Kangweon-Kyungki Math. Jour. 6 (1998), No. 2, pp. 259-279

BACKWARD SELF-SIMILAR STOCHASTIC PROCESSES IN STOCHASTIC DIFFERENTIAL EQUATIONS

JAE-PILL OH

ABSTRACT. For the forward-backward semimartingale, we can define the backward semimartingale flow which is generated by the backward canonical stochastic differential equation. Therefore, we define the backward self-similar stochastic processes, and we study the backward self-similar stochastic flows through the canonical stochastic differential equations.

0. Introduction

In the previous work [5], for the *C*-valued forward-backward semimartingale, Kunita defined the inverse flow which is a backward semimartingale flow generated by the canonical backward stochastic differential equation(SDE). On the other hand, in [3] and [4], he studied the self-similar stochastic flows generated by the canonical SDE on the manifolds. Therefore, for the forward-backward semimartingale, we can define the forward and the backward stochastic flows by the canonical SDE. Thus, the purpose of this paper is to define the backward self-similar processes and the backward self-similar stochastic flows, and study them through the canonical SDE on \mathbb{R}^d .

To define the backward self-similar process, it is convenient to use the (inverse) dilation which is also an invertible linear transformation. Therefore, we define the backward self-similar semimartingale with respect to a dilation and study the backward self-similarity for the flows which are generated by the backward SDE. Thus, first, we think the relation of self-similarities between the backward driving processes and

Received June 30, 1998.

¹⁹⁹¹ Mathematics Subject Classification: 60G18,60H07,60H10.

Key words and phrases: SDE, Backward stochastic flows, Self-similar process.

the backward stochastic flows through the canonical SDE. Further, for the forward-backward self-similar processes, we also think the twosided self-similar stochastic flows through the canonical SDE.

Section I is the preliminary part. In this section, we define the canonical SDE and the backward SDE. Further, we also define the backward self-similar processes. Section II is the main part of this results. In this section, we study the backward self-similar stochastic processes and the backward self-similar stochastic flows through the canonical SDE. In section III, we will deal with the density of the self-similar stochastic flow which is a solution of the canonical SDE.

I. Preliminaries

For a non-negative integer m, we denote by $C^m := C^m(\mathbb{R}^d; \mathbb{R}^d)$ the set of all maps from \mathbb{R}^d into itself which are m -times continuously differentiable. In case m = 0, we denote it $C := C(\mathbb{R}^d; \mathbb{R}^d)$ which is the space of continuous maps from \mathbb{R}^d into itself equipped with the compact uniform topology. Let $0 < \delta \leq 1$. We denote by $C_b^{m+\delta} :=$ $C_b^{m+\delta}(\mathbb{R}^d; \mathbb{R}^d)$ the set of all $v \in C^m$ such that derivatives $D^{\alpha}v$ are bounded and uniformly $\delta - H\"{o}lder$ continuous for any α with $|\alpha| \leq m$. Let $\tilde{C} := \tilde{C}(\mathbb{R}^d \times \mathbb{R}^d; \mathbb{S}_+)$, where \mathbb{S}_+ is the space of $d \times d$ - matrices. We define the subspace $\tilde{C}_b^{m+\delta} = \tilde{C}_b^{m+\delta}(\mathbb{R}^d \times \mathbb{R}^d; \mathbb{S}_+)$ of \tilde{C} similarly.

Let (Ω, \mathcal{F}, P) be a probability space where the filtration $\mathcal{F}_t; t \in [0, \infty)$ of sub- σ -field of \mathcal{F} is defined. Let $X(x, t), t \geq 0$ be a family of \mathbb{R}^d -valued stochastic process with spatial parameter $x \in \mathbb{R}^d$ defined on (Ω, \mathcal{F}, P) . If X(x, t) is continuous in x for each t a.s., we can regard it as a C-valued process. We denote it sometimes by $X(t) = X(x, t), t \geq 0$.

Let X(x,t) be a cadlag semimartingale with values in C. We define the point process N(t, E) over $[0, \infty) \times C$ associated with X(t) by

$$N((s,t],E) = \sum_{s < r \le t} \mathcal{X}_E(\Delta X(r)), \Delta X(s) = X(s) - X(s-),$$

where E is a Borel subset of C excluding 0. Then there exists a unique predictable process $\hat{N}(t, E)$ which is called the compensator such that

$$\hat{N}(t, E) = N(t, E) - \hat{N}(t, E)$$

is a localmartingale. For a bounded Borel subset U of C, consider a C-valued semimartingale X(x,t) which is represented as;

$$X(x,t) = X_c(x,t) + X_d(x,t)$$

= $M^c(x,t) + B^c(x,t) + \int_U v(x)\tilde{N}(t,dv) + \int_{U^c} v(x)N(t,dv),$

where $M^{c}(x,t)$ is a continuous localmartingale for any x, $B^{c}(x,t)$ is a continuous predictable process of bounded variation for any x, and the integral form

$$\int_U v(x) \tilde{N}(t, dv)$$

is a discontinuous localmartingale part of X(x,t) for any x.

Let $A_t, t \in [0, \infty)$ be a continuous increasing process adapted to the filtration \mathcal{F}_t such that $A_0 = 0$ a.s. Then there exist predictable processes $a^{ij}(x, y, t)$ and $b^i(x, t)$, and for the compensator $\hat{N}(t, E)$, there exists a predictable measure-valued process $\nu_t(E)$ satisfying

$$\langle M^{c,i}(x,t), M^{c,j}(y,t) \rangle = \int_0^t a^{ij}(x,y,s) dA_s,$$
$$B^{c,i}(x,t) = \int_0^t b^i(x,s) dA_s,$$

and

$$\hat{N}(t,E) = \int_0^t \nu_s(E) dA_s.$$

The system (a, b, ν) is called the characteristic of semimartingale X(x, t) with respect to A_t .

Let $X(x,t), t \ge 0$ be a C-valued cadlag semimartingale equipped with the characteristic (a, b, ν) . We introduce a condition;

Condition (A). For a positive predictable process $K_t, t \ge 0$ satisfying

$$\int_0^T K_t dA_t < \infty \text{ a.s. for any } T > 0,$$

(i) a(x, y, t) is a continuous \tilde{C}_b^{1+1} -valued process satisfying

$$||a(t)||_{1+1} \le K_t$$
 a.s.

(ii)
$$b(x,t)$$
 is a continuous C_b^{0+1} -valued process satisfying

 $||b(t)||_{0+1} \le K_t$ a.s.

(iii) The measure $\nu_t(\cdot)$ is supported by C_b^{1+1} . Further, there exists a Borel set $U \subset C_b^{1+1}$ such that for some constant c > 0, $\|\nu\|_{1+1} \leq c$ for all $v \in U$, and

$$\nu_t(U^c) \le K_t, \text{ and } \int_U \|v\|_{1+1}^2 \nu_t(dv) \le K_t.$$

Let $\{\xi_t, t \ge 0\}$ be an \mathbb{R}^d -valued cadlag process satisfying Condition (A) adapted to (\mathcal{F}_t) . Then we can define the $It\hat{o}$ integrals and the *Stratonovich* integrals, respectively;

$$\int_{s}^{t} X(\xi_{r-}, dr), \text{ and } \int_{s}^{t} X(\xi_{r}, \circ dr).$$

Let v(x) be a *Lipschitz* continuous vector field. Then by Condition (A)-(iii), the possible infinite sum

$$\sum_{s \le t} [exp(\Delta X(s))(x) - x - \Delta X(x,s)]$$

is absolutely convergent a.s.. Therefore, we can define the canonical integral of a cadlag semimartingale ξ_t based on the vector field-valued semimartingale X(t) as following;

$$\int_{s}^{t} X(\xi_{r},\diamond dr) = \int_{s}^{t} X_{c}(\xi_{r},\diamond dr) + \int_{s}^{t} X_{d}(\xi_{r-},dr) + \sum_{s \leq r \leq t} [exp(\Delta X(r))(\xi_{r-}) - \xi_{r-} - \Delta X(\xi_{r-},r)],$$

where the first part and the second part of the right hand side are Stratonovich integral and $It\hat{o}$ integral, respectively.

Let $X(x,t), t \ge 0$ be a *C*-valued semimartingale whose characteristic satisfy Condition (A). Consider a canonical SDE which is represented by

(I-1)
$$\xi_t(x) = x + \int_0^t X(\xi_s(x), \diamond ds),$$

where $0 \le s \le t$. The process ξ_t satisfying (I-1) is called a solution of the canonical SDE (I-1) driven by the vector field-valued semimartingale X(t).

PROPOSITION I-1. Assume that the characteristics of the C-valued semimartingale X(t) satisfy Condition (A). Then the canonical SDE (I-1) has a unique solution $\xi_{s,t}(x), t \geq s$ for any s, x. Further, a certain version $\xi_{s,t}(x)$ of the solution admits the following properties;

(i) $\xi_{s,u}(x) = \xi_{t,u}(\xi_{s,t}(x))$ holds for all $x \in \mathbb{R}^d$ and s < t < u, a.s. (ii) The map $\xi_{s,t} : \mathbb{R}^d \to \mathbb{R}^d$ is an onto homeomorphism for all s < t a.s.

(iii) $\xi_{s,t}$ is a C-valued cadlag processes in both s and t.

The above $\xi_{s,t}$ is called the stochastic flow of homeomorphisms generated by X_t .

Let (Ω, \mathcal{F}, P) be a probability space and $\{\mathcal{F}_{s,t}; 0 \leq s \leq t \leq T\}$ be a two parameter family of sub- σ -field of \mathcal{F} which contains all null sets and satisfy

$$\mathcal{F}_{s,t} \subset \mathcal{F}_{s',t'}, \text{ if } s' \leq s \leq t \leq t',$$

and

$$\cap_{\epsilon > 0} \mathcal{F}_{s,t+\epsilon} = \mathcal{F}_{s,t}, \text{ and } \cap_{\epsilon > 0} \mathcal{F}_{s-\epsilon,t} = \mathcal{F}_{s,t}$$

for any s < t. A C-valued cadlag process $\{X_t, t \geq 0\}$ is called a forward-backward semimartingale if $X_t - X_s, t \in [s, T]$ is a forward semimartingale adapted to the filtration $(\mathcal{F}_{s,t})_{t \in [s,T]}$ for any s and also $X_t - X_s, s \in [0, t]$ is a backward semimartingale adapted to the filtration $(\mathcal{F}_{s,t})_{s\in[0,t]}$ for any t.

Let $\{\xi_s, 0 \le s \le t\}$ (t is fixed) be a process adapted to the filtration $(\mathcal{F}_{s,t})_{0 \le s \le t \le \infty}$. The backward Itô integral of ξ_s based on a forwardbackward semimartingale X(x,t) is defined by

$$\int_{s}^{t} X(\xi_{r-}, \hat{d}r) = \lim_{|\delta| \to 0} \sum_{k=1}^{m} [X(\xi_{t_{k}}, t_{k}) - X(\xi_{t_{k}}, t_{k-1})]$$

This integral is also a backward cadlag semimartingale with respect to s. The backward Stratonovich integral is defined similarly.

The canonical backward integral of a cadlag semimartingale ξ_t based on the forward-backward semimartingale X(x,t) can be defined similarly;

$$\begin{split} \int_s^t X(\xi_r, \diamond \hat{d}r) &= \int_s^t X_c(\xi_r, \circ \hat{d}r) + \int_s^t X_d(\xi_{r-}, \hat{d}r) \\ &+ \sum_{s \leq r \leq t} [exp(\Delta X(r))(\xi_{r-}) - \xi_{r-} - \Delta X(\xi_{r-}, r)], \end{split}$$

where the first term of the right hand side is the Stratonovich integral.

PROPOSITION I-2. Let X(t) be the C-valued semimartingale of Proposition I-1. Assume that X(t) is a forward-backward semimartingale. Then the inverse flow $\xi_{s,t}^{-1}$ is a cadlag C-valued process both in s and t. Further, it is a backward semimartingale and satisfies the following Itô backward SDE;

(I-2)
$$\xi_{s,t}^{-1}(y) = y + \int_s^t \hat{X}(\xi_{r,t}^{-1}(y), \hat{d}r),$$

where

$$\hat{X}(x,t) = -X(x,t) + \int_{s}^{t} c(x,s) dA_{s} + \sum_{s \le t} [e^{-\Delta X(s)}(x) - x - \Delta X(x,s)]$$

Thus $\xi_{s,t}^{-1}$ is represented as a solution of a canonical backward SDE driven by -X;

(I-3)
$$\xi_{s,t}^{-1}(y) = y + \int_{s}^{t} (-X)(\xi_{r,t}^{-1}(y), \diamond \hat{d}r),$$

Now, we consider a forward-backward semimartingale X(t) having the characteristic (a, b, ν) with respect to A_t associated with U. It is known that under the following Condition (A^*) , we can define the forward flow $\xi_{s,t}(x)$ and the backward flow $\xi_{s,t}^{-1}(y)$, respectively.

Condition (A^*) . For a positive predictable process $K_t, t \ge 0$ satisfying

$$\int_0^T K_t dA_t < \infty \text{ a.s. for any } T > 0,$$

(i) a(x, y, t) is a continuous \tilde{C}_b^{2+1} -valued process satisfying

$$|a(t)||_{2+1} \leq K_t$$
 a.s.

(ii) b(x,t) is a continuous C_b^{1+1} -valued process satisfying

$$||b(t)||_{1+1} \le K_t$$
 a.s.

(iii) The measure $\nu_t(\cdot)$ is supported by C_b^{2+1} . Further, there exists a Borel set $U \subset C_b^{2+1}$ such that for some constant c > 0, $\|\nu\|_{2+1} \leq c$ for all $v \in U$, and

$$\nu_t(U^c) \le K_t, \text{ and } \int_U \|v\|_{2+1}^2 \nu_t(dv) \le K_t.$$

PROPOSITION I-3. (c.f.[5]) Let X_t be a C-valued semimartingale satisfying Condition (A^*). Further, assume that X_t is a forwardbackward semimartingale. Let $\{\xi_{s,t}; 0 \leq s \leq t \leq T\}$ be a stochastic flow determined by the SDE;

$$\xi_{s,t}(x) = x + \int_s^t X(\xi_{s,r-}(x), \diamond ds).$$

Then the inverse $\xi_{s,t}^{-1}(y)$ is a backward semimartingale and satisfies the canonical backward SDE;

$$\xi_{s,t}^{-1}(y) = y + \int_{s}^{t} (-X)(\xi_{r,t}^{-1}(y), \diamond \hat{d}r).$$

Let $\{\gamma_r\}_{r>0}$ be a family of diffeomorphisms of manifold M satisfying the following (a)-(d).

(a) $\gamma_r(p)$ is differentiable with respect to $(r, p) \in (0, \infty) \times M$.

(b) $\gamma_r \circ \gamma_s = \gamma_{rs}$ holds for all r, s > 0.

(c) There exists a point $p_0 \in M$ such that $\gamma_r(p_0) = p_0$ holds for all r > 0.

(d) $\lim_{r\to 0} \gamma_r(p) = p_0$ holds uniformly on the compact sets of M.

Then we call it a dilation over M. Now, we define the dilation on \mathbb{R}^d , and recall an operator self-similarity with exponent Q for \mathbb{R}^d -valued processes. Let Q be an $d \times d$ -matrix such that real parts of its eigenvalues are all positive. Consider an invertible linear transformation γ_r from \mathbb{R}^d to itself of the form;

$$\gamma_r := \exp(\log r)Q, \text{ for } r > 0$$
$$:= r^Q.$$

Then, because of $r^Q s^Q = (rs)^Q$, the linear transformations $\{\gamma_r\}_{r>0}$ satisfy $\gamma_r \gamma_s = \gamma_{rs}$ for all s, t > 0, and also we can define that;

$$\gamma_r(x) \to 0 \text{ as } r \to 0,$$

for any $x \in \mathbb{R}^d$. We call this one-parameter group $\{\gamma_r\}_{r>0}$ of automorphisms as a *dilation* with exponent Q on \mathbb{R}^d .

Let $\{X_t; t \in [0, T]\}$ be a forward-backward semimartingale. An \mathbb{R}^d valued forward process $\{X_t, t \ge 0\}$ is called self-similar with respect to a dilation $\{\gamma_r\}_{r>0}$ if the law of the stochastic process $\{\gamma_r X_t, t \ge 0\}$ is equal to that of $\{X_{rt}, t \ge 0\}$ for any r > 0. Let $\{\hat{X}_t, 0 \le t \le T\}$ be a backward semimartingale on the same probability space. An \mathbb{R}^d valued backward process \hat{X}_t is backward self-similar with respect to a dilation $\{\delta_r\}_{r>0}$ if the laws of the stochastic processes $\{\delta_r \hat{X}_t, t \in [0, T]\}$ and $\{\hat{X}_{t/r}, t \in [0, T]\}$ are same for any r > 0. Since a dilation is an invertible linear transformation, we can think an inverse linear transformations $\{\delta_r^{-1}\}_{r>0}$ as an inverse dilation of $\{\delta_r\}_{r>0}$. Thus, if we assume that \hat{X}_t is backward self-similar with respect to a dilation $\{\delta_r\}_{r>0}$, then we can get the following re! lati on; by the law,

$$\delta_r^{-1}\hat{X}_t = \hat{X}_{rt}, \text{ for all } r > 0,$$

because of

$$\hat{X}_t = \delta_r^{-1} \circ \delta_r \hat{X}_t = \delta_r^{-1} \hat{X}_{t/r}.$$

We think an inverse linear transformations $\{\gamma_r^{-1}\}_{r>0}$ of the (forward) dilation $\{\gamma_r\}_{r>0}$, and assume the following relation; by the law,

$$\gamma_r^{-1}\hat{X}_t = \hat{X}_{t/r}, \text{ for all } r > 0.$$

If Q, the exponent of dilation $\gamma_r = r^Q$, is semisimple, then we get $\gamma_r^{-1} = r^{-Q}$, where -Q is the inverse matrix of Q. Thus, we get $\gamma_r^{-1} = \gamma_{1/r}$ for all r > 0, and

$$\gamma_r^{-1}\hat{X}_t = \gamma_{1/r}\hat{X}_t = \hat{X}_{t/r}.$$

II. Backward self-similar stochastic flows

Consider a canonical SDE of the form;

(II-1)
$$d\xi_t(x) = \sum_{j=1}^m v_j(\xi_t(x)) \diamond dZ_t^j$$

with initial condition $\xi_0(x) = x$, which is driven by a vector field-valued semimartingale $X_t(x) = \sum_{j=1}^m v_j(x) Z_t^j$, where $Z_t = (Z_t^1, Z_t^2, \cdots, Z_t^m)$

is an \mathbb{R}^m -valued semimartingale and v_1, v_2, \cdots, v_m are the smooth complete vector fields on \mathbb{R}^d . Let \mathcal{L} be an algebra generated by the vector fields v_1, v_2, \cdots, v_m . Then the linear combination $\sum_{j=1}^m v_j Z_t^j$ can be an element of \mathcal{L} .

By the solution of (II-1), we can define an \mathbb{R}^d -valued semimartingale flow $\{\xi_{s,t}(x); 0 \leq s \leq t \leq T\}$ adapted to $\mathcal{F}_{s,t} = \sigma(Z_{s,t}; 0 \leq s \leq t \leq T)$ satisfying; (II-2)

$$\begin{aligned} \xi_{s,t}(x) &= x + \sum_{j=1}^{m} \int_{s}^{t} v_{j}(\xi_{s,r-}(x)) \diamond dZ_{r}^{j} \\ &= x + \sum_{j=1}^{m} \int_{s}^{t} v_{j}(\xi_{s,r}(x)) \circ dZ_{r}^{c,j} + \sum_{j=1}^{m} \int_{s}^{t} v_{j}(\xi_{s,r-}(x)) dZ_{r}^{d,j} \\ &+ \sum_{s \leq r \leq t} [exp(\sum_{j=1}^{m} \Delta Z_{r}^{j} v_{j})(\xi_{s,r-}(x)) \\ &- \xi_{s,r-}(x) - \sum_{j=1}^{m} v_{j}(\xi_{s,r-}(x)) \Delta Z_{r}^{j}]. \end{aligned}$$

We assume that;

(A.1) $dim(\mathcal{L}) < \infty$,

(A.2) $\dim(\mathcal{L}(x)) = d$ hold for all $x \in \mathbb{R}^d$, where $\mathcal{L}(x) = \{v_x; v \in \mathcal{L}\}$ and v_x is the projection of v to the point $x \in \mathbb{R}^d$.

(A.3) The semimartingale $\{Z_t\}$ is nondegenerate.

Then it is known that, for any $x \in \mathbb{R}^d$, the equation (II-2) has a global unique solution $\{\xi_{s,t}(x); 0 \leq s \leq t \leq T\}$ which is called a stochastic flow generated by SDE (II-2).

A two-parameters stochastic flow $\{\xi_{s,t}(x); 0 \leq s \leq t \leq T\}$ generated by the SDE (II-2) is said forward self-similar with respect to the dilation $\{\psi_r\}_{r>0}$ if the laws of $\{\psi_r \circ \xi_{s,t} \circ \psi_r^{-1}(x); 0 \leq s \leq t \leq T\}$ and $\{\xi_{s,rt}(x); 0 \leq s \leq t \leq T\}$ are same for any r > 0. Thus, we get the followings;

PROPOSITION II-1. (c.f.[3] Theorem 2.2) Suppose that the stochastic flow $\{\xi_{s,t}(x); 0 \le s \le t \le T\}$ driven by $\{Z_t\}$ through SDE (II-2) is self-similar with respect to a certain dilation $\{\psi_r\}_{r>0}$. Then the \mathbb{R}^d valued driving process $\{Z_t; t \ge 0\}$ is also self-similar with respect to a dilation $\{\gamma_r\}_{r>0}$ such that $d\psi_r = \gamma_r$.

PROPOSITION II-2. (c.f.[3] Theorem 2.4) Let $\{\xi_{s,t}(x); 0 \leq s \leq t \leq T\}$ be a stochastic flow on \mathbb{R}^d driven by \mathbb{R}^d -valued self-similar semimartingale $\{Z_t, t \geq 0\}$ with respect to dilation $\gamma_r = r^Q$ through SDE (II-2). Suppose that the exponent Q of dilation $\{\gamma_r\}_{r>0}$ admits a linear extension \tilde{Q} such that $\tilde{\gamma}_r = r^{\tilde{Q}}$ on the space \mathcal{L} . Then the stochastic flow $\{\xi_{s,t}(x); 0 \leq s \leq t \leq T\}$ is also self-similar with respect to a certain dilation $\{\psi_r\}_{r>0}$ such that $d\psi_r = \tilde{\gamma}_r$.

For a backward vector field-valued semimartingale process $\hat{X}_t(x) = \sum_{j=1}^m v_j(x) \hat{Z}_t^j$, consider a backward SDE of the form;

(II-3)
$$d\xi_s^{-1}(y) = \sum_{j=1}^m (-v_j)(\xi_s^{-1}(y)) \diamond \hat{d}Z_s^j.$$

Then we can define the inverse flow $\{\xi_{s,t}^{-1}; 0 \leq s \leq t \leq T\}$ by the solution of following backward SDE;

(II-4)
$$\xi_{s,t}^{-1}(y) = y + \sum_{j=1}^{m} \int_{s}^{t} (-v_j)(\xi_{u,t}^{-1}(y)) \diamond \hat{d} Z_u^j.$$

similarly as SDE (II-2).

To study the backward self-similar stochastic flow, we define it. A two-parameters backward stochastic flow $\{\hat{\xi}_{s,t}(y); 0 \leq s \leq t \leq T\}$ is backward self-similar with respect to a dilation $\{\theta_r\}_{r>0}$ if, for fixed t, the laws of $\{\theta_r \circ \hat{\xi}_{s,t} \circ \theta_r^{-1}(y)\}$ and $\{\hat{\xi}_{s/r,t}(y)\}$ are same for any r > 0.

Since an inverse flow is a backward flow, if the inverse flow $\{\xi_{s,t}^{-1}(y); 0 \leq s \leq t \leq T\}$ generated by the backward SDE (II-4) is backward self-similar with respect to the dilation $\{\theta_r\}_{r>0}$, then we get that, for the inverse dilation $\{\theta_r^{-1}\}_{r>0}$ of $\{\theta_r\}_{r>0}$, the laws of $\{\theta_r^{-1} \circ \xi_{s,t}^{-1} \circ \theta_r(y)\}$ and $\{\xi_{rs,t}^{-1}(y)\}$ are same for any r > 0. Further, if we think an inverse linear transformations $\{\psi_r^{-1}\}_{r>0}$ of the (forward) dilation $\{\psi_r\}_{r>0}$ and assume that $\{\xi_{s,t}^{-1}(y); 0 \leq s \leq t \leq T\}$ is backward self-similar with respect to $\{\psi_r^{-1}\}_{r>0}$, then we get the relation; by the law,

$$\psi_r^{-1} \circ \xi_{s,t}^{-1} \circ \psi_r(y) = \xi_{s/r,t}^{-1}(y)$$
 for all $r > 0$.

Thus we can get the following;

Theorem II-1. Let $\{\xi_{s,t}^{-1}(y); 0 \leq s \leq t \leq T\}$ be an \mathbb{R}^d -valued backward self-similar stochastic flow with respect to dilation $\{\theta_r\}_{r>0}$ generated by the backward SDE (II-4). Then the driving process $\{\hat{X}_t; 0 \leq t \leq T\}$ is also backward self-similar with respect to a dilation $\{d\theta_r\}_{r>0}$, which is of the form

$$d\theta_r = \delta_r, r > 0.$$

Proof. For a fixed r > 0, we put

$$\tilde{\xi}_{s,t}^{-1}(y) := \theta_r \circ \xi_{s,t}^{-1} \circ \theta_r^{-1}(y), \ 0 \le s \le t \le T.$$

Then, since $\{\xi_{s,t}^{-1}\}$ satisfies (II-4), we get that $\{\tilde{\xi}_{s,t}^{-1}\}$ satisfies; for $s \leq u \leq t$, (II-5)

$$\begin{split} \tilde{\xi}_{s,t}^{-1}(y) &= y + \sum_{j=1}^{m} \int_{s}^{t} (-v_{j})(\tilde{\xi}_{u,t}^{-1}(y)) \diamond \hat{d}Z_{u}^{j} \\ &= y + \sum_{j=1}^{m} \int_{s}^{t} (-v_{j})(\tilde{\xi}_{u,t}^{-1}(y)) \circ \hat{d}Z_{u}^{c,j} + \sum_{j=1}^{m} \int_{s}^{t} (-v_{j})(\tilde{\xi}_{u,t}^{-1}(y)) \circ \hat{d}Z_{u}^{d,j} \\ &+ \sum_{s \leq u \leq t} [exp(\sum_{j=1}^{m} \Delta \hat{Z}_{u}^{j}(-v_{j}))(\tilde{\xi}_{u,t}^{-1}(y)) - \tilde{\xi}_{u,t}^{-1}(y) \\ &- \sum_{j=1}^{m} (-v_{j})(\tilde{\xi}_{u,t}^{-1}(y)) \Delta \hat{Z}_{u}^{j}]. \end{split}$$

Therefore, we get, for $0 \le s \le u \le t \le T$, (II-6)

$$\begin{split} \tilde{\xi}_{s,t}^{-1}(y) &= y + \sum_{j=1}^{m} \int_{s}^{t} (-v_{j})(\theta_{r} \circ \theta_{r}^{-1} \circ \tilde{\xi}_{u,t}^{-1}(y)) \circ dZ_{u}^{c,j} \\ &+ \sum_{j=1}^{m} \int_{s}^{t} (-v_{j})(\theta_{r} \circ \theta_{r}^{-1} \circ \tilde{\xi}_{u,t}^{-1}(y)) \circ dZ_{u}^{d,j} \\ &+ \sum_{s \leq u \leq t} [\theta_{r} exp(\sum_{j=1}^{m} \Delta \hat{Z}_{u}^{j}(-v_{j}))(\theta_{r}^{-1} \circ \tilde{\xi}_{u,t}^{-1}(y)) - \tilde{\xi}_{u,t}^{-1}(y) \\ &- \sum_{j=1}^{m} (-v_{j})(\theta_{r} \circ \theta_{r}^{-1} \circ \tilde{\xi}_{u,t}^{-1}(x)) \Delta \hat{Z}_{u}^{j}]. \end{split}$$

But since

$$(-v_j)(\theta_r \circ \theta_r^{-1} \circ \xi_{u,t}^{-1}(y)) = d\theta_r \circ (-v_j) \circ \tilde{\xi}_{u,t}^{-1}(y)),$$

and

$$\theta_r(\exp(\sum_{j=1}^m \Delta \hat{Z}_u^j(-v_j))(\theta_r^{-1} \circ \tilde{\xi}_{u,t}^{-1}(y)) = \exp(d\theta_r \sum_{j=1}^m Z_u^j(-v_j))(\tilde{\xi}_{u,t}^{-1}(y)) = \exp(d\theta_r \sum_{j=1}^m Z_u^j(-v_j))(\tilde{\xi}_{u,t}^{-1}(y))$$

we see that $\{\tilde{\xi}_{s,t}^{-1}\}$ is driven by $\{d\theta_r \sum_{j=1}^m (-v_j)\hat{Z}_s^j\}$.

On the other hand, $\{\tilde{\xi}_{s/r,T}^{-1}(y)\}$ is driven by $\{\sum_{j=1}^{m} (-v_j) \hat{Z}_{s/r}^{j}(y)\}$. Since the law of $\{\tilde{\xi}_{s,t}^{-1}(y)\}$ coincides with the law of $\{\sum_{j=1}^{m} (-v_j) \hat{Z}_{s/r}^{j}(y)\}$, we get that the law of $\{\sum_{j=1}^{m} d\theta_r(-v_j) \hat{Z}_{s}^{j}\}$ coincides with the law of $\{\sum_{j=1}^{m} (-v_j) \hat{Z}_{s/r}^{j}(y)\}$ for any r > 0. This implies that $d\theta_j(v_j) \in \mathcal{L}$ for any j. Thus $d\theta_r$ maps \mathcal{L} into itself. Let Q be an exponent of the dilation $d\theta_r = \delta_r$. Then the law of the process $\{\delta_r \hat{X}_t\}$ coincides with the driving process $\{\hat{X}_{t/r}\}$ for any r > 0. This show that the driving $d\theta_r = \delta_r$. \Box

THEOREM II-2. Let $\{\xi_{s,t}^{-1}(y); 0 \leq s \leq t \leq T\}$ be an inverse flow on \mathbb{R}^d driven by a backward self-similar semimartingale $\{\hat{Z}_t, t \geq 0\}$ with respect to the dilation $\delta_r = r^Q$ through SDE (II-4). Suppose that Q admit a linear extension \tilde{Q} such that $\tilde{\delta}_r = r^{\tilde{Q}}$ on the space \mathcal{L} . Then the inverse flow $\{\xi_{s,t}^{-1}(y); 0 \leq s \leq t \leq T\}$ is also backward self-similar with respect to a certain dilation $\{\theta_r\}_{r>0}$ such that $d\theta_r = \tilde{\delta}_r$.

Proof. It is need to construct the dilation $\{\theta_r\}_{r>0}$ which makes the backward self-similar flow $\xi_{s,t}^{-1}(y)$. For the purpose, for a given automorphism $\tilde{\delta}_r$ of \mathcal{L} , we have to construct a diffeomorphism $\{\theta_r\}_{r>0}$ of \mathbb{R}^d such that $d\theta_r = \tilde{\delta}_r$.

On the other hand, let $\tilde{\delta}_r$ be an automorphism of \mathcal{L} . Then, by the theory of [3], we know that there exists a unique diffeomorphism θ_r of \mathbb{R}^d such that, for any $x \in \mathbb{R}^d$, $\theta_r(x) = x$ and $d\theta_r = \tilde{\delta}_r$. Therefore, for the inverse linear transformation $\tilde{\delta}_r^{-1}$ of δ_r , we can get the inverse

diffeomorphism θ_r^{-1} of θ_r such that $d\theta_r^{-1} = \tilde{\delta}_r^{-1}$. This dilation $\{\theta_r^{-1}\}_{r>0}$ makes the backward self-similar flow $\xi_{s,t}^{-1}(y)$. Indeed, let \tilde{Q} be the exponent of inverse dilation of $\tilde{\delta}_r = r^{\tilde{Q}}$. Then $\{\tilde{\delta}_r^{-1}\}_{r>0}$ such that $\tilde{\delta}_r^{-1} = r^{\tilde{Q}^*}$ is an inverse dilation on \mathcal{L} . Then, by the same theory as above (c.f. [2]), there exist an one-parameter group of diffeomorphisms $\{\theta_r^{-1}\}_{r>0}$ such that $\theta_r^{-1}(y) = y$ and $d\theta_r^{-1} = \tilde{\delta}!_r^{-1}$ hold for any r > 0. It is immediate that this inverse dilation $\{\theta_r^{-1}\}_{r>0}$ is a dilation which we want to find.

Finally, we shall prove that the inverse flow $\{\xi_{s,t}^{-1}(y)\}$ is backward self-similar with respect to this dilation $\{\theta_r^{-1}\}_{r>0}$. Set

$$\tilde{\xi}_{s,t}^{-1}(y) := \theta_r^{-1} \circ \xi_{s,t}^{-1} \circ \theta_r(y), \ 0 \le s \le t \le T,$$

and $\tilde{Z}_t := d\theta_r \hat{Z}_t$. Then, from the equation (II-6), we get; (II-7)

$$\begin{split} \tilde{\xi}_{s,t}^{-1}(y) &= y + \sum_{j=1}^{m} \int_{s}^{t} (-v_{j}) (\tilde{\xi}_{u,t}^{-1}(y)) \diamond \hat{d} \tilde{Z}_{u}^{j} \\ &= y + \sum_{j=1}^{m} \int_{s}^{t} (-v_{j}) (\tilde{\xi}_{u,t}^{-1}(y)) \circ \hat{d} \tilde{Z}_{u}^{c,j} + \sum_{j=1}^{m} \int_{s}^{t} (-v_{j}) (\tilde{\xi}_{u,t}^{-1}(y)) \circ \hat{d} \tilde{Z}_{u}^{d,j} \\ &+ \sum_{s \leq u \leq t} [exp(\sum_{j=1}^{m} \Delta \tilde{Z}_{u}^{j}(-v_{j})) (\tilde{\xi}_{u,t}^{-1}(y) - \tilde{\xi}_{u,t}^{-1}(y)) \\ &- \sum_{j=1}^{m} (-v_{j}) (\tilde{\xi}_{u,t}^{-1}(x)) \Delta \tilde{Z}_{u}^{j}]. \end{split}$$

Therefore, SDE (II-7) shows that $\{\tilde{\xi}_{u,t}^{-1}(y)\}$ is driven by $\{\sum_{j=1}^{m}(-v_j)\tilde{Z}_u^j\}$. Since the backward process $\{\hat{X}_u\}$ such that $\hat{X}_u = \sum_j (-v_j)\hat{Z}_u^j$ is backward self-similar with respect to dilation $\{\tilde{\delta}_r^{-1}\}$ and $d\theta_r^{-1} = \tilde{\delta}_r^{-1}$ holds, the law of semimartingale $\{\sum_{j=1}^{m}(-v_j)\tilde{Z}_u^j\}$ coincides with the law of the semimartingale $\{\sum_{j=1}^{m}(-v_j)\tilde{Z}_r^j\}$. This implies that the law of the flow $\{\tilde{\xi}_{s,t}^{-1}\}$ coincides with the law of the flow $\{\xi_{s,t}^{-1}\}$ is backward self-similar with respect to the dilation $\{\theta_r^{-1}\}_{r>0}$. \Box

THEOREM II-3. Let $X_t(x) = \sum_{j=1}^m v_j(x) Z_t^j$ be a forward-backward vector field -valued semimartingale. Let $\{\xi_{s,t}(x); 0 \le s \le t \le T\}$ be a forward self-similar stochastic flow with respect to a dilation $\{\psi_r\}_{r>0}$ generated by SDE (II-2). If the inverse flow $\xi_{s,t}^{-1}(y)$ is generated by the canonical backward SDE (II-4), then it is backward self-similar with respect to the inverse dilation $\{\psi_r^{-1}\}_{r>0}$ of $\{\psi_r\}_{r>0}$.

Proof. Let $\xi_{s,t}(x)$ be a self-similar stochastic flow generated by SDE (II-2). Then from the Proposition I-3, we see that $\xi_{s,t}^{-1}(y)$ is a inverse flow of $\xi_{s,t}(x)$ and satisfies the backward SDE (II-4).

If $\xi_{s,t}(x)$ is a self-similar stochastic flow with respect to dilation $\{\psi_r\}_{r>0}$, then from the Proposition II-1, the driving process $X_t(x)$ is also self-similar with respect to dilation $\{d\psi_r\}_{r>0}$. Since $\{X_t; 0 \le s \le t \le T\}$ is a forward-backward semimartingale, the backward process $\{\hat{X}_t; 0 \le s \le t \le T\}$ is also backward self-similar with respect to the inverse dilation $\{d\psi_r^{-1}\}_{r>0}$. Therefore, from Theorem II-2, there is a dilation $\{\psi_r^{-1}\}_{r>0}$ such that the inverse flow $\xi_{s,t}^{-1}(y)$ is backward self-similar with respect to the inverse dilation $\{\psi_r^{-1}\}_{r>0}$.

Now, we will introduce the definition of two-sided self-similar stochastic flow. Because the stochastic flow $\{\xi_{s,t}; 0 \leq s \leq t \leq T\}$ driven by the forward-backward semimartingale $\{X_t; t \in [0,T]\}$ is also a twoparameters forward-backward semimartingale flow, we can define as following; A two-parameters stochastic flow $\{\xi_{s,t}; 0 \leq s \leq t \leq T\}$ is two-sided self-similar with respect to backward dilation $\{\theta_r\}_{r>0}$ and to forward dilation $\{\psi_r\}_{r>0}$, where $\{\theta_r\}_{r>0}$ play a role to the backward flow and $\{\psi_r\}_{r>0}$ play a role to the forward flow, if the laws of

$$\{\theta_r \circ (\psi_r \circ \xi_{s,t} \circ \psi_r^{-1}) \circ \theta_r^{-1}; 0 \le s \le t \le T\}$$

(or $\{\psi_r \circ (\theta_r \circ \xi_{s,t} \circ \theta_r^{-1}) \circ \psi_r^{-1}; 0 \leq s \leq t \leq T\}$) and $\{\xi_{s/r,rt}\}$ are same for all r > 0. Therefore, if $\{\theta_r\}_{r>0}$ is an identity matrix, then the two-sided self-similar flow $\{\xi_{s,t}; 0 \leq s \leq t \leq T\}$ is only forward self-similar, and if $\{\psi_r\}_{r>0}$ is an identity matrix, then it becomes only backward self-similar.

THEOREM II-4. Let $\{\xi_{s,t}; 0 \leq s \leq t \leq T\}$ be an \mathbb{R}^d -valued twosided self-similar semimartingale flow such that the forward flow $\{\xi_{s,t}\}$

is generated by the forward SDE (II-2) and the backward flow $\{\xi_{s,t}^{-1}\}$ is generated by the backward SDE (II-4). Then there exist a forwardbackward semimartingale $\{X_t; t \in [0,T]\}$ such that the forward semimartingale X_t is a driving process of the forward flow $\xi_{s,t}(x)$ and is forward self-similar, and the backward semimartingale \hat{X}_t is a driving process of the inverse flow $\xi_{s,t}^{-1}(y)$ and is backward self-similar.

Proof. Let $\{\theta_r\}_{r>0}$ be an identity matrix. For the forward selfsimilar semimartingale flow $\xi_{s,t}(x)$ with respect to $\{\psi_r\}_{r>0}$, from the Proposition II-1, we get the forward semimartingale $\{X_t, t \in [0, T]\}$ as a driving process such that X_t is forward self-similar with respect to a dilation $\{d\psi_r\}_{r>0}$.

On the other hand, if $\{\psi_r\}_{r>0}$ is an identity matrix, then the backward flow $\{\hat{\xi}_{s,t}(y)\}$ generated by (II-4) is backward self-similar with respect to the backward dilation $\{\theta_r\}_{r>0}$, and there exists a driving process $\{\hat{X}_s; s \in [0, T]\}$ such that \hat{X}_s is backward self-similar with respect to dilation $\{d\theta_r\}_{r>0}$. Thus, if we think $\{\hat{\xi}_{s,t}(y)\}$ as an inverse flow, we get the backward semimartingale $\{\hat{X}_s; s \in [0, T]\}$ as a driving process such that \hat{X}_s is backward self-similar with respect to dilation $d\theta_r$.

THEOREM II-5. For the vector field-valued forward-backward semimartingale $\{X_t; t \in [0,T]\}$, if the forward process X_t is forward selfsimilar and the backward process \hat{X}_t is backward self-similar, then there exists a two-sided self-similar semimartingale flow $\{\xi_{s,t}; 0 \leq s \leq$ $t \leq T\}$ such that the forward flow $\xi_{s,t}(x)$ is generated by the forward SDE (II-2), and the backward flow $\xi_{s,t}(y)$ is generated by the backward SDE (II-4).

Proof. For the forward-backward semimartingale $\{X_t; t \in [0, T]\}$, if X_t is forward self-similar, then from Proposition II-2, there exists $\xi_{s,t}(x)$ generated by SDE (II-2) such that $\xi_{s,t}$ is self-similar with respect to dilation $\{\psi_r\}_{r>0}$. Thus we get that the laws of $\{\psi_r \circ \xi_{s,t} \circ \psi_r^{-1}\}$ and $\{\xi_{s,rt}\}$ are same for any r > 0.

For the flow $\{\xi_{s,rt}\}$, if we fixed t for a while, we can think the backward flow $\{\xi_{s,rt}^{-1}\}$ generated by SDE (II-4) whose driving process

 $\{\hat{X}_s; s \in [0, rt]\}$ is backward semimartingale. From the assumption, the backward process $\{\hat{X}_s; s \in [0, rt]\}$ is self-similar with respect to a backward dilation $\{\delta_r\}_{r>0}$. If we apply Theorem II-2, there exists a backward self-similar flow $\{\xi_{s,rt}^{-1}\}$ with respect to the backward dilation $\{\theta_r\}_{r>0}$ such that $d\theta_r = \delta_r$. Therefore, from the definition of the backward self-similar flow, if we apply that, by the law,

$$\psi_r \circ \xi_{s,t} \circ \psi_r^{-1} = \xi_{s,rt},$$

then we get that, by the law,

$$\theta_r \circ (\psi_r \circ \xi_{s,t} \circ \psi_r^{-1}) \circ \theta_r^{-1} = \xi_{s/r,rt}.$$

III. Density of self-similar flows

For a canonical SDE (II-1), consider the stochastic flow $\{\xi_{s,t}(x); 0 \leq s \leq t \leq T\}$ generated by SDE (II-2). If we use a Levy process $Z_t = (Z_t^1, Z_t^2, \cdots, Z_t^m)$ of the form;

(III-1)
$$Z_t^j = W_t^j + b^j t + \int_E z^j \tilde{N}_p((0,t], dz), j = 1, 2, \cdots, m,$$

where $W_t = (W_t^1, W_t^2, \dots, W_t^m)$ is a Brownian motion, and the compensator $\hat{N}_p((0, t], dz)$ of Poisson point process N_p is of the form

$$\hat{N}_p(ds, dz) = G(dz)ds,$$

where G(dz) is a Lebesgue measure. Then the solution of canonical SDE (II-2) can be represented as; (III-2)

$$\xi_t(x) = x + \sum_{j=1}^m \int_0^t v_j(\xi_s(x)) dW_s^j + \int_0^t \mathcal{L}(\xi_{s-}(x)) ds + \int_0^t \int_E [exp(\sum_{j=1}^m z^j v_j)(\xi_{s-}(x)) - \xi_{s-}(x)] \tilde{N}_p(ds, dz),$$

Self-similar stochastic flows

where

$$\mathcal{L}(x) = \mathcal{A}(x) + \int_{E} [exp(\sum_{j=1}^{m} z^{j}v_{j})(x) - x - \sum_{j=1}^{m} z^{j}v_{j}(x)]G(dz),$$
$$\mathcal{A}(x) = (1/2)\sum_{j=1}^{m} v_{j}^{2}(x) + v_{0}(x).$$

Form the equation (III-2), we put as

$$\mathbf{c}(x,z) = exp(\sum_{j=1}^{m} z^{j} v_{j})(x) - x,$$

and

$$\tilde{\mathbf{c}}(x,z) = \mathbf{c}(x,z) + x.$$

Then we know that $D_x \tilde{\mathbf{c}}(x, z)$ is invertible. On the other hand, if we put

(III-3)
$$\mathbb{B}(x) = (a^{ik}(x))_{d \times d},$$

where

$$(a^{ik}(x))_{d \times d} = \sigma_{d \times m}(x)(\sigma_{d \times m}(x))^t$$

and

$$\sigma_{d \times m}(x) = \begin{pmatrix} v_1^1(x) & v_2^1(x) & \cdots & v_m^1(x) \\ v_1^2(x) & v_2^2(x) & \cdots & v_m^2(x) \\ \vdots & & & \\ v_1^d(x) & v_2^d(x) & \cdots & v_m^d(x) \end{pmatrix}_{d \times m},$$

then we see that

$$\mathbb{B}(\tilde{\mathbf{c}}(x,z)) = (D_z \mathbf{c}(x,z))(D_z \mathbf{c}(x,z))^t.$$

Thus we put as following;

(III-4)
$$\mathbb{C}(x,z) = (D_x \tilde{\mathbf{c}}(x,z))^{-1} \mathbb{B}(\tilde{\mathbf{c}}(x,z)) [(D_x \tilde{\mathbf{c}}(x,z)^{-1}]^t.$$

We make two assumptions;

Assumption (A). There exist two constants $\zeta, \theta > 0$ such that

$$|\tilde{\mathbf{c}}(x,z)| \le \zeta (1+|x|^{\theta})$$

for all $x \in \mathbb{R}^d$ and $z \in E$.

Assumption (B). There is a Borel subset $\Gamma = \{(x, z)\} \subset \mathbb{R}^d \times E$ such that for any $y \in \mathbb{R}^d$ and for the x-section $\Gamma_x \subset \Gamma$, if $G(\Gamma_x) = \infty$,

$$(\cup_{z\in\Gamma_z}\{y|\mathbb{C}(x,z)y=0\})\cap\{y|\mathbb{B}(x)y=0\}=\{0\},\$$

if $G(\Gamma_x) < \infty$,

$$\mathbb{R}^d \cap \{y | \mathbb{B}(x)y = 0\} = \{0\}.$$

Then we get the existence theorem of density.

PROPOSITION III-1. (c.f.[1]) Under (A) and (B), the solution $\xi_t(x)$ of (III-2) has a density $y \to p_t(x, y)$ for all $x \in \mathbb{R}^d$ and $t \in (0, T]$.

REMARK. In some sense, this theorem is general. If $Rank\mathbb{B}(x) = d$, then we can get the same result. See Corollary. Even though $Rank\mathbb{B}(x) < d$, $\xi_t(x)$ of (III-2) can have the density. In this case, to get the density, it must be $Rank\mathbb{B}(x)$ (or $Rank\mathbb{C}(x,z)$)= d/2, because of $Rank\mathbb{B}(x) = Rank\mathbb{C}(x,z)$.

COROLLARY. If $Rank\mathbb{B}(x) = d$ or $Rank\mathbb{C}(x, z) = d$ for all $z \in E$, then the solution $\xi_t(x)$ of (III-2) has a density $y \to p_t(x, y)$ for all $x \in \mathbb{R}^d$ and $t \in (0, T]$.

From the above Proposition III-1, we can define a density of stochastic flow which is generated by some SDE (III-2). Therefore, we can think the densities of the distribution of self-similar stochastic flow generated by (III-2). We denote by $P_{s,t}(x, A)$ the distribution of $\xi_{s,t}(x)$. If the stochastic flow $\{\xi_{s,t}(x); 0 \leq s \leq t \leq T\}$ is self-similar, then we have

$$P_{s,t}(x,A) = P_{s,rt}(\psi_r(x),\psi_r(A)).$$

Let $p_{s,t}(x,y)$ be the density of distribution $P_{s,t}(x,A)$ of $\xi_{s,t}(x)$. For the simplicity, we assume that $p_t(x,y) := p_{0,t}(x,y)$. Then we get;

PROPOSITION III-2. (c.f.[4] Theorem 4.1) Let the stochastic flow $\{\xi_{s,t}(x); 0 \leq s \leq t \leq T\}$ generated by SDE (III-2) be self-similar with respect to dilation $\{\psi_r\}_{r>0}$. If $p_t(x, y)$ is a density of the probability distribution of $\xi_t(x)$ with respect to Lebesgue measure $G(\cdot)$, then we get

$$p_t(x,y) = (1/det(\psi_t))p_1(\psi_t^{-1}(x),\psi_t^{-1}(y)).$$

Sketch of Proof. For a fixed s = 0, we put $\xi_{s,t}(x) := \xi_t(x)$. Then

$$\mathbb{P}(\xi_t(x) \in A) = \int_A p_t(x, y) G(dy),$$

where $G(\cdot)$ is a Lebesgue measure, and

$$\begin{split} \mathbb{P}(\psi_t \circ \xi_1 \circ \psi_t^{-1}(x) \in A) &= \mathbb{P}(\xi_1(\psi_t^{-1}(x)) \in \psi_t^{-1}(A)) \\ &= \int_{\psi_t^{-1}(A)} p_1(\psi_t^{-1}(x), y) G(dy) \\ &= \int_A p_1(\psi_t^{-1}(x), \psi_t^{-1}(y)) G(d\psi_t^{-1}(y)) \\ &= \int_A p_1(\psi_t^{-1}(x), \psi_t^{-1}(y)) (1/\det(\psi_t)) G(dy). \end{split}$$

Therefore, we get

$$p_t(x,y) = (1/\det(\psi_t))p_1(\psi_t^{-1}(x),\psi_t^{-1}(y)).$$

For the forward-backward vector field-valued semimartingale $X_t(x)$, let us think the backward SDE (II-3). If we use a backward Levy process $\hat{Z}_t = (\hat{Z}_t^1, \hat{Z}_t^2, \dots, \hat{Z}_t^m)$ for the Z_t of (III-1), we can define the inverse flow $\xi_{s,t}^{-1}(y)$ by the solution of the backward SDE; (III-5)

$$\begin{aligned} \xi_t^{-1}(y) &= y + \sum_{j=1}^m \int_0^t (-v_j) (\xi_s^{-1}(y)) \hat{d}W_s^j + \int_0^t \hat{\mathcal{L}}(\xi_s^{-1}(y)) \hat{d}s \\ &+ \int_0^t \int_E [exp(\sum_{j=1}^m z^j(-v_j)) (\xi_s^{-1}(y)) - \xi_s^{-1}(y)] \tilde{N}_p(\hat{d}s, \hat{d}z), \end{aligned}$$

where

$$\hat{\mathcal{L}}(y) = \hat{\mathcal{A}}(y) + \int_{E} [exp(\sum_{j=1}^{m} z^{j}(-v_{j}))(y) - y - \sum_{j=1}^{m} z^{j}(-v_{j})(y)]G(\hat{d}z),$$
$$\hat{\mathcal{A}}(y) = (1/2)\sum_{j=1}^{m} (-v_{j})^{2}(y) + (-v_{0})(y).$$

Let $P_{s,t}^{-1}(y,A)$ be the distribution of $\xi_{s,t}^{-1}(y)$. Then, from the Proposition III-1, we can define a density of the distribution of the inverse flow $\xi_{s,t}^{-1}(y)$. If the inverse flow $\{\xi_{s,t}^{-1}(y); 0 \le s \le t \le T\}$ is backward self-similar, we have

$$P_{s,t}^{-1}(y,A) = P_{s/r,t}^{-1}(\psi_r^{-1}(y),\psi_r^{-1}(A)).$$

Let $p_{s,t}^{-1}(x,y)$ be the density of distribution $P_{s,t}^{-1}(y,A)$. For the simplicity, we assume that $p_s^{-1}(y,x) := p_{s,T}^{-1}(y,x)$. Then we get;

THEOREM III-1. Let $\{\xi_{s,t}^{-1}(y); 0 \leq s \leq t \leq T\}$ be an inverse selfsimilar stochastic flow with respect to inverse dilation $\{\psi_r^{-1}\}_{r>0}$ generated by SDE (III-5). If $p_s^{-1}(y, x)$ is a density of the probability distribution of $\xi_s^{-1}(y)$, then we get;

$$p_s^{-1}(y,x) = (1/det(\psi_s^{-1}))p_1^{-1}(\psi_s(y),\psi_s(x)).$$

Proof. For a fixed t = T, we put $\xi_{s,T}^{-1}(y) := \xi_s^{-1}(y)$. Then

$$\mathbb{P}(\xi_s^{-1}(y) \in A) = \int_A p_s^{-1}(y, x) G(\hat{d}x),$$

and

$$\begin{split} \mathbb{P}(\psi_s^{-1} \circ \hat{\xi}_1 \circ \psi_s(y) \in A) &= \mathbb{P}(\hat{\xi}_1(\psi_s(y)) \in \psi_s(A)) \\ &= \int_{\psi_s(A)} p_1^{-1}(\psi_s(y), x) G(\hat{d}x) \\ &= \int_A p_1^{-1}(\psi_s(y), \psi_s(x)) G(\hat{d}\psi_t(x)) \\ &= \int_A p_1^{-1}(\psi_s(y), \psi_s(x)) (1/\det(\psi_s^{-1})) G(\hat{d}x). \end{split}$$

Therefore, we get the result.
$$\Box$$

Therefore, we get the result.

References

- 1. K. Bichteler, J-B. Gravereaux, J. Jacod, *Malliavin Calculus for Processes with Jumps*, Gordon and Breach Science Publishers, 1989.
- Z.J. Jurek, J.D. Mason, Operator-limit Distributions in Probability Theory, John Wiley and Sons N.Y., 1993.
- 3. H. Kunita, Stochastic flows with self-similar properties, (preprint).
- 4. H. Kunita, Asymptotically self-similar stochastic flows and their short time asymptotics, (preprint).
- 5. H. Kunita, Kunit's note, (preprint).

Department of Mathematics Kangwon National University Chuncheon 200-701, Korea