Isolation of Glucoamylase Producing Yeasts and its Enzymatic Characteristics

Glucoamylase 생성효모의 분리와 효소학적 특성

  • Park, So-Young (Department of Biology, Research Center for Environmental Sciences, Sookmyung Women's University) ;
  • Choi, Soon-Young (Department of Biology, Research Center for Environmental Sciences, Sookmyung Women's University) ;
  • Min, Kyung-Hee (Department of Biology, Research Center for Environmental Sciences, Sookmyung Women's University)
  • 박소영 (숙명여자대학교 생명과학과) ;
  • 최순영 (숙명여자대학교 생명과학과) ;
  • 민경희 (숙명여자대학교 생명과학과)
  • Published : 1999.12.30

Abstract

Ethanol is considered as one of the most suitable substitutes for the petroleum, since it offers attractive functional features at an economical cost. Glucoamylase producing yeasts were isolated and characterized. Based on the morphological character, carbon fermentations, assimilation of carbon and nitrate, growth on vitamine-free medicine, and urease activity, five isolates of Saccharomyces diastaticus, two isolates of Saccharomycopsis fibuligera, and two of Schwanniomyces occidentalis, and each isolate of Ambrosiozyma monospora and Lipomyces kononenkoae were identified. Among 12 isolates, one of the S. diastaticus, E3 showed the highest activity of glucoamylase and identified as Saccharomyces diastaticus. The hydrolysis of starch by the E3 strain showed the release of considerable amount of reducing sugar, along with the reduction in iodine staining capacity. The product of action of glucoamylase, glucose was determined by thin-layer chromatography. The enzyme activity was found to be stable in broad pH range of $5.0{\sim}7.0$ with optimal activity at pH $5.0{\sim}6.0$. The enzyme showed optimal antivity at $50^{\circ}C{\sim}60^{\circ}C$. Soluble starch and glucose were better carbon sources for the enzyme production than xylose and glycerol. $Na^+\;and\;Mg^{2+}$ increased the glucoamylase activity, however $Hg^{2+}\;and\;Ag^{2+}$ inhibited the activity. Soluble starch was the best substrate for the enzyme activity.

대체에너지 생산을 위한 우수발효효모를 선별하기 위하여 전국 지역에서 전분, 전분박 및 전분 공장의 주변 토양과 폐수 등 시료를 채취하여 glucoamylase를 분비하는 효모균 64분리주를 얻었으며 이중 비교적 높은 activity를 보여주는 분리주를 선별하였다. 분리주를 동정한 결과 A1-5, D1, E3, G1과 J20은 Saccharomyces diastaticus로 동정되었으며 Saccharomycopsis fibuligera와 Schwanniomyces occidentalis는 각각 두 분리주, Ambrosiozyma monospora와 Lypomyces kononenkoae로 각각 한 분리주색 동정되었다. 그 중 높은 효소활성을 보여주는 S. diastaticus A1-5, J20과 E3을 선택하여 분비되는 glucoamylase의 일반적인 특성을 조사하였다. 배양액내의 효소의 생성을 측정한 결과 glucose나 saccharose, 그리고 4탄당과 3탄당보다 수용성녹말에 의하여 현저하게 증가하였다. Glucoamylase활성의 반응 최적 온도는 $50^{\circ}C{\sim}60^{\circ}C$였고, 최적 pH는 $5{\sim}6$이었으며, 열에 대해서는 $60^{\circ}C$ 이상에서는 불안정한 활성을 보며주었다. 금속이온에 따른 효소의 활성은 $Na^+,\;Mg^{2+}$에 의해 약간 증가하였으나, $H^{2+},\;Ag^{2+}$에 의해 현저하게 감소되는 현상을 보여주었다. 효소의 기질 특이성은 수용성녹말이 쌀 전분, 옥수수전분과 밀 전분에 비하여 현저하게 좋은 기질임을 알 수 있었다.

Keywords

References

  1. FEMS Microbiology Letters v.66 Characterization of glucoamylase from Aspergillus tereus 4 Anuradha, G.;Chatterjee, B.S.;Das, A.
  2. Agric. Biol. Chem. v.50 no.4 Rhizopus raw-starch-degrading glucoamylase; Its cloning and expression in yeast Ashikari, T.;Nakamura, N.;Tanaka, Y.;Kiuchi, N.;Shibano, Y.;Tanaka, T.;Amach, T.;Yoshizumi, H.
  3. Ethanol production by fermentation;Biomass conversion Processes for Energy and Fuels Brandt, D.;Sofer, S.S.(ed.);Zaborsky, O.R.(ed.)
  4. Kor. J. Microbiol. v.6 Gas chromatographische Uberprufung der Zuckerverwertungsfahigkeit der Hefe Cho, S.H.;Han, Y.B.
  5. Kor. J. Appl. Microbiol. Bioeng. v.16 no.6 Identification of yeast strains with computer system Cha, S.K.;Lee, H.S.;Kim, Y.B.;Kho, Y.H.
  6. CRC Critical Rev. Biotech. v.5 no.3 Extracellular amylases of starch-fermenting yeast. pH effect on export and residence time in the periplasm Calleja, G.B.;Levy-Rick, S.R.;Nasim, A.;Lusena, C.V.
  7. Can. J. Microbiol. v.32 Secretion of ${\alpha}$-amylase and multiple forms of glucoamylase by the yeast Trichosporon pullulans De Mot, Rene;Verachtert, H.
  8. Proc. Biochem. v.18 no.3 An integral approach to power alcohol Faust, U.;Prave, P.;Schlingmann, M.
  9. Jour. Appl. Bacteriol. v.68 A convenient microtitre tray procedure for yeast identification Heard, G.M.;Fleet, G.H.
  10. Appl. Envrion. Microbiol. v.44 no.2 Isolation and characterization of Schwanniomyces alluvius amylolytic enzymes Jeffrey, W.J.;Ingledew, W.M.
  11. Appl. Environ. Microbiol. v.54 no.4 High-efficiency, one-step starch utilization by transformed Saccharomyces cells which secrete both yeast glucoamylase and mouse ${\alpha}$-amylase Kim, K.;Park, C.S.;Mattoon, J.R.
  12. Adv. Appl. Microbiol. v.26 Ethanol production by fermentation : An atternative liquid fuel Kosaric, N.;N, D.C.M.;Steward, G.S.
  13. Appl. Environ. Microbiol. v.54 no.10 Development of rapidly fermenting strains of Saccharomyces diastaticus for direct conversion of starch and dextrin fermentation Laluce, C.;Mattoon, J.R.
  14. Process Biochem. v.11 Energy relationships of fuel from biomass Lewis, D.
  15. J. Biol. Chem. v.193 Protein measurement with the folin phenol reagent Lowry, O.H.;Rosenbrough, N.J.;Farr, A.L.;Randall, R.J.
  16. CRC Critical Review. Biotech. v.5 no.3 The application of genetics to the development of starch-fermenting yeasts Mattoon, J.R.;Kim, K.
  17. Yeast v.2 The utilization of starch by yeast McCann, K.;Barnett, J.A.
  18. Analytical Chemistry v.31 no.3 Use of dinitrosalicylic acid reagent for determination of reducing sugar Miller, G.L.
  19. Kor. J. Food Sci. Technol. v.15 no.1 Isolation and identification of starch utilizing yeast Park, W.S.;Koo, Y.J.;Shin, D.H.;Suh, K.B.
  20. Agric. Biol. Chem. v.50 no.2 Use of protoplast fusion for the development of rapid starch-fermenting strains of Saccharomyces diastaticus Sakai, T.;Koo, K.;Saitoh, K.
  21. FEMS Microbiology Letters. v.111 A rapid method for recognising strains of yeast able to hydrolyse starch or dextrin Searle, B.A.;Tubb, R.S.
  22. J. Inst. Brew. v.87 Regulation of amyloglucosidase production by Saccharomyces diastaticus Searle, B.A.;Tubb, R.S.
  23. Kor. J. Appl. Microbiol. Bioeng. v.14 no.4 A study on strain improvement by protoplast fusion between amylase secreting yeast and alcohol fermenting yeast Seu, J.H.;Kim, Y.H.;Jun, D.Y.;Lee, J.T.
  24. Bull. Brew. Sci. v.12 A newly isolated strain of Saccharomyces diastaticus I. taxonomic studies Takahashi, T.
  25. J. Biochem. v.84 Purification and some properties of three forms of glucoamylase from a Rhizopus species Takahashi, T.;Tsuchida, T.;Irie, M.
  26. Biotech. Bioeng. Symp. v.14 Isolation and characterization of glucoamylase from Saccharomyces diastaticus Tucker, M.;Grohmann, K.;Himmel, M.
  27. Agric. Biol. Chem. v.41 no.11 Three forms of ${\alpha}$-glucosidase and a glucoamylase from Apergillus awamori Yamasaki, Y.;Suzuki, Y.;Ozawa, J.
  28. Agric. Biol. Chem. v.41 no.11 Two forms of glucoamylase from Mucor rouzianus; II. Properties of the two glucoamylases Yamashita, Y.;Tsuboi, A.;Suzuki, Y.
  29. Agric. Biol. Chem. v.48 no.1 Isolation of glucoamylasenon-producing mutants in the yeast Saccharomyces diastaticus Yamashita, I.;Fukui, S.
  30. J. Bacteriol. v.161 Polymorphic extracellular glucoamylasea genes and their evolutionary origin in the yeast Saccharomyces diastaticus Yamashita, I.;Maemura, T.;Hatano, T.;Fukui, S.
  31. Agric. Biol. Chem. v.42 no.5 Purification and properties of ${\alpha}$-glucosidase and glucoamylase from Lentinus edodes (Berk.) Yamashita, Y.;Suzuki, Y.
  32. Agric. Biol. Chem. v.48 no.6 Subunit structure of glucoamylase of Saccharomyces diastaticus Yamashita, I.;Hatano, T.;Fukui, S.
  33. Agric. Biol. Chem. v.50 no.4 Comparison of amino acid sequences of three glucoamylase and their structure-function relationships Yoshizumi