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BACKWARD SELF-SIMILAR STOCHASTIC
PROCESSES IN STOCHASTIC
DIFFERENTIAL EQUATIONS

Jae-pill Oh

Abstract. For the forward-backward semimartingale, we can de-

fine the backward semimartingale flow which is generated by the

backward canonical stochastic differential equation. Therefore, we
define the backward self-similar stochastic processes, and we study

the backward self-similar stochastic flows through the canonical sto-
chastic differential equations.

0. Introduction

In the previous work [5], for the C-valued forward-backward semi-
martingale, Kunita defined the inverse flow which is a backward semi-
martingale flow generated by the canonical backward stochastic differ-
ential equation(SDE). On the other hand, in [3] and [4], he studied
the self-similar stochastic flows generated by the canonical SDE on the
manifolds. Therefore, for the forward-backward semimartingale, we
can define the forward and the backward stochastic flows by the canon-
ical SDE. Thus, the purpose of this paper is to define the backward
self-similar processes and the backward self-similar stochastic flows,
and study them through the canonical SDE on Rd.

To define the backward self-similar process, it is convenient to use
the (inverse) dilation which is also an invertible linear transformation.
Therefore, we define the backward self-similar semimartingale with re-
spect to a dilation and study the backward self-similarity for the flows
which are generated by the backward SDE. Thus, first, we think the re-
lation of self-similarities between the backward driving processes and
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the backward stochastic flows through the canonical SDE. Further,
for the forward-backward self-similar processes, we also think the two-
sided self-similar stochastic flows through the canonical SDE.

Section I is the preliminary part. In this section, we define the
canonical SDE and the backward SDE. Further, we also define the
backward self-similar processes. Section II is the main part of this
results. In this section, we study the backward self-similar stochastic
processes and the backward self-similar stochastic flows through the
canonical SDE. In section III, we will deal with the density of the
self-similar stochastic flow which is a solution of the canonical SDE.

I. Preliminaries

For a non-negative integer m, we denote by Cm := Cm(Rd; Rd) the
set of all maps from Rd into itself which are m -times continuously
differentiable. In case m = 0, we denote it C := C(Rd; Rd) which is
the space of continuous maps from Rd into itself equipped with the
compact uniform topology. Let 0 < δ ≤ 1. We denote by Cm+δ

b :=
Cm+δ
b (Rd; Rd) the set of all v ∈ Cm such that derivatives Dαv are

bounded and uniformly δ−Hölder continuous for any αwith |α| ≤ m.
Let C̃ := C̃(Rd × Rd; S+), where S+ is the space of d × d - matrices.
We define the subspace C̃m+δ

b = C̃m+δ
b (Rd × Rd; S+) of C̃ similarly.

Let (Ω,F , P ) be a probability space where the filtration Ft; t ∈
[0,∞) of sub-σ-field of F is defined. Let X(x, t), t = 0 be a family of
Rd-valued stochastic process with spatial parameter x ∈ Rd defined on
(Ω,F , P ). IfX(x, t) is continuous in x for each t a.s., we can regard it as
a C -valued process. We denote it sometimes by X(t) = X(x, t), t ≥ 0.

Let X(x, t) be a cadlag semimartingale with values in C. We define
the point process N(t, E) over [0,∞)× C associated with X(t) by

N((s, t], E) =
∑
s<r≤t

XE(∆X(r)),∆X(s) = X(s)−X(s−),

where E is a Borel subset of C excluding 0. Then there exists a unique
predictable process N̂(t, E) which is called the compensator such that

Ñ(t, E) = N(t, E)− N̂(t, E)



Self-similar stochastic flows 261

is a localmartingale. For a bounded Borel subset U of C, consider a
C-valued semimartingale X(x, t) which is represented as;

X(x, t) = Xc(x, t) +Xd(x, t)

= M c(x, t) +Bc(x, t) +
∫
U

v(x)Ñ(t, dv) +
∫
Uc

v(x)N(t, dv),

where M c(x, t) is a continuous localmartingale for any x, Bc(x, t) is a
continuous predictable process of bounded variation for any x, and the
integral form ∫

U

v(x)Ñ(t, dv)

is a discontinuous localmartingale part of X(x, t) for any x.
Let At, t ∈ [0,∞) be a continuous increasing process adapted to the

filtration Ft such that A0 = 0 a.s. Then there exist predictable pro-
cesses aij(x, y, t) and bi(x, t), and for the compensator N̂(t, E), there
exists a predictable measure-valued process νt(E) satisfying

〈M c,i(x, t),M c,j(y, t)〉 =
∫ t

0

aij(x, y, s)dAs,

Bc,i(x, t) =
∫ t

0

bi(x, s)dAs,

and

N̂(t, E) =
∫ t

0

νs(E)dAs.

The system (a, b, ν) is called the characteristic of semimartingale
X(x, t) with respect to At.

Let X(x, t), t ≥ 0 be a C-valued cadlag semimartingale equipped
with the characteristic (a, b, ν). We introduce a condition;

Condition (A). For a positive predictable process Kt, t ≥ 0 satis-
fying ∫ T

0

KtdAt <∞ a.s. for any T > 0,

(i) a(x, y, t) is a continuous C̃1+1
b -valued process satisfying

‖a(t)‖˜1+1 ≤ Kt a.s.
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(ii) b(x, t) is a continuous C0+1
b -valued process satisfying

‖b(t)‖0+1 ≤ Kt a.s.

(iii) The measure νt(·) is supported by C1+1
b . Further, there exists

a Borel set U ⊂ C1+1
b such that for some constant c > 0, ‖ν‖1+1 ≤ c

for all v ∈ U , and

νt(U c) ≤ Kt, and
∫
U

‖v‖2
1+1νt(dv) ≤ Kt.

Let {ξt, t ≥ 0} be an Rd-valued cadlag process satisfying Condition
(A) adapted to (Ft). Then we can define the Itô integrals and the
Stratonovich integrals, respectively;∫ t

s

X(ξr−, dr), and
∫ t

s

X(ξr, ◦dr).

Let v(x) be a Lipschitz continuous vector field. Then by Condition
(A)-(iii), the possible infinite sum∑

s≤t

[exp(∆X(s))(x)− x−∆X(x, s)]

is absolutely convergent a.s.. Therefore, we can define the canonical
integral of a cadlag semimartingale ξt based on the vector field-valued
semimartingale X(t) as following;∫ t

s

X(ξr, �dr) =
∫ t

s

Xc(ξr, ◦dr) +
∫ t

s

Xd(ξr−, dr)

+
∑
s≤r≤t

[exp(∆X(r))(ξr−)− ξr− −∆X(ξr−, r)],

where the first part and the second part of the right hand side are
Stratonovich integral and Itô integral, respectively.

Let X(x, t), t ≥ 0 be a C-valued semimartingale whose characteristic
satisfy Condition (A). Consider a canonical SDE which is represented
by

(I-1) ξt(x) = x+
∫ t

0

X(ξs(x), �ds),

where 0 ≤ s ≤ t. The process ξt satisfying (I-1) is called a solution of
the canonical SDE (I-1) driven by the vector field-valued semimartin-
gale X(t).
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Proposition I-1. Assume that the characteristics of the C-valued
semimartingale X(t) satisfy Condition (A). Then the canonical SDE
(I-1) has a unique solution ξs,t(x), t ≥ s for any s, x. Further, a certain
version ξs,t(x) of the solution admits the following properties;

(i) ξs,u(x) = ξt,u(ξs,t(x)) holds for all x ∈ Rd and s < t < u, a.s.
(ii) The map ξs,t : Rd → Rd is an onto homeomorphism for all

s < t a.s.
(iii) ξs,t is a C-valued cadlag processes in both s and t.
The above ξs,t is called the stochastic flow of homeomorphisms gen-

erated by Xt.

Let (Ω,F , P ) be a probability space and {Fs,t; 0 ≤ s ≤ t ≤ T} be
a two parameter family of sub-σ-field of F which contains all null sets
and satisfy

Fs,t ⊂ Fs′,t′ , if s′ ≤ s ≤ t ≤ t′,

and
∩ε>0Fs,t+ε = Fs,t, and ∩ε>0 Fs−ε,t = Fs,t

for any s < t. A C-valued cadlag process {Xt, t ≥ 0} is called a
forward-backward semimartingale if Xt − Xs, t ∈ [s, T ] is a forward
semimartingale adapted to the filtration (Fs,t)t∈[s,T ] for any s and also
Xt−Xs, s ∈ [0, t] is a backward semimartingale adapted to the filtration
(Fs,t)s∈[0,t] for any t.

Let {ξs, 0 ≤ s ≤ t} (t is fixed) be a process adapted to the filtration
(Fs,t)0≤s≤t<∞. The backward Itô integral of ξs based on a forward-
backward semimartingale X(x, t) is defined by∫ t

s

X(ξr−, d̂r) = lim|δ|→0

m∑
k=1

[X(ξtk , tk)−X(ξtk , tk−1)]

This integral is also a backward cadlag semimartingale with respect to
s. The backward Stratonovich integral is defined similarly.

The canonical backward integral of a cadlag semimartingale ξt based
on the forward-backward semimartingale X(x, t) can be defined simi-
larly;∫ t

s

X(ξr, �d̂r) =
∫ t

s

Xc(ξr, ◦d̂r) +
∫ t

s

Xd(ξr−, d̂r)

+
∑
s≤r≤t

[exp(∆X(r))(ξr−)− ξr− −∆X(ξr−, r)],
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where the first term of the right hand side is the Stratonovich integral.

Proposition I-2. Let X(t) be the C-valued semimartingale of
Proposition I-1. Assume that X(t) is a forward-backward semimartin-
gale. Then the inverse flow ξ−1

s,t is a cadlag C-valued process both in
s and t. Further, it is a backward semimartingale and satisfies the
following Itô backward SDE;

(I-2) ξ−1
s,t (y) = y +

∫ t

s

X̂(ξ−1
r,t (y), d̂r),

where

X̂(x, t) = −X(x, t) +
∫ t

s

c(x, s)dAs +
∑
s≤t

[e−∆X(s)(x)− x−∆X(x, s)]

Thus ξ−1
s,t is represented as a solution of a canonical backward SDE

driven by −X;

(I-3) ξ−1
s,t (y) = y +

∫ t

s

(−X)(ξ−1
r,t (y), �d̂r),

Now, we consider a forward-backward semimartingale X(t) having
the characteristic (a, b, ν) with respect to At associated with U . It
is known that under the following Condition (A∗), we can define the
forward flow ξs,t(x) and the backward flow ξ−1

s,t (y), respectively.
Condition (A∗). For a positive predictable process Kt, t ≥ 0 satis-

fying ∫ T

0

KtdAt <∞ a.s. for any T > 0,

(i) a(x, y, t) is a continuous C̃2+1
b -valued process satisfying

‖a(t)‖˜2+1 ≤ Kt a.s.

(ii) b(x, t) is a continuous C1+1
b -valued process satisfying

‖b(t)‖1+1 ≤ Kt a.s.

(iii) The measure νt(·) is supported by C2+1
b . Further, there exists

a Borel set U ⊂ C2+1
b such that for some constant c > 0, ‖ν‖2+1 ≤ c

for all v ∈ U , and

νt(U c) ≤ Kt, and
∫
U

‖v‖2
2+1νt(dv) ≤ Kt.
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Proposition I-3. (c.f.[5]) Let Xt be a C-valued semimartingale
satisfying Condition (A∗). Further, assume that Xt is a forward-
backward semimartingale. Let {ξs,t; 0 ≤ s ≤ t ≤ T} be a stochastic
flow determined by the SDE;

ξs,t(x) = x+
∫ t

s

X(ξs,r−(x), �ds).

Then the inverse ξ−1
s,t (y) is a backward semimartingale and satisfies the

canonical backward SDE;

ξ−1
s,t (y) = y +

∫ t

s

(−X)(ξ−1
r,t (y), �d̂r).

Let {γr}r>0 be a family of diffeomorphisms of manifold M satisfying
the following (a)-(d).

(a) γr(p) is differentiable with respect to (r, p) ∈ (0,∞)×M .
(b) γr ◦ γs = γrs holds for all r, s > 0.
(c) There exists a point p0 ∈ M such that γr(p0) = p0 holds for all

r > 0.
(d) limr→0 γr(p) = p0 holds uniformly on the compact sets of M .
Then we call it a dilation over M . Now, we define the dilation on

Rd, and recall an operator self-similarity with exponentQ for Rd-valued
processes. Let Q be an d × d-matrix such that real parts of its eigen-
values are all positive. Consider an invertible linear transformation γr
from Rd to itself of the form;

γr := exp(log r)Q, for r > 0

:= rQ.

Then, because of rQsQ = (rs)Q, the linear transformations {γr}r>0

satisfy γrγs = γrs for all s, t > 0, and also we can define that;

γr(x) → 0 as r → 0,

for any x ∈ Rd. We call this one-parameter group {γr}r>0 of automor-
phisms as a dilation with exponent Q on Rd.
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Let {Xt; t ∈ [0, T ]} be a forward-backward semimartingale. An Rd-
valued forward process {Xt, t ≥ 0} is called self-similar with respect
to a dilation {γr}r>0 if the law of the stochastic process {γrXt, t ≥ 0}
is equal to that of {Xrt, t ≥ 0} for any r > 0. Let {X̂t, 0 ≤ t ≤ T}
be a backward semimartingale on the same probability space. An Rd-
valued backward process X̂t is backward self-similar with respect to
a dilation {δr}r>0 if the laws of the stochastic processes {δrX̂t, t ∈
[0, T ]} and {X̂t/r, t ∈ [0, T ]} are same for any r > 0. Since a dilation
is an invertible linear transformation, we can think an inverse linear
transformations {δ−1

r }r>0 as an inverse dilation of {δr}r>0. Thus, if
we assume that X̂t is backward self-similar with respect to a dilation
{δr}r>0, then we can get the following re! lati on; by the law,

δ−1
r X̂t = X̂rt, for all r > 0,

because of
X̂t = δ−1

r ◦ δrX̂t = δ−1
r X̂t/r.

We think an inverse linear transformations {γ−1
r }r>0 of the (for-

ward) dilation {γr}r>0, and assume the following relation; by the law,

γ−1
r X̂t = X̂t/r, for all r > 0.

If Q, the exponent of dilation γr = rQ, is semisimple, then we get
γ−1
r = r−Q, where −Q is the inverse matrix of Q. Thus, we get γ−1

r =
γ1/r for all r > 0, and

γ−1
r X̂t = γ1/rX̂t = X̂t/r.

II. Backward self-similar stochastic flows

Consider a canonical SDE of the form;

(II-1) dξt(x) =
m∑
j=1

vj(ξt(x)) � dZjt

with initial condition ξ0(x) = x, which is driven by a vector field-valued
semimartingale Xt(x) =

∑m
j=1 vj(x)Z

j
t , where Zt = (Z1

t , Z
2
t , · · · , Zmt )
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is an Rm-valued semimartingale and v1, v2, · · · , vm are the smooth com-
plete vector fields on Rd. Let L be an algebra generated by the vector
fields v1, v2, · · · , vm. Then the linear combination

∑m
j=1 vjZ

j
t can be

an element of L.
By the solution of (II-1), we can define an Rd-valued semimartingale

flow {ξs,t(x); 0 ≤ s ≤ t ≤ T} adapted to Fs,t = σ(Zs,t; 0 ≤ s ≤ t ≤ T )
satisfying;
(II-2)

ξs,t(x) = x+
m∑
j=1

∫ t

s

vj(ξs,r−(x)) � dZjr

= x+
m∑
j=1

∫ t

s

vj(ξs,r(x)) ◦ dZc,jr +
m∑
j=1

∫ t

s

vj(ξs,r−(x))dZd,jr

+
∑
s≤r≤t

[exp(
m∑
j=1

∆Zjrvj)(ξs,r−(x))

− ξs,r−(x)−
m∑
j=1

vj(ξs,r−(x))∆Zjr ].

We assume that;
(A.1) dim(L) <∞,
(A.2) dim(L(x)) = d hold for all x ∈ Rd, where L(x) = {vx; v ∈ L}

and vx is the projection of v to the point x ∈ Rd.
(A.3) The semimartingale {Zt} is nondegenerate.
Then it is known that, for any x ∈ Rd, the equation (II-2) has

a global unique solution {ξs,t(x); 0 ≤ s ≤ t ≤ T} which is called a
stochastic flow generated by SDE (II-2).

A two-parameters stochastic flow {ξs,t(x); 0 ≤ s ≤ t ≤ T} gener-
ated by the SDE (II-2) is said forward self-similar with respect to the
dilation {ψr}r>0 if the laws of {ψr ◦ ξs,t ◦ ψ−1

r (x); 0 ≤ s ≤ t ≤ T} and
{ξs,rt(x); 0 ≤ s ≤ t ≤ T} are same for any r > 0. Thus, we get the
followings;

Proposition II-1. (c.f.[3] Theorem 2.2) Suppose that the stochas-
tic flow {ξs,t(x); 0 ≤ s ≤ t ≤ T} driven by {Zt} through SDE (II-2) is
self-similar with respect to a certain dilation {ψr}r>0. Then the Rd-
valued driving process {Zt; t ≥ 0} is also self-similar with respect to a
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dilation {γr}r>0 such that dψr = γr.

Proposition II-2. (c.f.[3] Theorem 2.4) Let {ξs,t(x); 0 ≤ s ≤ t ≤
T} be a stochastic flow on Rd driven by Rd-valued self-similar semi-
martingale {Zt, t ≥ 0} with respect to dilation γr = rQ through SDE
(II-2). Suppose that the exponent Q of dilation {γr}r>0 admits a linear

extension Q̃ such that γ̃r = rQ̃ on the space L. Then the stochastic
flow {ξs,t(x); 0 ≤ s ≤ t ≤ T} is also self-similar with respect to a
certain dilation {ψr}r>0 such that dψr = γ̃r.

For a backward vector field-valued semimartingale process X̂t(x) =∑m
j=1 vj(x)Ẑ

j
t , consider a backward SDE of the form;

(II-3) dξ−1
s (y) =

m∑
j=1

(−vj)(ξ−1
s (y)) � d̂Zjs .

Then we can define the inverse flow {ξ−1
s,t ; 0 ≤ s ≤ t ≤ T} by the

solution of following backward SDE;

(II-4) ξ−1
s,t (y) = y +

m∑
j=1

∫ t

s

(−vj)(ξ−1
u,t(y)) � d̂Zju.

similarly as SDE (II-2).
To study the backward self-similar stochastic flow, we define it. A

two-parameters backward stochastic flow {ξ̂s,t(y); 0 ≤ s ≤ t ≤ T} is
backward self-similar with respect to a dilation {θr}r>0 if, for fixed t,
the laws of {θr ◦ ξ̂s,t ◦ θ−1

r (y)} and {ξ̂s/r,t(y)} are same for any r > 0.
Since an inverse flow is a backward flow, if the inverse flow

{ξ−1
s,t (y); 0 ≤ s ≤ t ≤ T} generated by the backward SDE (II-4) is

backward self-similar with respect to the dilation {θr}r>0, then we
get that, for the inverse dilation {θ−1

r }r>0 of {θr}r>0, the laws of
{θ−1
r ◦ ξ−1

s,t ◦ θr(y)} and {ξ−1
rs,t(y)} are same for any r > 0. Further, if

we think an inverse linear transformations {ψ−1
r }r>0 of the (forward)

dilation {ψr}r>0 and assume that {ξ−1
s,t (y); 0 ≤ s ≤ t ≤ T} is backward

self-similar with respect to {ψ−1
r }r>0, then we get the relation; by the

law,
ψ−1
r ◦ ξ−1

s,t ◦ ψr(y) = ξ−1
s/r,t(y) for all r > 0.

Thus we can get the following;
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Theorem II-1. Let {ξ−1
s,t (y); 0 ≤ s ≤ t ≤ T} be an Rd-valued

backward self-similar stochastic flow with respect to dilation {θr}r>0

generated by the backward SDE (II-4). Then the driving process

{X̂t; 0 ≤ t ≤ T} is also backward self-similar with respect to a di-
lation {dθr}r>0, which is of the form

dθr = δr, r > 0.

Proof. For a fixed r > 0, we put

ξ̃−1
s,t (y) := θr ◦ ξ−1

s,t ◦ θ−1
r (y), 0 ≤ s ≤ t ≤ T.

Then, since {ξ−1
s,t } satisfies (II-4), we get that {ξ̃−1

s,t } satisfies; for s ≤
u ≤ t,
(II-5)

ξ̃−1
s,t (y) = y +

m∑
j=1

∫ t

s

(−vj)(ξ̃−1
u,t(y)) � d̂Zju

= y +
m∑
j=1

∫ t

s

(−vj)(ξ̃−1
u,t(y)) ◦ d̂Zc,ju +

m∑
j=1

∫ t

s

(−vj)(ξ̃−1
u,t(y)) ◦ d̂Zd,ju

+
∑
s≤u≤t

[exp(
m∑
j=1

∆Ẑju(−vj))(ξ̃−1
u,t(y))− ξ̃−1

u,t(y)

−
m∑
j=1

(−vj)(ξ̃−1
u,t(y))∆Ẑ

j
u].

Therefore, we get, for 0 ≤ s ≤ u ≤ t ≤ T ,
(II-6)

ξ̃−1
s,t (y) = y +

m∑
j=1

∫ t

s

(−vj)(θr ◦ θ−1
r ◦ ξ̃−1

u,t(y)) ◦ d̂Zc,ju

+
m∑
j=1

∫ t

s

(−vj)(θr ◦ θ−1
r ◦ ξ̃−1

u,t(y)) ◦ d̂Zd,ju

+
∑
s≤u≤t

[θrexp(
m∑
j=1

∆Ẑju(−vj))(θ−1
r ◦ ξ̃−1

u,t(y))− ξ̃−1
u,t(y)

−
m∑
j=1

(−vj)(θr ◦ θ−1
r ◦ ξ̃−1

u,t(x))∆Ẑ
j
u].
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But since

(−vj)(θr ◦ θ−1
r ◦ ξ−1

u,t(y)) = dθr ◦ (−vj) ◦ ξ̃−1
u,t(y)),

and

θr(exp(
m∑
j=1

∆Ẑju(−vj))(θ−1
r ◦ ξ̃−1

u,t(y)) = exp(dθr
m∑
j=1

Zju(−vj))(ξ̃−1
u,t(y)),

we see that {ξ̃−1
s,t } is driven by {dθr

∑m
j=1(−vj)Ẑjs}.

On the other hand, {ξ̃−1
s/r,T (y)} is driven by {

∑m
j=1(−vj)Ẑ

j
s/r(y)}.

Since the law of {ξ̃−1
s,t (y)} coincides with the law of {

∑m
j=1(−vj)Ẑ

j
s/r(y)},

we get that the law of {
∑m
j=1 dθr(−vj)Ẑjs} coincides with the law of

{
∑m
j=1(−vj)Ẑ

j
s/r(y)} for any r > 0. This implies that dθj(vj) ∈ L

for any j. Thus dθr maps L into itself. Let Q be an exponent of the
dilation dθr = δr. Then the law of the process {δrX̂t} coincides with
the law of the process {X̂t/r} for any r > 0. This show that the driving
process {X̂t; t ∈ [0, T ]} is backward self-similar with respect to dilation
dθr = δr. �

Theorem II-2. Let {ξ−1
s,t (y); 0 ≤ s ≤ t ≤ T} be an inverse flow on

Rd driven by a backward self-similar semimartingale {Ẑt, t ≥ 0} with
respect to the dilation δr = rQ through SDE (II-4). Suppose that Q

admit a linear extension Q̃ such that δ̃r = rQ̃ on the space L. Then
the inverse flow {ξ−1

s,t (y); 0 ≤ s ≤ t ≤ T} is also backward self-similar

with respect to a certain dilation {θr}r>0 such that dθr = δ̃r.

Proof. It is need to construct the dilation {θr}r>0 which makes the
backward self-similar flow ξ−1

s,t (y). For the purpose, for a given auto-
morphism δ̃r of L, we have to construct a diffeomorphism {θr}r>0 of
Rd such that dθr = δ̃r.

On the other hand, let δ̃r be an automorphism of L. Then, by the
theory of [3], we know that there exists a unique diffeomorphism θr
of Rd such that, for any x ∈ Rd, θr(x) = x and dθr = δ̃r. Therefore,
for the inverse linear transformation δ̃−1

r of δr, we can get the inverse
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diffeomorphism θ−1
r of θr such that dθ−1

r = δ̃−1
r . This dilation {θ−1

r }r>0

makes the backward self-similar flow ξ−1
s,t (y). Indeed, let Q̃ be the

exponent of inverse dilation of δ̃r = rQ̃. Then {δ̃−1
r }r>0 such that

δ̃−1
r = rQ̃

∗
is an inverse dilation on L. Then, by the same theory as

above (c.f. [2]), there exist an one-parameter group of diffeomorphisms
{θ−1
r }r>0 such that θ−1

r (y) = y and dθ−1
r = δ̃!−1

r hold for any r > 0. It
is immediate that this inverse dilation {θ−1

r }r>0 is a dilation which we
want to find.

Finally, we shall prove that the inverse flow {ξ−1
s,t (y)} is backward

self-similar with respect to this dilation {θ−1
r }r>0. Set

ξ̃−1
s,t (y) := θ−1

r ◦ ξ−1
s,t ◦ θr(y), 0 ≤ s ≤ t ≤ T,

and Z̃t := dθrẐt. Then, from the equation (II-6), we get;
(II-7)

ξ̃−1
s,t (y) = y +

m∑
j=1

∫ t

s

(−vj)(ξ̃−1
u,t(y)) � d̂Z̃ju

= y +
m∑
j=1

∫ t

s

(−vj)(ξ̃−1
u,t(y)) ◦ d̂Z̃c,ju +

m∑
j=1

∫ t

s

(−vj)(ξ̃−1
u,t(y)) ◦ d̂Z̃d,ju

+
∑
s≤u≤t

[exp(
m∑
j=1

∆Z̃ju(−vj))(ξ̃−1
u,t(y)− ξ̃−1

u,t(y)

−
m∑
j=1

(−vj)(ξ̃−1
u,t(x))∆Z̃

j
u].

Therefore, SDE (II-7) shows that {ξ̃−1
u,t(y)} is driven by {

∑m
j=1(−vj)Z̃ju}.

Since the backward process {X̂u} such that X̂u =
∑
j(−vj)Ẑju is back-

ward self-similar with respect to dilation {δ̃−1
r } and dθ−1

r = δ̃−1
r holds,

the law of semimartingale {
∑m
j=1(−vj)Z̃ju} coincides with the law of

the semimartingale {
∑m
j=1(−vj)Z̃rt}. This implies that the law of the

flow {ξ̃−1
s,t } coincides with the law of the flow {ξ−1

rs,t} for any r > 0. Thus
{ξ−1
s,t } is backward self-similar with respect to the dilation {θ−1

r }r>0.�
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Theorem II-3. Let Xt(x) =
∑m
j=1 vj(x)Z

j
t be a forward-backward

vector field -valued semimartingale. Let {ξs,t(x); 0 ≤ s ≤ t ≤ T} be a
forward self-similar stochastic flow with respect to a dilation {ψr}r>0

generated by SDE (II-2). If the inverse flow ξ−1
s,t (y) is generated by the

canonical backward SDE (II-4), then it is backward self-similar with
respect to the inverse dilation {ψ−1

r }r>0 of {ψr}r>0.

Proof. Let ξs,t(x) be a self-similar stochastic flow generated by SDE
(II-2). Then from the Proposition I-3, we see that ξ−1

s,t (y) is a inverse
flow of ξs,t(x) and satisfies the backward SDE (II-4).

If ξs,t(x) is a self-similar stochastic flow with respect to dilation
{ψr}r>0, then from the Proposition II-1, the driving process Xt(x) is
also self-similar with respect to dilation {dψr}r>0. Since {Xt; 0 ≤ s ≤
t ≤ T} is a forward-backward semimartingale, the backward process
{X̂t; 0 ≤ s ≤ t ≤ T} is also backward self-similar with respect to
the inverse dilation {dψ−1

r }r>0. Therefore, from Theorem II-2, there
is a dilation {ψ−1

r }r>0 such that the inverse flow ξ−1
s,t (y) is backward

self-similar with respect to the inverse dilation {ψ−1
r }r>0. �

Now, we will introduce the definition of two-sided self-similar sto-
chastic flow. Because the stochastic flow {ξs,t; 0 ≤ s ≤ t ≤ T} driven
by the forward-backward semimartingale {Xt; t ∈ [0, T ]} is also a two-
parameters forward-backward semimartingale flow, we can define as
following; A two-parameters stochastic flow {ξs,t; 0 ≤ s ≤ t ≤ T} is
two-sided self-similar with respect to backward dilation {θr}r>0 and to
forward dilation {ψr}r>0, where {θr}r>0 play a role to the backward
flow and {ψr}r>0 play a role to the forward flow, if the laws of

{θr ◦ (ψr ◦ ξs,t ◦ ψ−1
r ) ◦ θ−1

r ; 0 ≤ s ≤ t ≤ T}

(or {ψr ◦ (θr ◦ ξs,t ◦ θ−1
r ) ◦ ψ−1

r ; 0 ≤ s ≤ t ≤ T}) and {ξs/r,rt} are
same for all r > 0. Therefore, if {θr}r>0 is an identity matrix, then
the two-sided self-similar flow {ξs,t; 0 ≤ s ≤ t ≤ T} is only forward
self-similar, and if {ψr}r>0 is an identity matrix, then it becomes only
backward self-similar.

Theorem II-4. Let {ξs,t; 0 ≤ s ≤ t ≤ T} be an Rd-valued two-
sided self-similar semimartingale flow such that the forward flow {ξs,t}
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is generated by the forward SDE (II-2) and the backward flow {ξ−1
s,t }

is generated by the backward SDE (II-4). Then there exist a forward-
backward semimartingale {Xt; t ∈ [0, T ]} such that the forward semi-
martingale Xt is a driving process of the forward flow ξs,t(x) and is

forward self-similar, and the backward semimartingale X̂t is a driving
process of the inverse flow ξ−1

s,t (y) and is backward self-similar.

Proof. Let {θr}r>0 be an identity matrix. For the forward self-
similar semimartingale flow ξs,t(x) with respect to {ψr}r>0, from the
Proposition II-1, we get the forward semimartingale {Xt, t ∈ [0, T ]} as
a driving process such that Xt is forward self-similar with respect to a
dilation {dψr}r>0.

On the other hand, if {ψr}r>0 is an identity matrix, then the back-
ward flow {ξ̂s,t(y)} generated by (II-4) is backward self-similar with
respect to the backward dilation {θr}r>0, and there exists a driving
process {X̂s; s ∈ [0, T ]} such that X̂s is backward self-similar with re-
spect to dilation {dθr}r>0. Thus, if we think {ξ̂s,t(y)} as an inverse
flow, we get the backward semimartingale {X̂s; s ∈ [0, T ]} as a driving
process such that X̂s is backward self-similar with respect to dilation
dθr. �

Theorem II-5. For the vector field-valued forward-backward semi-
martingale {Xt; t ∈ [0, T ]}, if the forward process Xt is forward self-

similar and the backward process X̂t is backward self-similar, then
there exists a two-sided self-similar semimartingale flow {ξs,t; 0 ≤ s ≤
t ≤ T} such that the forward flow ξs,t(x) is generated by the forward

SDE (II-2), and the backward flow ξ−1
s,t (y) is generated by the backward

SDE (II-4).

Proof. For the forward-backward semimartingale {Xt; t ∈ [0, T ]},
if Xt is forward self-similar, then from Proposition II-2, there exists
ξs,t(x) generated by SDE (II-2) such that ξs,t is self-similar with respect
to dilation {ψr}r>0. Thus we get that the laws of {ψr ◦ ξs,t ◦ψ−1

r } and
{ξs,rt} are same for any r > 0.

For the flow {ξs,rt}, if we fixed t for a while, we can think the
backward flow {ξ−1

s,rt} generated by SDE (II-4) whose driving process



274 Jae-pill Oh

{X̂s; s ∈ [0, rt]} is backward semimartingale. From the assumption,
the backward process {X̂s; s ∈ [0, rt]} is self-similar with respect to a
backward dilation {δr}r>0. If we apply Theorem II-2, there exists a
backward self-similar flow {ξ−1

s,rt} with respect to the backward dilation
{θr}r>0 such that dθr = δr. Therefore, from the definition of the
backward self-similar flow, if we apply that, by the law,

ψr ◦ ξs,t ◦ ψ−1
r = ξs,rt,

then we get that, by the law,

θr ◦ (ψr ◦ ξs,t ◦ ψ−1
r ) ◦ θ−1

r = ξs/r,rt. �

III. Density of self-similar flows

For a canonical SDE (II-1), consider the stochastic flow {ξs,t(x); 0 ≤
s ≤ t ≤ T} generated by SDE (II-2). If we use a Levy process Zt =
(Z1

t , Z
2
t , · · · , Zmt ) of the form;

(III-1) Zjt = W j
t + bjt+

∫
E

zjÑp((0, t], dz), j = 1, 2, · · · ,m,

where Wt = (W 1
t ,W

2
t , · · · ,Wm

t ) is a Brownian motion, and the com-
pensator N̂p((0, t], dz) of Poisson point process Np is of the form

N̂p(ds, dz) = G(dz)ds,

where G(dz) is a Lebesgue measure. Then the solution of canonical
SDE (II-2) can be represented as;
(III-2)

ξt(x) = x+
m∑
j=1

∫ t

0

vj(ξs(x))dW j
s +

∫ t

0

L(ξs−(x))ds

+
∫ t

0

∫
E

[exp(
m∑
j=1

zjvj)(ξs−(x))− ξs−(x)]Ñp(ds, dz),
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where

L(x) = A(x) +
∫
E

[exp(
m∑
j=1

zjvj)(x)− x−
m∑
j=1

zjvj(x)]G(dz),

A(x) = (1/2)
m∑
j=1

v2
j (x) + v0(x).

Form the equation (III-2), we put as

c(x, z) = exp(
m∑
j=1

zjvj)(x)− x,

and
c̃(x, z) = c(x, z) + x.

Then we know that Dxc̃(x, z) is invertible.
On the other hand, if we put

(III-3) B(x) = (aik(x))d×d,

where
(aik(x))d×d = σd×m(x)(σd×m(x))t

and

σd×m(x) =


v1
1(x) v1

2(x) · · · v1
m(x)

v2
1(x) v2

2(x) · · · v2
m(x)

· · ·
vd1(x) vd2(x) · · · vdm(x)


d×m

,

then we see that

B(c̃(x, z)) = (Dzc(x, z))(Dzc(x, z))t.

Thus we put as following;

(III-4) C(x, z) = (Dxc̃(x, z))−1B(c̃(x, z))[(Dxc̃(x, z)−1]t.

We make two assumptions;
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Assumption (A). There exist two constants ζ, θ > 0 such that

|c̃(x, z)| ≤ ζ(1 + |x|θ)

for all x ∈ Rd and z ∈ E.

Assumption (B). There is a Borel subset Γ = {(x, z)} ⊂ Rd × E
such that for any y ∈ Rd and for the x-section Γx ⊂ Γ, if G(Γx) = ∞,

(∪z∈Γz{y|C(x, z)y = 0}) ∩ {y|B(x)y = 0} = {0},

if G(Γx) <∞,
Rd ∩ {y|B(x)y = 0} = {0}.

Then we get the existence theorem of density.

Proposition III-1. (c.f.[1]) Under (A) and (B), the solution ξt(x)
of (III-2) has a density y → pt(x, y) for all x ∈ Rd and t ∈ (0, T ].

Remark. In some sense, this theorem is general. If RankB(x) = d,
then we can get the same result. See Corollary. Even though
RankB(x) < d, ξt(x) of (III-2) can have the density. In this case, to
get the density, it must be RankB(x) (or RankC(x, z))= d/2, because
of RankB(x) = RankC(x, z).

Corollary. If RankB(x) = d or RankC(x, z) = d for all z ∈ E,
then the solution ξt(x) of (III-2) has a density y → pt(x, y) for all
x ∈ Rd and t ∈ (0, T ].

From the above Proposition III-1, we can define a density of sto-
chastic flow which is generated by some SDE (III-2). Therefore, we
can think the densities of the distribution of self-similar stochastic flow
generated by (III-2). We denote by Ps,t(x,A) the distribution of ξs,t(x).
If the stochastic flow {ξs,t(x); 0 ≤ s ≤ t ≤ T} is self-similar, then we
have

Ps,t(x,A) = Ps,rt(ψr(x), ψr(A)).

Let ps,t(x, y) be the density of distribution Ps,t(x,A) of ξs,t(x). For
the simplicity, we assume that pt(x, y) := p0,t(x, y). Then we get;
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Proposition III-2. (c.f.[4] Theorem 4.1) Let the stochastic flow
{ξs,t(x); 0 ≤ s ≤ t ≤ T} generated by SDE (III-2) be self-similar with
respect to dilation {ψr}r>0. If pt(x, y) is a density of the probability
distribution of ξt(x) with respect to Lebesgue measure G(·), then we
get

pt(x, y) = (1/det(ψt))p1(ψ−1
t (x), ψ−1

t (y)).

Sketch of Proof. For a fixed s = 0, we put ξs,t(x) := ξt(x). Then

P(ξt(x) ∈ A) =
∫
A

pt(x, y)G(dy),

where G(·) is a Lebesgue measure, and

P(ψt ◦ ξ1 ◦ ψ−1
t (x) ∈ A) = P(ξ1(ψ−1

t (x)) ∈ ψ−1
t (A))

=
∫
ψ−1

t (A)

p1(ψ−1
t (x), y)G(dy)

=
∫
A

p1(ψ−1
t (x), ψ−1

t (y))G(dψ−1
t (y))

=
∫
A

p1(ψ−1
t (x), ψ−1

t (y))(1/det(ψt))G(dy).

Therefore, we get

pt(x, y) = (1/det(ψt))p1(ψ−1
t (x), ψ−1

t (y)). �

For the forward-backward vector field-valued semimartingale Xt(x),
let us think the backward SDE (II-3). If we use a backward Levy
process Ẑt = (Ẑ1

t , Ẑ
2
t , · · · , Ẑmt ) for the Zt of (III-1), we can define the

inverse flow ξ−1
s,t (y) by the solution of the backward SDE;

(III-5)

ξ−1
t (y) = y +

m∑
j=1

∫ t

0

(−vj)(ξ−1
s (y))d̂W j

s +
∫ t

0

L̂(ξ−1
s (y))d̂s

+
∫ t

0

∫
E

[exp(
m∑
j=1

zj(−vj))(ξ−1
s (y))− ξ−1

s (y)]Ñp(d̂s, d̂z),
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where

L̂(y) = Â(y) +
∫
E

[exp(
m∑
j=1

zj(−vj))(y)− y −
m∑
j=1

zj(−vj)(y)]G(d̂z),

Â(y) = (1/2)
m∑
j=1

(−vj)2(y) + (−v0)(y).

Let P−1
s,t (y,A) be the distribution of ξ−1

s,t (y). Then, from the Propo-
sition III-1, we can define a density of the distribution of the inverse
flow ξ−1

s,t (y). If the inverse flow {ξ−1
s,t (y); 0 ≤ s ≤ t ≤ T} is backward

self-similar, we have

P−1
s,t (y,A) = P−1

s/r,t(ψ
−1
r (y), ψ−1

r (A)).

Let p−1
s,t (x, y) be the density of distribution P−1

s,t (y,A). For the sim-
plicity, we assume that p−1

s (y, x) := p−1
s,T (y, x). Then we get;

Theorem III-1. Let {ξ−1
s,t (y); 0 ≤ s ≤ t ≤ T} be an inverse self-

similar stochastic flow with respect to inverse dilation {ψ−1
r }r>0 gen-

erated by SDE (III-5). If p−1
s (y, x) is a density of the probability dis-

tribution of ξ−1
s (y), then we get;

p−1
s (y, x) = (1/det(ψ−1

s ))p−1
1 (ψs(y), ψs(x)).

Proof. For a fixed t = T , we put ξ−1
s,T (y) := ξ−1

s (y). Then

P(ξ−1
s (y) ∈ A) =

∫
A

p−1
s (y, x)G(d̂x),

and

P(ψ−1
s ◦ ξ̂1 ◦ ψs(y) ∈ A) = P(ξ̂1(ψs(y)) ∈ ψs(A))

=
∫
ψs(A)

p−1
1 (ψs(y), x)G(d̂x)

=
∫
A

p−1
1 (ψs(y), ψs(x))G(d̂ψt(x))

=
∫
A

p−1
1 (ψs(y), ψs(x))(1/det(ψ−1

s ))G(d̂x).

Therefore, we get the result. �
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