A NOTE ON NORMAL SUBGROUPS OF M-GROUPS

Moon-Ok Wang

ABSTRACT. For an M-group G, it is shown that a normal subgroup of G whose order is coprime to its index is an M-group.

A finite group is an M-group if every irreducible complex character is induced from a linear (i.e., degree 1) character of a subgroup. It is known that all M-groups are solvable (cf. [3]), but no non-character theoretic description of the class of M-groups has been found. Part of the difficulty of finding such a group theoretic characterization is undoubtedly related to the fact that subgroups of M-groups need not, themselves, be M-groups. We have an interesting question.

QUESTION. For an M-group G, is every normal subgroup of G an M-group?

In this note, we give a partial answer for the question: if G is an M-group, then the normal subgroup N of G with (|N|, |G:N|) = 1, is an M-group. All groups in this note are assumed to be finite. Let Irr(G) be the set of all irreducible complex characters of G.

Let N be a normal subgroup of G and let $\theta \in Irr(N)$ be invariant in G. Under these hypotheses we say that (G, N, θ) is a character triple (cf.[3]).

Let $Ch(G|\theta)$ denotes the set of characters χ of G such that χ_N is a multiple of θ . Let $Irr(G|\theta)$ be the set of irreducible constituents of θ^G . Note that if $N \subseteq H \subseteq G$, then (H, N, θ) is a character triple and $\chi_H \in Ch(H|\theta)$ whenever $\chi \in Ch(G|\theta)$. If $\tau: U \to V$ is an isomorphism of groups and $\phi \in Irr(U)$, let $\phi^{\tau} \in Irr(V)$ denote the corresponding character, so that $\phi^{\tau}(u^{\tau}) = \phi(u)$, for all $u \in U$.

Received June 15, 1998.

¹⁹⁹¹ Mathematics Subject Classification: 20C15.

Key words and phrases: characters, M-groups.

The author wishes to acknowledge the financial support of Hanyang University, Korea, made in the program year of 1998

DEFINITION 1. Let (G, N, θ) and (Γ, M, ϕ) be character triples. A pair (τ, σ) is called an isomorphism of character triples (G, N, θ) and (Γ, M, ϕ) if $\tau : G/N \to \Gamma/M$ is an isomorphism and σ is the union of the maps σ_H , where σ_H is defined as follows; for $N \subseteq H \subseteq G$, let H^{τ} denote the inverse image in Γ of $\tau(H/N)$, for every such H, $\sigma_H : Ch(H|\theta) \to Ch(H^{\tau}|\phi)$ is the map which satisfies the following conditions for H, K with $N \subseteq K \subseteq H \subseteq G$ and $\chi, \phi \in Ch(H|\theta)$

- (1) $\sigma_H(\chi + \phi) = \sigma_H(\chi) + \sigma_H(\phi)$,
- (2) $[\chi, \phi] = [\sigma_H(\chi), \sigma_H(\phi)],$
- $(3) \ \sigma_K(\chi_K) = (\sigma_H(\chi))_{K^{\tau}},$
- (4) $\sigma_H(\chi\beta) = \sigma_H(\chi)\beta^{\tau}$ for $\beta \in Irr(H/N)$.

LEMMA 2. ([3]). Let (τ, σ) be an isomorphism of character triples (G, N, θ) and (Γ, M, ϕ) . Then σ_H is a bijection of $Ch(H|\theta)$ onto $Ch(H^{\tau}|\phi)$ for all H with $N \subseteq H \subseteq G$. Furthermore, $\chi(1)/\theta(1) = \sigma_H(\chi)(1)/\phi(1)$ for all $\chi \in Ch(H|\theta)$.

Proof. If $\sigma_H(\chi_1) = \sigma_H(\chi_2)$ for $\chi_i \in Ch(H|\theta)$, we have $[\chi_i, \phi] = [\sigma_H(\chi_i), \sigma_H(\phi)]$ is independent of i for all $\phi \in Irr(H|\theta)$. It follows that $\chi_1 = \chi_2$ and hence σ_H is one-to-one.

For $\chi \in Ch(H|\theta)$, write $e(\chi) = \chi(1)/\theta(1)$ and similarly set $e(\eta) = \eta(1)/\phi(1)$ for $\eta \in Ch(H^{\tau}|\phi)$. Note that $\sigma_{\eta}(\theta) \in Irr(M|\phi)$ and so $\sigma_N(\theta) = \phi$. We have $\chi_N = e(\chi)\theta$ and $\eta_M = e(\eta)\phi$ and thus

$$e(\sigma_N(\chi))\phi = (\sigma_H(\chi))_M = \sigma_N(\chi_N) = \sigma_N(e(\chi)\theta) = e(\chi)\phi$$

which implies

$$e(\sigma_H(\chi)) = e(\chi)$$

By Frobenius reciprocity, we have

$$\theta^H = \sum_{\chi \in Irr(H|\theta)} e(\chi)\chi$$

and comparing degrees yields $\sum e(\chi)^2 \theta(1) = |H| : N|\theta(1)$ so that $\sum e(\chi)^2 = |H| : N|$ where χ runs over $Irr(H|\theta)$. Similarly, $\sum e(\eta)^2 = |H^{\tau}| : M| = |H| : N|$ for $\eta \in Irr(H^{\tau}|\phi)$. Since σ_H maps $Irr(H|\theta)$ one-to-one into $Irr(H|\theta)$, we have

$$|H:N| = \sum e(\chi)^2 = \sum e(\sigma_H(\chi))^2 \le \sum e(\eta)^2 = |H:N|.$$

It follows that every $\eta \in Irr(H^{\tau}|\phi)$ is of the form $\sigma_H(\chi)$ for some $\chi \in Irr(H|\theta)$ which proves the Lemma.

PROPOSITION 3. ([3]). Let $N \triangleleft G$ and $\chi \in Irr(G)$. If $\theta \in Irr(N)$ is a constituent of χ_N then $\chi(1)/\theta(1)$ divides |G:N|.

Proof. Let $T = I_G(\theta)$, the inertia group (cf.[3]) and let $\phi \in Irr(T)$ such that $\phi^G = \chi$ and $\phi_N = e\theta$ by the Clifford's theorem. Since $\chi(1) = |G:T|\phi(1)$, it suffices to show that $\phi(1)/\theta(1)$ divides |T:N|. Let (Γ, A, λ) be a character triple isomorphic to (T, N, θ) with λ linear. Let $\zeta \in Irr(\Gamma|\lambda)$ correspond to $\phi \in Irr(T|\theta)$. Then $\phi(1)/\theta(1) = \zeta(1)/\lambda(1) = \zeta(1)$ by Lemma 2. Since $A \subseteq Z(\zeta)$, we have $\zeta(1)$ divides $|\Gamma:A| = |T:N|$.

COROLLARY 4. Let $N \triangleleft G$ and $\chi \in Irr(G)$. If $(\chi(1), |G:N|) = 1$, then χ_N is irreducible.

Proof. Let θ be an irreducible constituent of χ_N . Then by Proposition 3, $\chi(1)/\theta(1)$ divides |G:N|. Hence we have $\chi(1)/\theta(1)=1$ since $(\chi(1),|G:N|)=1$. So, $\chi(1)=\theta(1)$. Thus $\chi_N=\theta$ is irreducible. \square

THEOREM 5. Let G be an M-group and suppose $N \triangleleft G$ with (N, |G:N|) = 1. Then N is an M-group.

Proof. Let $\theta \in Irr(N)$ and let χ be an irreducible constituent of θ^G . Since G is an M-group, χ is a monomial. So $\chi = \lambda^G$ where $\lambda \in Irr(H)$ is linear for some $H \subseteq G$.

Let $\phi = \lambda^{NH}$. Then we have

$$\phi^G = (\lambda^{NH})^G = \lambda^G = \chi \in Irr(G).$$

Thus $\phi \in Irr(NH)$. Hence we get

$$\phi(1) = \lambda^{NH}(1) = |NH: H|\lambda(1) = |NH: H| = |N: N \cap H|.$$

This divides |N|. Since |N| is coprime to |G:N|, we have $(\phi(1), |G:N|) = 1$. But |NH:N| divides |G:N|. Thus we get $(\phi(1), |NH:N|) = 1$.

By Corollary 4, we obtain that ϕ_N is irreducible. But

$$\phi_N = (\lambda^{NH})_N = (\lambda_{N \cap H})^N.$$

So, ϕ_N is monomial. Since $\phi^G = \chi$, by Frobenius Reciprocity, ϕ is a constituent of χ_{NH} . Thus ϕ_N is an irreducible constituent of $(\chi_{NH})_N = \chi_N$. Since θ is an irreducible constituent of χ_N , by Clifford theorem $\theta = (\phi_N)^g = (\lambda_{N\cap H}^g)^N$; i.e., induced from linear character for some $g \in G$. Hence θ is an monomial and the proof is completed. \square

COROLLARY 6. Let G be an M-group. Then the Sylow p-subgroup of G is an M-group, where p is prime.

Proof. Let S be a Sylow p-subgroup of G. Then $S \triangleleft G$ and (|S|, |G:S|) = 1. Thus by Theorem 5, S is an M-group.

References

- [1] E.C. Dade, Normal subgroups of M-groups need not be M-groups, Math. Z. 133 (1973), 313-317.
- [2] L. Dornhoff, Group representation theory, Marcel Dekker, Inc, 1971.
- [3] I.M. Isaacs, Character theory of finite groups, Academic Press, 1976.
- [4] I.M. Isaacs, *Primitive characters*, normal subgroups and M-groups, Math. Z. **177** (1981), 267-284.
- [5] M. Suzuki, Group theory II, Springer-Verlag, 1986.

Department of Mathematics Hanyang University Ansan, Korea