new property of the bitonic
sequence which will provide a more efficient solution for
the merge problem in this model.

In fact, our new property of the bitonic sequence is a
generalization of the above property and can be described
as follows: Let the i-th subsequence, i-th(X), of a bitonic
sequence X = ( x 0,x 1,…,x n - 1) be defined as

i-th(X) = (i-th smallest {x 0, x n
k

,…,x
( k - 1) n

k
} ,

i-th smallest {x 1, x
1+ n

k
,…,x

1+( k - 1) n
k

} , ,

i-th smallest {x n
k - 1

, x
2 n

k - 1
,…,x n - 1} ), (1)

where k divides n , 0≤ i≤ k - 1 , 2≤ k 〈n and i-th
smallest {a 0,a 1,…,a k - 1} is the i-th smallest element in
{a 0,a 1,…,a k - 1} . Then, the subsequence i-th(X) is bitonic,

and each element of j-th(X) is no less than each element
of (j 1)-th(X), for 1〈j〈k . The above property used in
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Batcher's bitonic merge algorithm is just a special case,
where k = 2 , of this new property.

Example 1: Given a bitonic sequence X=(7, 9, 12, 15, 18,
17, 13, 8, 5, 1, 3, 6) of n = 12 elements, where k = 3

and 0≤i≤2 , the subsequence i-th(X) is (i-th smallest{7,
18, 5}, i-th smallest{9, 7, 1}, i-th samllest{12, 13, 3}, i-th
samllest({15, 8, 6}).

Clearly, each of 0-th(X)=(5, 1, 3, 6), 1-th(X)=(7, 9, 12,
8), and 2-th(X)=(18, 17, 13, 15) is bitonic, and each
element of 1-th(X) is no less than each element of 0-th(X),
and is no greater than each element of 2-th(X). □

We now prove that our new property of the bitonic
sequence is correct. Assume throughout this paper that the
bitonic sequence X = ( x 0,x 1,…,x n - 1) consists of distinct

elements, and satisfies n = k c , where k and c are positive
integers, and x 0≤x 1≤…≤x l , x l+1≥x l+2≥…≥x n - 1 ,

0≤l≤n - 1 . All the results based upon this assumption
can be modified to be applied to more general bitonic
sequences with no difficulty.

When all the elements of X are placed on a circle, this
circle can be partitioned into k subsequences, X 0 , X 1 , ,

X k - 1 , by k - 1 horizontal lines as in Fig. 1; each

subsequence has n
k elements, and each element of X j is

greater than each element of X j - 1 and is less than each
element of X j +1 , for 0〈j〈k - 1 . Each subsequence X i

consists of two monotonic sequences, the increasing

sequence L i = ( x p,x p +1,…,x p + s - 1) and the decreasing

sequence R i = ( x q,x q +1,…,x q + t - 1) , where 0〈i〈k - 1 ,

L i = s , R i = t , 0≤s ,t≤ n
k , and s + t = n

k (see

Fig. 2). It is clear that X i = ( x p,x p +1,…,x p + s - 1,x q,

x q +1,…,x q + t - 1) is bitonic and consists of the same

elements as the i-th sublist {x'
i n

k
,x'

i n
k +1

,…,x'
( i +1) n

k - 1
}

of the sorted list X ' = ( x' 0 , x' 1 ,…, x' n - 1 ) of X .

Fig. 2. The subsequence L i and R i of X i .

Example 2: Given a bitonic sequence X=(1, 2, 6, 9, 12,
13, 15, 16, 14, 11, 10, 8, 7, 5, 4, 3), where n = 16 and
k = 4 , the elements of X can be placed on a circle as in
Fig. 3, and this circle can be partitioned into 4 subsequences,
X0=(1, 2, 4, 3), X1=(6, 8, 7, 5), X2=(9, 12, 11, 10),

X3=(13, 15, 16, 14), each with n
k = 4 elements. We

can see that each element of X j is less than each element
of X j+1 , and is greater than each element of X j - 1 , for
0〈j〈3 , and that each subsequence is bitonic with two
monotonic subsequences. For example, X 0 consists of the
increasing subsequence L 0 = ( 1,2) and the decreasing
subsequence R 0 = ( 4,3) . □

Lemma 1. Each subsequence X i , 0≤i≤k - 1 , is a bitonic
sequence.

Proof: X i is a concatenated list of L i and R i, and L i is an
increasing sequence and R i is a decreasing sequence. Thus
X i is a bitonic sequence. □

Fig. 1. The bitonic sequence on a circle.
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The following lemma shows that, when m od n
k operation

is applied to the indices of all the elements of X i , all the

resulting values are distinct. For example, consider X 1 =

( 6, 8, 7, 5) = ( x 2 , x 11, x 12, x 13) in Example 1, where

n = 16 and k = 4 . When m od 4 operation is applied to its
index list ( 2, 11, 12, 13) , the result is ( 2, 3, 0, 1) ,
which consist of distinct values. Note also that this is a
circular shift of ( 0, 1, 2, 3) .

Lemma 2. If two elements x d and x e of X i satisfy d e,

then d m od n
k e m od n

k , for 0≤ i≤ k - 1 .

Proof: Assume, without loss of generality, that d〈e .
There are two cases for the proof. The first case is that
x d ∈L i and x e ∈R i. In this case, the elements between L i

and R i in clock-wise order of the circle in Fig. 1 are all

the elements of X i +1, X i +2,…,X k - 1 and the number of

elements is ( k - i - 1) n
k , and ｜L i｜+｜R i｜ = n

k . Hence

it is clear that d m od n
k e m od n

k . The second case is

that both x d and x e are in L i or R i . Since

｜L i｜,｜R i｜≤ n
k , d m od n

k e m od n
k . □

Given X i = ( x p, x p +1,…,x p + s - 1, x q, x q +1,…,x q + t - 1) ,

let M i be the list { p m od n
k , ( p + 1) m od n

k ,…, ( p + s - 1)

m od n
k ,q m od n

k , ( q + 1) m od n
k ,…,( q + t - 1) m od n

k },

that is, the list of indices of all the elements of X i

applied to m od n
k operation. Then the following lemma

shows that M i is a circularly shifted list of

( 0, 1,2, , n
k - 1) (see Fig. 4).

Fig. 4. List Mi.

Lemma 3. Each list M i, 0≤i≤k - 1 , is a circularly shifted

list of ( 0, 1, 2, , n
k - 1) .

Proof: Given L i = ( x p, x p +1,…,x p + s - 1) and R i = ( x q,

x q +1,…,x q + t - 1) of X i let M L i
=( p mod n

k ,

( p + 1) m od n
k ,…,( p + s - 1) m od n

k ), and

let M R i
=( q m od n

k , ( q + 1) m od n
k ,…,( q + t - 1) m od n

k ).

If ｜L i｜= 0 (or ｜R i｜= 0 ), R i (or L i ) is a continuous

subsequence of X of size n
k , and clearly M R i

(or M L i
) is

a circularly shifted list of ( 0, 1, 2, , n
k - 1) by

definition. If ｜L i｜ ≠0 and ｜R i｜≠0, clearly M L i
and M R i

are continuous sublists of a circularly shifted list

of ( 0, 1, 2, , n
k - 1) . Since the number of the elements

between the last element
x f( f= p + s - 1) of L i and the first element x q of R i is

( k - i - 1) n
k , q = f+ ( k - i - 1) n

k + 1 and q m od n
k =

( f+ 1) m od n
k . We can also show in the same way that

Fig. 3. The bitonic sequence X = (1, 2, 6, 9, 12, 13, 15, 16,

14, 11, 10, 8, 7, 5, 4, 3) on a circle.
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p m od n
k = ( g + 1) m od n

k , where x g ( g = q + t - 1) is the last

element of R i and x p is the first element of L i . Notice

that all the elements of M i ents of are distinct by Lemma 2.

Thus, the concatenated list M i of M L i
and M R i

is a

circularly shifted list of ( 0, 1, 2, , n
k - 1) . □

Let Y j be a subsequence ( x j , x
j + n

k
,…, x

j +( k - 1) n
k

)

that consists of every n
k th element from X , for

0≤ j≤ n
k - 1 . Then Y j has the following property.

Lemma 4. Any two elements from a subsequence Y j do

not belong to the same subsequence X i , where

0≤ i≤ n
k - 1 and 0≤j≤ n

k - 1 .

Proof: By Lemma 2, any two elements x d and x e of X i

with d e satisfy d mod n
k e mod n

k . Clearly the value

resulted from appling m od n
k operation to each index of

Y j = ( x j , x
j + n

k
,…, x

j +( k - 1) n
k

) is the same j . Hence, any

two elements of Y j can not belong to X i at the same time.□

Let x i j
be the i-th smallest element of Y i = ( x j , x

j + n
k

,

…,x
j +( k - 1) n

k
) and let Z i = ( x i 0

, x i 1
, ,x i n

k - 1
) , where

0≤ i≤ k - 1 and 0≤ j≤ n
k - 1 . Then Z i has the following

two properties.

Lemma 5. Z i and X i consist of the same elements, for

0≤ i≤k - 1 .

Proof: Note that each element of X i is less than each

element of X i +1 , and is greater than each element of

X i - 1 . By Lemma 4, X i has exactly one of the elements

from the sequence Y j , 0≤ j≤ n
k - 1 . Thus, i-th smallest

element of Y j must belong to X i , and hence the lemma

follows. □

By this lemma, we can see that each element of Z i is

less than each element of Z i +1 and is greater than each

element of Z i - 1 .

Lemma 6. Each Z i, 0≤ i≤ k - 1 , is a bitonic sequence.

Proof: By Lemma 4, X i has exactly one element from

Y j , 0≤ j≤ n
k - 1 . Since the indices of all the elements in

Y j have the same j after applying m od n
k operation, and

since j-th element x i j
of Z i = ( x i 0

, x i 1
,…,x i n

k - 1
) is an

element from Y j , i j m od n
k = j and hence the resulting list

of applying m od n
k operation to the index of each

element of Z i is ( 0, 1, 2,…, n
k ) . All the elements of Z i

are in X i by Lemma 5, and M i corresponding to X i is a

circularly shifted list of ( 0, 1,2,…, n
k - 1) by Lemma 3.

Thus, Z i is one of circularly shifted sequences of X i .
Since X i is a bitonic sequence, Z i is also a bitonic
sequence by definition. □

Clearly Z i is i-th(X) defined in eq.(1) and hence we

proved the new property claimed in the beginning of this
section. In the above lemmas, we assumed that the bitonic
sequence X = ( x 0 , x 1,…,x n - 1) satisfies x 0≤ x 1≤…≤ x l,

x l+1≥ x l+2≥…≥ x n - 1 , 0≤ l≤n - 1 and n = k c for some

positive integers k and c , and assumed that all the elements
of X are distinct. But all these results are true for general
bitonic sequences, since all the lemmas in this section are
correct for circularly shifted sequences of X and all the
general bitonic sequences can be made by circular-shifting
of X . We now present an efficient merge algorithm for the
postal model that makes use of this property of the bitonic
sequence.

Ⅲ. THE MERGE ALGORITHM

In this section, we first prove that the merge problem

requires at least f ( n
2 ) time in the postal model, and

then we present a near-optimal merge algorithm in the

model that runs in 2 log n
log ( + 1) + - 1 time by using the

new property described in the previous section.

Theorem 1. In the postal model with n processors and

communication latency , it requires at least f ( n
2 ) time to

merge two sorted lists A and B of sizes l and m

respectively into a sorted list of size n , where n = l + m .

ETRI Journal, Vol. 21, No. 2, June 1999 Hae- Kyeong Park et al. 35



Proof: Without loss of generality, we assume l≥m . Let
A i be the set of elements in A that are between b i and

b i +1 of B . In this case, all the elements of A i have to be

directly or indirectly compared with b i and b i +1 for

merging A and B , and it requires at least f ( | A i | ) time

which is the time required for broadcasting an element
over | A i | processors [4]. Since | A i | can be as large as l

and l≥ n
2 , the merge problem requires at least f ( n

2 )

time. □

We now describe briefly our merge algorithm in the
postal model with n processors and communication latency

. Given a bitonic sequence X = ( x 0 , x 1,…, x n - 1) , where

n = k c , k = + 1 , and c is a positive integer. We first
sort each subsequence Y j = ( x j , x

j + n
k

,…,x
j +( k - 1) n

k
) of

X into a sorted sequence Y ' j = ( x' j , x'
j + n

k
,…,x'

j+( k - 1) n
k

) ,

for 0≤ j≤ n
k - 1 . Let X = ( x' 0 , x' 1,…, x' n - 1) be the

sequence constructed by combining the n
k sorted sequences

Y ' j 's, and let Z i = ( x'
i n

k
, x'

i n
k +1

,…,x'
( i +1) n

k - 1
) be the

i-th continuous subsequence of X , for 0≤ i≤ k - 1 . Then by
Lemmas 5 and 6, each Z i is bitonic, and each element of

Z i' is greater than each element of Z i' - 1 and is less than

each element of Z i' +1 , for 0 i' k - 1 . Hence, if we

merge each Z i recursively, we can get a sorted list of X .

When the size of the bitonic sequence is no greater than
k ( = + 1) , we sort it directly as follows.

Given + 1 elements x j 0
, x j 1

,…,x j in processors

P j 0
, P j 1

,…,P j respectively. Each processor P j i
first

initializes its counter S j i
to 0, and then sends x j i

to all the

other processors P j i
one by one without conflict, where

0≤ l≤ and l i. When P j i
receives x j i

, it increments S j i

by one either if x j i
〈 x j l

or if i〈 l and x j i
= x j l

. P j i
receives

all the elements in 2 - 1 time, and then S j i
has the rank

of x j i
among x j 0

, x j 1
,…,x j . Finally, P j l

sends x j l
to P S j l

, and

sorting will be completed in 3 - 1 time.
The following algorithm is our merge algorithm that

sorts a given bitonic sequence X = ( x 0 , x 1,…,x n - 1) . Each

processor P i initially has x i, and will finally have the i-th

smallest element among X .

Algorithm Merge

Input: A bitonic sequence X = ( x 0 , x 1,…,x n - 1) , where

n = ( + 1) c and c is a positive integer.

Output: A sorted list.
Step 0: If n≤ + 1 , then sort the sequence directly and

return.
At time t = 0 , P i ( 0 ≤ i≤n - 1) sets S i=0.

For time t = 0 , n - 1 , P i ( 0 ≤ i≤n - 1)

sends x i to P j ( j = ( i + t + 1 ) m odn) .

For time t = , + n - 2 ,
if P j ( 0 ≤ j≤n - 1) receives M and M 〉 x j,

then S j = S j + 1 .

At time t = + n - 2 , P j ( 0 ≤ j≤n - 1)

sends x j to P S j
.

At time t = 2 + n - 2 , P S j
( 0 ≤ j≤n - 1)

receives M and x S j
= M .

Step 1: For 0≤ j≤ n
+ 1 - 1 pardo

Sort Y j = ( x j , x
j+ n

+1
,…, x

j + n
+1

) into

Y ' j = ( x' j , x'
j + n

+1
,…, x'

j+ n
+1

) by

using the same technique as in Step 0.
Let the combined sequence of all

such n
k Y ' j 's be X = ( x' 0 , x' 1,…,x' n - 1) .

Notice that now x' i is in P i.

Step 2: For 0≤i≤ pardo.
Merge each consecutive subsequence
Z i = ( x'

i n
+1

, x'
i n

+1 +1
,…,x'

( i +1) n
+1 - 1

)

of X recursively.

Example 3: Given two sorted lists A = (2, 4, 6, 7, 10, 15,
19, 22) and B = (27, 26, 25, 24, 23, 21, 20, 18, 17, 16, 14, 13,
12, 11, 9, 8, 5, 3, 1), the steps of merging these two lists
into a sorted list C = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27) in the
postal model with communication latency = 2 are
illustrated in Fig. 5. First, the subsequences Y 0 = (2, 26,14),

Y 1 = (4, 25, 13), …, Y 8 = (27, 16, 1), each of which
consists of every 9th element from X , are sorted
respectively into Y ' 0 = (2, 14, 26), Y ' 1 = (4, 13, 25), …,

Y ' 8 = (1, 16, 27). The combined sequence X of these sorted
sequences consists of 3 consecutive bitonic subsequences
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Z 0 = (2, 4, 6, 7, 9, 8, 5, 3, 1), Z 1 = (14, 15, 12, 11, 10, 15, 18,

17, 16), Z 2 = (26, 25, 24, 23, 21, 20, 19, 22, 27) each with 9

elements. Note that each element of Z 1 is greater than
each element of Z 0 and is less than each element of Z 2.
Next, Z 0, Z 1, and Z 2 are sorted recursively, and we obtain a
final sorted list C . □

The following lemma shows that our merge algorithm
correctly solves the merge problem.

Lemma 7. Given a bitonic sequence
X = ( x 0, x 1,…, x n - 1) , Algorithm Merge produces a
sorted sequence correctly in the postal model with n

processors and communication latency .

Proof: By induction. For c = 1 , the bitonic sequence of
size + 1 is sorted directly in Step 0. Next we assume

that Algorithm Merge correctly sorts the bitonic sequence
of size n' = ( + 1) α , where α is a positive integer.

Given a bitonic sequence X of size n = ( + 1) α+1

= n' ( + 1) , each subsequence Y j = ( x j , x
j + n

+1
,…,

x
j+ n

+1
) is sorted first into Y ' j = ( x' j , x'

j+ n
+1

,…,

x'
j+ n

+1
) for 0≤ j≤ n

+ 1 - 1 . When X = ( x' 0 , x' 1,

…,x' n - 1) made up of all the Y ' j 's, each consecutive
subsequence Z i = ( x'

i n
+1

, x'
i n

+1 +1
,…, x'

( i +1) n
+1 - 1

) of

X is bitonic, and each element of Z i' is greater than each
element of Z i' - 1 and is less than each element of Z i' +1 ,
where 0≤ i≤ and 0≤ i' ≤ , by Lemmas 5 and 6. Hence
each Z i has only to be merged recursively, and since
| Z i | = n' , the lemma follows by the induction

hypothesis. □

Fig. 5. The procedure of merge with λ= 2 and n = 27.
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Now we show that Algorithm Merge sorts a bitonic

sequence in 2 log n
log ( + 1) + - 1 time in the next

theorem.

Theorem 2. Algorithm Merge sorts a given bitonic
sequence X = ( x 0 , x 1,…,x n - 1) , where n = ( + 1) c and

c is a positive integer, in 2 log n
log ( + 1) + - 1 time in

the postal model with n processors and communication
latency .

Proof: The size of the bitonic sequence decreases by a

factor of 1
+ 1 with each recursion step, until the size of

each subsequence becomes + 1 . In this case, each
subsequence is sorted directly in Step 0. Hence, the depth

of the recursion is log n
log ( + 1) . Each recursion step can

obviously be performed in 3 - 1 time. But this can be
reduced to 2 time as follows.

Let Y j = ( x j , x
j + n

+1
,…, x

j+ n
+1

) = ( x j 0
, x j 1

,…,x j ) .

Then P j i
computes S j i

, the rank of x j i
among x j 0

, x j 1
,…, x j ,

in 2 - 1 time in Step 1. After this, instead of P j i
sending

x j i
only to P S j i

as in Step 1, P j i
directly sends it to

appropriate processors for the next recursion step as well
as to P S j i

. Hence the total time for Step 1 in each

recursion step is 2 since each processor sends its element
to + 1 processors. Thus the total time for Algorithm
Merge is

2 ( log n
log ( + 1) - 1) + 3 - 1 = 2 log n

log ( + 1) + - 1 . □

The merge problem in the postal model requires at least

f ( n
2 ) time by Theorem 1. Since our algorithm takes

2 log n
log ( + 1) + - 1 time, and log n - log 2

log ( + 1) ≤ f ( n
2 )

≤2 +2 log n - log 2
log ( + 1) by [4], we can say that our

algorithm is an almost optimal algorithm.

Corollary 1. In the postal model with n processors and
communication latency , Algorithm Merge merges two
sorted lists of size l and m into a sorted list of size n

in 2 log n
log ( + 1) + - 1 time, where n = l+ m and

n = ( + 1) c , for a positive integer c .

In Algorithm Merge, it is assumed that n = ( + 1) c

where c is a positive integer, but this algorithm can be
slightly modified to solve the merge problem for more
general bitonic sequences.

Corollary 2. In the postal model with n processors and
communication latency , Algorithm Merge merges two
sorted lists of size l and m into a sorted list of size n

in 2 log n
log ( + 1) + - 1 time, where n = l+ m .

Our merge algorithm can be used to sort an arbitrary
list X = ( x 0 , x 1,…,x n - 1) efficiently in the postal model.

Each processor P i initially has x i, and finally has the i-th

smallest element among X .

Corollary 3. In the postal model with n processors and
communication latency , sorting n elements can be

performed in ( 2 log n
log ( + 1) + - 1) log n time.
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