DOI QR코드

DOI QR Code

A high reliable optical image encryption system which combined discrete chaos function with permutation algorithm

이산 카오스 함수와 Permutation Algorithm을 결합한 고신뢰도 광영상 암호시스템

  • Published : 1999.12.01

Abstract

Current encryption methods have been applied to secure communication using discrete chaotic system whose output is a noise-like signal which differs from the conventional encryption methods that employ algebra and number theory[1-2] We propose an optical encryption method that transforms the primary pattern into the image pattern of discrete chaotic function first a primary pattern is encoded using permutation algorithm, In the proposed system we suggest the permutation algorithm using the output of key steam generator and its security level is analyzed. In this paper we worked out problem of the application about few discrete chaos function through a permutation algorithm and enhanced the security level. Experimental results with image signal demonstrate the proper of the implemented optical encryption system.

Keywords

References

  1. Modern Cryptography Brassard, G.
  2. Analog and Digital signal Processing v.40 no.10 chaotic Digital Encoding : An Approach to secure communication Douglas R. Frey
  3. Processings of the IEEE Cryptology for digital TV broadcasting B. M. Macq.;J. J. Quisquater
  4. Proc. of ICASSP-96 Copyright protection of images using robust digital signatures N. Nikolaidis;I. Pitas
  5. in progress in Optics ⅩⅩⅥⅡ Digitalholography-computer generated holograms O. Bryngdahl;F. Wyrowski;E. Wolf(ed.)
  6. in Optical Document Security Document protection by holograms G. Colgate;R. L. van Renesse, E.
  7. Optical Letter v.20 no.7 Optical image encryption based on input plane and Fourier plane random encoding Philippe Refregier
  8. Optical Engineering v.33 no.6 Optical pattern recognition for validation and security verification Baharm javidi
  9. J. Atmospheric Sci. v.20 Deterministic non-periodic flow E. N. Lorenz
  10. Int. J. Bifurcation Chaos v.2 Experimental demonstration of secure communications via chaotic synchronization L. Kocarev;K. Halle;K. Eckert;L. Chua
  11. Nonlinear Ordinary Differential Equations D. w. Jordon;P. Smith
  12. Int. J. Bifurcation Chaos v.3 Spread spectrum communication through modulation of chaos K. S. Halle;C. W. Wu;M. Itoh;L. O. Chua
  13. IEEE Trans. on circuits and system v.40 no.10 Secure Communications and Unstable Periodic Orbits of Strange Attractors Henry D. I. Abarbanel;Paul S. Linsay
  14. Electronics How to Protect Data with Ciphers that are really hard to break P. R. Geffe
  15. Cipher systems: The Protection of Communications H. J. Beker;F. C. Piper
  16. Algorithms, and Source code in C Applied Cryptography : Protocols B. Schneier
  17. IEEE Trans. on Infor. Theory v.IT-15 no.1 Shift-Register Synthesis and BCH Decoding J. L. Massey
  18. IEEE Trans. on Infor. theory v.IT-33 no.1 Products of Linear Recurring Sequences with maximum Complexity R. A. Rueppel;O. J. Stafflebach
  19. IEEE Trans. on Infor. Theory v.IT-30 no.5 Correlation-Immunity of Nonlinear Functions for Cryptographic Applications T.Siegen thaler
  20. Statistical analysis of symmetric ciphers Helen May gustalson
  21. Bell System Technical Journal v.28 Communication theory of Secrecy Systems C. Shannon
  22. Proceedings of the workshop on Cryptography Encrypting by Random Rotations N. J. Sloane;G. Goos(ed.);J. Hartmanis(ed.);Burg Feuerstein(ed.)
  23. IEEE Secure Random Number Generator Using Chaotic Circuits G. M. Bernstein;M. A. Lieberman
  24. Proc. IEEE ICASSP v.4 Signal processing in the context of chaotic signals A. V. Oppenheim;G. W. Wornell;S. H. Isabelle;K. M. Cuomo
  25. Phys. Rev. A v.44 Driving systems with chaotic signals L. M. Pecora;T. L. Carroll
  26. Int. J. Bifurcation chaos v.2 Transmission of digital signals by chaotic synchronization U. Parlitz;L. O. Chua;L. Kocarev;K. S. Halle;A. Shang
  27. US Patent no.5 Encryption System Based on Chaos Theory M. E. Bianco;D. A. Reed
  28. Nature v.261 Simple mathematical models with very complicated dynamics R. M. May
  29. Chaos and Fractals H. O. Peitgen;H. Jurgens;D. Saupe