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I. N one quiv ariant c as e

1. Comple x bundle cas e .

Every complex vector bundle over S1 splits
sum of line bundles and the firs t Chern clas s
classify complex line bundle. T his implies every
complex vector bundle over S1 is trivial. i.e.,

isomorphic to a product bundle S1 F, for some

vector space F. We can see this fact from
different points of view . Since every vector

bundle is classified by classifying map and [S1,

Bu(m)] 1(BU(m)) = 0 (U(m)) = {1}, it is

easy to see that every vector bundle over S1 is
tr ivial.

2. Re al bundle cas e .

Every real vector bundle over S1 splits sum
of line bundles and the firs t Stiefel- Whitney
class classify real line bundle. T his implies
every real vector bundle over S1 is not tr ivial.
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We can s ee this fact from different points of
view . Since every vector bundle is class ified by

classifying map and [S1, BO(m)] 1(BO(m)) =

0 (O(m)) = Z2 = { 1} there are, up to

isomorphis m, only tw o vector bundles over S1,
the trivial bundle and the tw ist bundle. So it is
easy to see that every vector bundle over S1 is
not trivial. Espectially, w hen m =1, one is a
tr ivial line bundle and the other one is a Hopf

line bundle S1 Z2 R S1, where Z2 = { 1}.

II. Equiv ariant c as e .

Let G be a compact Lie group and let S1
denote the unit circle in R2 with the standard
metric. Since every smooth compact Lie group
action on S1 is smoothly equivalent to a unique
linear action [See 5. T H 2.0.], we may think of
S1 w ith a smooth G- action as S(V) the unit
circle of a real 2- dimentional orthogonal G
- module V. In this section w e consider s mooth
G- vector bundle over S(V).

In [3], w e proved

Propos ition. A smooth G- line bundle L S1

is equivariantly is omorphic to a product bundle

S(V) S(V) or S(V) z2 S(V)/Z2

= P(V) according as the G- line bundle L S1

is trivial or not w hen w e forget the action.
Here S(V) denotes the unit circle of a real

2- dimensional orthogonal G- module V, a real

1- dimensional G- module and Z2 acts on S(V)

and as scalar mult iplication.

In [4], w e obtaine a similar result for a
higher dimensional smooth G- vector bundle over
S(V) when the G- action on S(V) is injective, in
other words, when V is a faithful representation.
In the non- equivariant cas e, real smooth vector
bundles over S1 are clas sified by the firs t
Stiefel Whitney class . So there are, up to
isomorphis m, only tw o vector bundles over S1,
the tr ivial bundle and the twist bundle. In the

equivariant case, we obtain the following res ults .

T heorem A . A smooth G- vector bundle over
S1 is equivariantly isomorphic to a Whitney s um
of G- line bundle if the induced G- action on the
base s pace is effective.

T heorem B . If the induced G- action on the
base space is effective, then a smooth G- vector

bundle E S1 is equivariantly is omorphic to a

product bundle S(V) W+ S(V) or a twist

bundle S(V) Z2 (W+ W-) S(V)/ Z2 =

P(V). Here S(V) denotes the unit circle of a
real 2- dimensional orthogonal G- module V, W+
and W- is a real G- module and Z2 acts on W+
trivially and acts on W- and S(V) as scalar
multiplicat ion.

Proof of T heorem A . Case 1. Suppose G is
a subgroup of SO(2). T hen G is SO(2) or cyclic
group.

So G acts freely on the base space. In this
case we can reduce our case to non- equivariant

case by the bijection map VectG(S1)

Vect(S1/G) defined by E E/G

and * [See 1. T H 1.6.1]

If G is SO(2), Vect(S1/G) = Vect(pt) w hich is
tr ivial vector bundle in each dimension. So it is
a whitney sum of trivial line bundle. If G is a
cyclic group, Vect(S1/G) = Vect(S1) w hich is
the tr ivial bundle or the tw ist bundle. T he tw ist
bundle is a sum of tr ivial line bundles and

Hopf line bundle. By taking pullback * of

the above bundles w e get a whitney sum of

G- line bundle over S1.

Case 2. Suppose G is not a subgroup of
SO(2). T hen G is a Dihedral group Dn or O(2).

T ake a normal s ubgroup N=G SO(2) of G.

T hen N is SO(2) or a cyclic group. If N is
SO(2), then N acts freely on the base space.

So we get a bijection map VectG(S1) VectZ2
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(S1/SO(2)) = VectZ2(pt) = Z2- repres entation. Since
any Z2- representation is a sum of one dimen-
sional Z2- repres entation, w e get a w hitney sum
of G- line bundle by taking pullbuck of one
dimensional Z2- representat ion. If N is cyclic

group, w e get a biject ion map VectG(S1)

VectZ2(S1/N)=VectZ2(S1), where G acts on S1 by

: G O(2) and any Z2 acts on S1 by

reflextion. So it suffices to prove the following
Lemma i.e., w hen G is Z2. T hen by taking
pullback w e can conclude T heorem A.

Lemma. Suppose Z2 acts on S1 by reflextion.
A Z2- vector bundle E over S1 is isomorphic to a
w hitney sum of Z2- line bundle.

Proof. Let {z0, z1} be the fixed set of Z2 on
S1. Choose an eigenvector vi at zi and connect
v0 and v1 by using a path to get a vector field
on the upper half circle. Extend this vector field
to the low er half circle by us ing Z2- action.
T hen we get a vector field

on S1. T his vector field may not be
continuous. But each vector generate a line
w hose union is a Z2- line bundle. So w e get a
Z2- line bundle L1 over S1 w hich is a subbundle
of E. So w e can decompose En as follows :

En E1n-1 L1.

we continue the above process until we get

En L1 L2 Ln.

Proof of T heorem B.
By T heorem A, suppos e our G- vector bundle

E is a Whitney sum of tr ivial G- line bundle

then E S(V) W+, w here W+= 1

n and 1 is a real 1- dimensional G-

module. If E is a Whitney sum of tw ist G- line

bundle, then E S(V) Z2W-, w here W-= 1

n and 1 is a real 1- dimension-

al G- module and Z2 acts on 1 as a scalar

multiplication. In general, we obtain the follow ing
results :

E P(V) W+ S(V) Z2W-

= S(V) Z2 W+ S(V) Z2W-

= S(V) z2 (W+ W-), where P(V)=

S(V)/ Z2.

III. Ex am ple of nontriv ial
e quiv arinat c om ple x line bundle .

In section I, we mentioned that every complex
vector bundle over S1 is tr ivial (i.e., isomorphic
to product bundle) if G is trivial. In this section
w e will s how the existence of nontrivial G- line
bundle over S1 by example. Let G be a compact
Lie group and let V be a real 2- dimensional
orthogonal G- module. We denote the representa

- tion ass ociated w ith V by : G O(2) and

the unit circle of V by S(V). Note that
effectiveness of the G- action is equivalent to the

injectivity of . If G is abelian, is an abelian

subgroup of O(2); s o it is contained in SO(2) or
isomorphic to D1 or D2, w here Dn denotes the
dihedral subgroup of O(2) generated by the
reflection matrix w ith respect to the x- axis and

the rotation matrix of angle 2 /n. Without los s

of generality w e may assume that agrees

w ith D1 or D2 unless it is contained in SO(2).

EXAMPLE. Suppose that =D1. T ake a

complex 1- dimensional G- module M and denote

the associated representation by : G

GL(1,C)=C*. We define a G- action on S1 C

by

g(z,v)= {
( z , ( g )v ) if g k er ,

( z , ( g ) z v ) if g k er ,

where (z,v) S1 C and S1 denotes the

unit circle of C. T he projection onto the firs t
factor makes it a complex G- vector bundle over

S(V), w hich w e denote by . One can check

that the fiber representat ions at the tw o fixed
points in S(V) are different, in fact , they are

isomorphic to M and M c , w here
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denotes the nontrivial 1- dimensional G- module

w ith ker acting tr ivially.
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