Development of an Integrated Calorimeter Using Temperature Control Signals of a Bioreactor and On-line Measurement of Metabolic Heat of a Microbial Cultivation

발효조의 온도제어 신호를 이용한 직접열량계의 개발 및 대사열량의 온라인 측정

  • Published : 1999.10.01

Abstract

For development of an integrated calorimetric bio-reactor to measure the metabolic heat dissipated during cell growth, a 5 liter jar fermenter was modified to measure the pulse length of automatic temperature control signals to set heater on and off, and the to send them to computer to calculate the cumulative heat supplied. Cumulative heats for the calorimetric reactor in the absence of cell growth, were measured with varying conditions. The heat loss by the aeration was 30.9 kJ/vvm and the loss to ambient air was 10.5 kJ/L/hr/$^{\circ}C$. Cumulative heat was measued within $\pm$0.2% when testing with a small electri heater submerged in the reactor. Metabolic heat was measured to be 0.76 and 0.76 and 11.4kJ per g consumption of glucose during cultivation of S. cerevisiae and E. coli, respectively.

본 연구에서는 미생물의 성장시 수반하는 대사열을 측정할 수 있는 직접 열량계의 기능을 가질 수 있도록 발효조를 개량하였다. 발효조의 온도제어신호의 길이를 측정하고 이 신호를 컴퓨터에서 전달하여 계산하고 발효조에 공급된 누적 열량을 측정할 수 있도록 발효조를 일부 개조하고 온라인 측정 시스템을 구성하였다. 균체 없이 발효조를 운전하면서 여러 조건에서 누적 열량을 측정하여 통기량의 따라 30.9kJ/vvm의 열손실과 공기중으로 전도 및 대류, 복사에 의한 0.5 kJ/L/hr/$^{\circ}C$의 열손실이 발생함을 측정할 수 있었다. 그리고 소형의 가열체를 반응액에 발생함을 측정할 수 있었다. 그리고 소형의 가열체를 반응액에 투입하여 열량측정의 정확도를 확인하였으며 누적열량은 $\pm$0.2%의 오차 범위 내에서 측정되었다. 본 시스템에소 효모와 대장균을 이용하여 대사열량을 성공적으로 측정할 수 있음을 보였다.

Keywords

References

  1. Energy and Cells Gayford, C. G.
  2. Bacterial Metabolism Gottschalk, G.
  3. Adv. Biochem. Eng. Biotechnol. v.28 Heat Evolution during the Microbial Process - Estimation, Measurement and Applications Luong, J. H. T.;B. Volesky
  4. Adv. Biochem. Eng. Biotechnol. v.40 The Use of Calorimetry in Biotechnology von Stockar, U.;I. W. Marison
  5. Can. J. Chem. Eng. v.58 Determination of the Heat of Some Aerobic Fermentations Luong, J. H. T.;B. Volesky
  6. J. Bacteriol. v.140 no.2 Microcalorimetric study of Escherichia coli Aerobic Growth: Kinetics and Experimental Enthalpy Associated with Growth on Succinic acid Dermoun, Z.;J. P. Belaich
  7. Biotechnol. Bioeng. v.18 Application of Dynamic Calorimetry for Monitoring Fermentation Processes Mou, D. G.;C. I. Cooney
  8. Biotechnol. Bioeng. v.28 The Application of a Novel Heat Flux Calorimeter for Studying Growth of Escherichia coli W in Aerobic Batch Culture Marison, I. W.;U. von Stockar
  9. Thermochimica Acta v.275 Quantification of Small Enthalpic Differences in Anaerobic Microbial Metabolism - a Calorimetry Supported Approach Meier-Schneiders, M.;F. Schafer
  10. Biotechnol. Lett. v.2 Determination of the Maintenance Energy of Klebsiella aerogenes Growing in Continuous Culture Djanvan, A.;A. M. James
  11. J. Dairy Res. v.45 Calorimetric Identification of Several Strains of Lactic Acid Bacteria Fujita, T.;P. R. Monk;I. Wasdui
  12. Enzyme Microb. Technol. v.9 A Calorimetric Investigation of the Aaerobic Cultivation of Kulyveromyces fragilis on Various Substrates Marison, I. W.;U. von Stockar
  13. Biotechnol. Bioeng. v.30 Calorimetric Investigation of Aerobic Fermentation Birou, B.;I. W. Marison;U. von Stockar
  14. Biotechnol. Bioeng. v.52 Monitoring and Control of the Physiological State of Cell Culture Konstantinov, K. B.
  15. Biotechnol. Bioeng. v.58 Specific Heat Flow Rate: An On-Line Monitor and Potential Control Variable of Specific Metabolic Rate in Animal Cell Culture that Combines Microcalorimetry with Dielectric Spectroscopy Guan, Y.;P. M. Evans;R. B. Kemp
  16. Biotechnol. Bioeng. v.38 Use of Microcalorimetric Monitoring in Estabilishing Continuous Energy Balances and in Continuous Determinations of Substrate and Product Concentrations of Batch-Grown Saccharomyces cerevisiae Larsson, C.;A. Blomberg;L. Gustatsson