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BACKWARD SELF-SIMILAR STOCHASTIC
PROCESSES IN STOCHASTIC
DIFFERENTIAL EQUATIONS

JAE-PILL OH

ABSTRACT. For the forward-backward semimartingale, we can de-
fine the backward semimartingale flow which is generated by the
backward canonical stochastic differential equation. Therefore, we
define the backward self-similar stochastic processes, and we study
the backward self-similar stochastic flows through the canonical sto-
chastic differential equations.

0. Introduction

In the previous work [5], for the C-valued forward-backward semi-
martingale, Kunita defined the inverse flow which is a backward semi-
martingale flow generated by the canonical backward stochastic differ-
ential equation(SDE). On the other hand, in [3] and [4], he studied
the self-similar stochastic flows generated by the canonical SDE on the
manifolds. Therefore, for the forward-backward semimartingale, we
can define the forward and the backward stochastic flows by the canon-
ical SDE. Thus, the purpose of this paper is to define the backward
self-similar processes and the backward self-similar stochastic flows,
and study them through the canonical SDE on R¢.

To define the backward self-similar process, it is convenient to use
the (inverse) dilation which is also an invertible linear transformation.
Therefore, we define the backward self-similar semimartingale with re-
spect to a dilation and study the backward self-similarity for the flows
which are generated by the backward SDE. Thus, first, we think the re-
lation of self-similarities between the backward driving processes and
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the backward stochastic flows through the canonical SDE. Further,
for the forward-backward self-similar processes, we also think the two-
sided self-similar stochastic flows through the canonical SDE.

Section I is the preliminary part. In this section, we define the
canonical SDE and the backward SDE. Further, we also define the
backward self-similar processes. Section II is the main part of this
results. In this section, we study the backward self-similar stochastic
processes and the backward self-similar stochastic flows through the
canonical SDE. In section III, we will deal with the density of the
self-similar stochastic flow which is a solution of the canonical SDE.

I. Preliminaries

For a non-negative integer m, we denote by C™ := C™(R%; R%) the
set of all maps from R? into itself which are m -times continuously
differentiable. In case m = 0, we denote it C := C(RY;R?) which is
the space of continuous maps from R? into itself equipped with the
compact uniform topology. Let 0 < § < 1. We denote by C{)"M =
C" M (R%RY) the set of all v € C™ such that derivatives Dv are
bounded and uniformly § — Hdolder continuous for any awith |a| < m.
Let C := C(R? x R%S,), where S, is the space of d x d - matrices.
We define the subspace C;" ™ = C" M (R? x R%S,) of C' similarly.

Let (Q,F, P) be a probability space where the filtration F;;t €
[0,00) of sub-o-field of F is defined. Let X (z,t),t = 0 be a family of
R valued stochastic process with spatial parameter z € R? defined on
(Q,F, P). If X(x,t) is continuous in z for each t a.s., we can regard it as
a C -valued process. We denote it sometimes by X (t) = X(x,t),t > 0.

Let X (z,t) be a cadlag semimartingale with values in C'. We define
the point process N(t, E) over [0,00) x C associated with X (¢) by

N((s,t, B) = ) Xp(AX(r)),AX(s) = X(s) — X(s—),

s<r<t

where FE is a Borel subset of C' excluding 0. Then there exists a unique
predictable process N (t, E') which is called the compensator such that

~ A

N(t,E) = N(t,E) — N(t, E)
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is a localmartingale. For a bounded Borel subset U of C, consider a
C-valued semimartingale X (z,t) which is represented as;

X(z,t) = Xe(x,t) + Xa(x,t)

= M°(z,t) + B°(x,t) +/

Uv(as)N(t,dv)—l—/ v(z)N (¢, dv),

c

where M¢(x,t) is a continuous localmartingale for any =, B¢(x,t) is a
continuous predictable process of bounded variation for any z, and the
integral form

/U (@) N (1, dv)

is a discontinuous localmartingale part of X (x,t) for any x.

Let Ay, t € [0,00) be a continuous increasing process adapted to the
filtration F; such that Ag = 0 a.s. Then there exist predictable pro-
cesses a% (x,y,t) and bi(z,t), and for the compensator N(t, E), there
exists a predictable measure-valued process v;(F) satisfying

t
(M (1), M (3, ) = / 0 (2, . 5)dA,,
0

t
Boi(z, 1) = / bz, 5)dA,,
0

and

N(t, E) = /Ot ve(E)dAs,.

The system (a,b,v) is called the characteristic of semimartingale
X (z,t) with respect to As.
Let X (z,t),t >0 be a C-valued cadlag semimartingale equipped
with the characteristic (a, b, ). We introduce a condition;
Condition (A). For a positive predictable process Ky, t > 0 satis-

fying
T
/ KidA; < o a.s. for any T > 0,
0

(i) a(z,y,t) is a continuous C} ' -valued process satisfying

la(®)][111 < K; as.
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(i) b(z,t) is a continuous Cp ™' -valued process satisfying
16(t)|lo+1 < Kt a.s.
(iii) The measure v4(-) is supported by Cp*'. Further, there exists

a Borel set U C O} ' such that for some constant ¢ > 0, ||v||1+1 < ¢
for all v € U, and

1 (U°) < Ky, and / [v]141 v (dv) < K.
U

Let {&,t > 0} be an R%valued cadlag process satisfying Condition
(A) adapted to (F:). Then we can define the [to integrals and the
Stratonovich integrals, respectively;

/:X(fr_,dr), and /:X(fr,odr).

Let v(z) be a Lipschitz continuous vector field. Then by Condition
(A)-(iii), the possible infinite sum

S leap(AX (s))(2) — & — AX(, 5)

s<t
is absolutely convergent a.s.. Therefore, we can define the canonical
integral of a cadlag semimartingale & based on the vector field-valued
semimartingale X (¢) as following;

/X.{T,odr /X (&, 0dr) + /Xd &, dr)

+ Z exp(AX(r))(§r—) — &r— — AX(&—, 7)),

s<r<t

where the first part and the second part of the right hand side are
Stratonovich integral and [to integral, respectively.

Let X (x,t),t > 0 be a C-valued semimartingale whose characteristic
satisfy Condition (A). Consider a canonical SDE which is represented
by

(1) fla) = 2+ / X(&s(x), ods),

where 0 < s < t. The process ; satisfying (I-1) is called a solution of
the canonical SDE (I-1) driven by the vector field-valued semimartin-
gale X (1).
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PRrROPOSITION I-1. Assume that the characteristics of the C'-valued
semimartingale X (t) satisfy Condition (A). Then the canonical SDE
(I-1) has a unique solution &, 1(x),t > s for any s, z. Further, a certain
version &, (x) of the solution admits the following properties;

(i) €s.u(x) = &0 (&s.4(x)) holds for all z € R? and s < t < u, a.s.

(ii) The map &, : RY — R is an onto homeomorphism for all
s <t a.s.

(iii) &5+ is a C-valued cadlag processes in both s and t.

The above & ; is called the stochastic flow of homeomorphisms gen-
erated by X;.

Let (2, F, P) be a probability space and {F,;;0 < s <t < T} be
a two parameter family of sub-o-field of F which contains all null sets
and satisfy
Fsip CForpr, if 8 <s<t <,

and
me>0-Fs,tJr6 = Fs,ta and MNe>0 ste,t = Fs,t

for any s < t. A C-valued cadlag process {X;,t > 0} is called a
forward-backward semimartingale if X; — X, ¢t € [s,7T] is a forward
semimartingale adapted to the filtration (Fs ¢);e[s,7) for any s and also
Xi—Xs, s € [0,1] is a backward semimartingale adapted to the filtration
(Fs.t)selo,y for any ¢.

Let {&,0 < s <t} (¢ is fixed) be a process adapted to the filtration
(Fs,t)o<s<t<oo- The backward It6 integral of & based on a forward-
backward semimartingale X (x,t) is defined by

t m
/ X (&, dr) = limsi—o > _[X (& tr) — X (€t tr1)]
s k=1

This integral is also a backward cadlag semimartingale with respect to
s. The backward Stratonovich integral is defined similarly.

The canonical backward integral of a cadlag semimartingale &; based
on the forward-backward semimartingale X (x,t) can be defined simi-
larly;

/Xé},odr /X fT,odr /Xd & ,dr

+ Y leap(AX(r)(&-) = & = AX (&, 7)),

s<r<t
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where the first term of the right hand side is the Stratonovich integral.

PROPOSITION I-2. Let X(t) be the C-valued semimartingale of
Proposition I-1. Assume that X (t) is a forward-backward semimartin-
gale. Then the inverse flow f;tl is a cadlag C-valued process both in
s and t. Further, it is a backward semimartingale and satisfies the
following It6 backward SDE;

(-2) EAw =y [ X6 w).dr),
where
X(2,t) = —X(2,t) + / c(x,8)dAs + ) e 2¥ O (@) — 2 — AX(x,5)]

Thus 58_,51 is represented as a solution of a canonical backward SDE
driven by —X;

(13) My =y + / (—X) (€2 (y), odr),

Now, we consider a forward-backward semimartingale X (¢) having
the characteristic (a,b,v) with respect to A; associated with U. Tt
is known that under the following Condition (A*), we can define the
forward flow &, ¢(x) and the backward flow & ! (y), respectively.

Condition (A*). For a positive predictable process K¢, t > 0 satis-

fying
T
/ KidA; < o a.s. for any T > 0,
0

(i) a(x,y,t) is a continuous C’gﬂ—valued process satisfying
||a(t)||~2+1 < K; as.

(i) b(z,t) is a continuous C} T'-valued process satisfying
[6(t)[l141 < K¢ as.

(iii) The measure v4(-) is supported by C7™'. Further, there exists
a Borel set U C CZ%! such that for some constant ¢ > 0, ||v|j2+1 < ¢
for all v € U, and

w(U°) < Ky, and / lo]2.4 v (dv) < K.
U
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PRrROPOSITION I-3. (c.f.[5]) Let X; be a C-valued semimartingale
satisfying Condition (A*). Further, assume that X, is a forward-
backward semimartingale. Let {{5:;0 < s <t < T} be a stochastic
flow determined by the SDE;

Es.t() :x—i—/ X(&sr—(x),0ds).

Then the inverse & 1 (y) is a backward semimartingale and satisfies the
canonical backward SDE;

My =y + / (—X) (€ (y), odr).

Let {7, }r>0 be a family of diffeomorphisms of manifold M satisfying
the following (a)-(d).

(a) v-(p) is differentiable with respect to (r,p) € (0,00) x M.

(b) v © vs = s holds for all 7, s > 0.

(c) There exists a point pg € M such that v,.(pg) = po holds for all
r > 0.

(d) lim, o7, (p) = po holds uniformly on the compact sets of M.

Then we call it a dilation over M. Now, we define the dilation on
R?, and recall an operator self-similarity with exponent ) for R%valued
processes. Let () be an d X d-matrix such that real parts of its eigen-
values are all positive. Consider an invertible linear transformation ~,
from R? to itself of the form;

v :=exp(log r)Q, for r >0
= Q.

Then, because of r9s? = (rs)¥, the linear transformations {7, },>0
satisfy v,vs = s for all s,¢ > 0, and also we can define that;

Yr(z) — 0 as r — 0,

for any 2 € R%. We call this one-parameter group {7, },>o of automor-
phisms as a dilation with exponent @ on R?.
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Let {X;;t € [0,T]} be a forward-backward semimartingale. An R9-
valued forward process {X;,t > 0} is called self-similar with respect
to a dilation {7, },~o if the law of the stochastic process {7, X;,t > 0}
is equal to that of {X,,t > 0} for any r > 0. Let {X;,0 < ¢t < T}
be a backward semimartingale on the same probability space. An R%-
valued backward process X, is backward self-similar with respect to
a dilation {d,},~¢ if the laws of the stochastic processes {6rXt,t €
[0,T]} and {Xt/r,t € [0,7]} are same for any r > 0. Since a dilation
is an invertible linear transformation, we can think an inverse linear
transformations {61}, as an inverse dilation of {6, },~g. Thus, if
we assume that X, is backward self-similar with respect to a dilation
{6, }r>0, then we can get the following re! lati on; by the law,

5;1Xt = Xrt, for all » > 0,

because of R R R
Xy =06,"06,X,=06,"Xy.

We think an inverse linear transformations {7, 1},~0 of the (for-
ward) dilation {7, },~0, and assume the following relation; by the law,

v Xy = Xy, for all v > 0.

If Q, the exponent of dilation v, = 7%, is semisimple, then we get

771 =r~9Q where —Q is the inverse matrix of Q. Thus, we get v, =

Y1/ for all r > 0, and

’7;1)215 = ’71/7’Xt = Xt/r-

II. Backward self-similar stochastic flows

Consider a canonical SDE of the form;
(1I-1) déy(x) =Y vj(&(x)) 0 dZ]
j=1

with initial condition §o(z) = x, which is driven by a vector field-valued
semimartingale X;(x) = Z;n:l v;(x)Z], where Z, = (Z}, 22, , Z™)
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is an R™-valued semimartingale and vy, v2, - - - , v,,, are the smooth com-
plete vector fields on R?%. Let £ be an algebra generated by the vector
fields vq,vs9, - ,v;,. Then the linear combination Z;n:l v;Z] can be
an element of L.

By the solution of (II-1), we can define an R%-valued semimartingale
flow {&s4(2);0 < s <t <T} adapted to Fs; = 0(Zs1;0<s<t<T)
satisfying;

(11-2)

gst —$+Z/ (% gsr OdZJ
—:L'+Z/ vj fsr OdZC]+Z/ Uj fsr Zdj

+ > [eap ZAZ ;) (s (2))

s<r<t

— Eur-(@) = D vy (Ear-@)AZ],

We assume that;

(A.1) dim(L) < oo,

(A.2) dim(L(x)) = d hold for all z € R, where L(z) = {v,;v € L}
and v, is the projection of v to the point x € R%.

(A.3) The semimartingale {Z;} is nondegenerate.

Then it is known that, for any z € R?, the equation (II-2) has
a global unique solution {&;:(z);0 < s < ¢t < T} which is called a
stochastic flow generated by SDE (I1I-2).

A two-parameters stochastic flow {&s:(2);0 < s < ¢ < T} gener-
ated by the SDE (II-2) is said forward self-similar with respect to the
dilation {9, },~0 if the laws of {1, 0 & ;01 (2);0 < s <t < T} and
{&rt(x);0 < s <t < T} are same for any r > 0. Thus, we get the
followings;

PROPOSITION II-1. (c.f.[3] Theorem 2.2) Suppose that the stochas-
tic flow {&s+();0 < s <t < T} driven by {Z;} through SDE (II-2) is
self-similar with respect to a certain dilation {,},~o. Then the R9-
valued driving process {Z;;t > 0} is also self-similar with respect to a
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dilation {~,},~o such that di, =~

ProprosITION II-2. (c.f.[3] Theorem 2.4) Let {£;+(x);0 < s <t <
T} be a stochastic flow on R driven by R%-valued self-similar semi-
martingale {Z;,t > 0} with respect to dilation v, = r% through SDE
(II-2). Suppose that the exponent @ of dilation {7, },>o admits a linear
extension () such that 7, = @ on the space L. Then the stochastic
flow {&4(2);0 < s < t < T} is also self-similar with respect to a
certain dilation {1, },~o such that diy,. =7

For a backward vector field-valued semimartingale process Xt(x) =

> i1 Vg (2)Z7, consider a backward SDE of the form;

(11-3) —;)( )odZi.

J:1

Then we can define the inverse flow {¢,7;0 < s < t < T} by the

solution of following backward SDE;

Wy Gl =y [ o) edzi

st’

similarly as SDE (1I-2).

To study the backward self-similar stochastic flow, we define it. A
two-parameters backward stochastic flow {£,(y);0 < s < ¢t < T} is
backward self-similar with respect to a dilation {6, },~¢ if, for fixed ¢,
the laws of {6, o &, 00 (y)} and {és/m(y)} are same for any r > 0.

Since an inverse flow is a backward flow, if the inverse flow
{S;tl(y);() < s <t < T} generated by the backward SDE (II-4) is
backward self-similar with respect to the dilation {6,},~0, then we
get that, for the inverse dilation {6, '},~¢ of {6,},~0, the laws of
{610 55_1:1 o0,(y)} and {é};i(y)} are same for any r > 0. Further, if
we think an inverse linear transformations {¢-'},~o of the (forward)
dilation {%, },~¢ and assume that {fs_tl (y);0 < s <t < T} is backward
self-similar with respect to {¢.71},~, then we get the relation; by the
law,

Ut oboy otn(y) =€) () for all 7 > 0.

Thus we can get the following;
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Theorem II-1. Let {fs_,tl(y);O < s <t < T} be an Ri-valued
backward self-similar stochastic flow with respect to dilation {0, },~0
generated by the backward SDE (II-4). Then the driving process
{X4;0 < t < T} is also backward self-similar with respect to a di-
lation {d6,.},~0, which is of the form

de’f’ - 51', T > O
Proof. For a fixed r > 0, we put
Eily)i=0,08 100, (y), 0<s<t<T

Then, since {fs_tl} satisfies (II-4), we get that {és_ 1} satisfies; for s <
u < t,
(I1-5)

E10 =+ Y [ o)l odz,

j=1
Therefore, we get, for 0 < s <u <t <T,
(11-6)

~ m t ~ A .
Sl =y+ > / (—0;)(0, 0 01 0 &5 1 (y)) 0 dze
j=17s

m t ) ) |
! Z/ (=0)(0r 00, 0 &3 () 0 dZ5”
j=17s
b3 rean(Y0 AZ ()67 0 Ebw) - 21 (0)
s<u<t j=1
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But since

(—0j)(8r 00, 0 &1 (y) = B o (—v) 0 €, 4 (1),

and

»(exp( Z 73 (=)0, 0 &1 (y)) = exp(do, ZZJ —0;)) (€t (1)),

7j=1

we see that {¢,} is driven by {d®, Z;”:l(—v])Zg}

On the other hand, {gS/TT( y)} is driven by {37, (~v )Zi/r(y)}.
Since the law of {55,15 (y)} coincides with the law of {377 | (—v )Zg/r( Y}
we get that the law of {Zm_l do, (—vj)Zj} coincides with the law of

{3771 (—vy) S/T( y)} for any r > 0. This implies that df;(v;) € L
for any j. Thus df, maps L into itself. Let () be an exponent of the
dilation df, = 6,. Then the law of the process {4, X;} coincides with
the law of the process {Xt /r} for any r > 0. This show that the driving

process {X;;t € [0, T]} is backward self-similar with respect to dilation
db, = 6. O

THEOREM II-2. Let {5;} (y);0 < s <t <T} be an inverse flow on
R? driven by a backward self-similar semimartingale {Z,,t > 0} with
respect to the dilation §, = r% through SDE (II-4). Suppose that @
admit a linear extension Q such that 6, = rQ on the space L. Then
the inverse flow {§8_ tl (y);0 < s <t <T} is also backward self-similar
with respect to a certain dilation {0, },~o such that df, = Oy

Proof. Tt is need to construct the dilation {6, },~¢ which makes the
backward self-similar flow &, !(y). For the purpose, for a given auto-
morphism 8, of £, we have to construct a diffeomorphism {0, }r>0 of
R such that df, = ST.

On the other hand, let 5, be an automorphism of £. Then, by the
theory of [3], we know that there exists a unique diffeomorphism 6,
of R such that, for any z € R?, 0,(x) = x and df, = 8,. Therefore,
for the inverse linear transformation ! of d,, we can get the inverse
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diffeomorphism 6! of 6, such that df' = 5. This dilation {6, Bso
makes the backward self-similar flow & H(y). Indeed, let Q be the
exponent of inverse dilation of 6r = rQ. Then {6:'},~0 such that
ST_ 1 = r@" is an inverse dilation on £. Then, by the same theory as
above (c.f. [2]), there exist an one-parameter group of diffeomorphisms
{6071},~0 such that 071 (y) = y and df,7! = §!."! hold for any r > 0. It
is immediate that this inverse dilation {6 '},~¢ is a dilation which we
want to find.

Finally, we shall prove that the inverse flow {¢ H(y)} is backward
self-similar with respect to this dilation {6 1},~0. Set

i) =07"06 1 000(y), 0<s <E<T,

and Z; := df, Z;. Then, from the equation (I1-6), we get;
(I1-7)

Gl =+ [ o)) odz,

s / (—o)Etw) 0dZet + 3 / (—0;)(E5 1 (y)) 0 A2
j=17% j=17%

+ > leap(d AZI(—v;))(Eut(y) — &t W)

=S () (E () AZ]

Therefore, SDE (II-7) shows that {é;%(y)} is driven by {ZTzl(—vj)Z{L}
Since the backward process { X, } such that X, =3 .(—v;)Z}, is back-
ward self-similar with respect to dilation;{gr_ 1} and df;7! = 6" holds,
the law of semimartingale {3 7", (~v;)Z}} coincides with the law of
the semimartingale {Z;.n:l(—vj)Zm}. This implies that the law of the
flow {é;tl} coincides with the law of the flow {fr_;t} for any r > 0. Thus
& 11 is backward self-similar with respect to the dilation {6;7},~0.0]
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THEOREM I1-3. Let X;(z) = > 7", vi(x)Z] be a forward-backward
vector field -valued semimartingale. Let {&;.(x);0 < s <t < T} be a
forward self-similar stochastic flow with respect to a dilation {1, },~¢
generated by SDE (II-2). If the inverse flow & ! (y) is generated by the
canonical backward SDE (1I-4), then it is backward self-similar with
respect to the inverse dilation {1 },~0 of {1, },~0.

Proof. Let & +(z) be a self-similar stochastic flow generated by SDE
(I1-2). Then from the Proposition I-3, we see that & }(y) is a inverse
flow of &, (z) and satisfies the backward SDE (II-4).

If & 4(z) is a self-similar stochastic flow with respect to dilation
{¥r}r>0, then from the Proposition II-1, the driving process X;(x) is
also self-similar with respect to dilation {di; },~¢. Since {X;;0 < s <
t < T} is a forward-backward semimartingale, the backward process
{Xt;O < s <t < T} is also backward self-similar with respect to
the inverse dilation {di, 1},~0. Therefore, from Theorem II-2, there
is a dilation {1, 1},~0 such that the inverse flow 58_,51(31) is backward
self-similar with respect to the inverse dilation {1 1},~0. O

Now, we will introduce the definition of two-sided self-similar sto-
chastic flow. Because the stochastic flow {540 < s <¢ < T} driven
by the forward-backward semimartingale {X;;¢ € [0,7]} is also a two-
parameters forward-backward semimartingale flow, we can define as
following; A two-parameters stochastic flow {&;,;0 < s <t < T} is
two-sided self-similar with respect to backward dilation {6, },~¢ and to
forward dilation {;},~0, where {6,.},~¢ play a role to the backward
flow and {%,},~0 play a role to the forward flow, if the laws of

{0,000t )0l 0<s <t <T}

(or {1 0 (B0 €0 00, 0 U150 < 5 < ¢ < T}) and {€upp} are
same for all » > 0. Therefore, if {6, },~¢ is an identity matrix, then
the two-sided self-similar flow {{;+0 < s < ¢t < T} is only forward
self-similar, and if {¢,.},~¢ is an identity matrix, then it becomes only
backward self-similar.

THEOREM II-4. Let {&54;0 < s <t < T} be an Ré-valued two-
sided self-similar semimartingale flow such that the forward flow {s +}
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is generated by the forward SDE (1I-2) and the backward flow {Ss_tl
is generated by the backward SDE (1I-4). Then there exist a forward-
backward semimartingale {X;;t € [0,T]} such that the forward semi-
martingale X; is a driving process of the forward flow & +(z) and is
forward self-similar, and the backward semimartingale X, is a driving
process of the inverse flow f‘s_tl (y) and is backward self-similar.

Proof. Let {6,},~0 be an identity matrix. For the forward self-
similar semimartingale flow & ;(x) with respect to {¢; },~0, from the
Proposition II-1, we get the forward semimartingale {X;,¢ € [0,T]} as
a driving process such that X; is forward self-similar with respect to a
dilation {d; }r>0.

On the other hand, if {4, },~0 is an identity matrix, then the back-
ward flow {&,.(y)} generated by (II-4) is backward self-similar with
respect to the backward dilation {6, },~0, and there exists a driving
process {X,;s € [0,T]} such that X, is backward self-similar with re-
spect to dilation {d#,},~q. Thus, if we think {és’t(y)} as an inverse
flow, we get the backward semimartingale {X,; s € [0,7]} as a driving

process such that X is backward self-similar with respect to dilation
de,.. O

THEOREM I1-5. For the vector field-valued forward-backward semi-
martingale {X;;t € [0,T]}, if the forward process X; is forward self-
similar and the backward process X, is backward self-similar, then
there exists a two-sided self-similar semimartingale flow {5 ;0 < s <
t < T} such that the forward flow &, .(x) is generated by the forward
SDE (II-2), and the backward flow 53_,51 (y) is generated by the backward
SDE (IL-4).

Proof. For the forward-backward semimartingale {X¢;t € [0,7]},
if X; is forward self-similar, then from Proposition II-2, there exists
&s.t(x) generated by SDE (II-2) such that s ; is self-similar with respect
to dilation {9, },~0. Thus we get that the laws of {1, 0 &5 01,1} and
{&s.r¢} are same for any r > 0.

For the flow {&; ,+}, if we fixed ¢t for a while, we can think the
backward flow {fs_,}t} generated by SDE (II-4) whose driving process
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{Xs; s € [0,rt]} is backward semimartingale. From the assumption,
the backward process {X;s € [0,rt]} is self-similar with respect to a
backward dilation {d,},~¢. If we apply Theorem II-2, there exists a
backward self-similar flow {£_° 11 with respect to the backward dilation
{0, }+>0 such that df,. = §,. Therefore, from the definition of the
backward self-similar flow, if we apply that, by the law,

1/}7“ © gs,t o '@b;l = gs,rta

then we get that, by the law,

97" o (¢T o gs,t o Qb;l) o 0;1 = gs/r,rt- O

III. Density of self-similar flows

For a canonical SDE (II-1), consider the stochastic flow {&; ;(z);0
s <t < T} generated by SDE (II-2). If we use a Levy process Z;
(Z},Z2,---, Z™) of the form;

I IA

(ITI-1) Zl =wi + bjt+/ PN, ((0,4,dz), 5 =1,2,-- ,m,
FE

where W; = (W, W2, ... /W) is a Brownian motion, and the com-
pensator N, ((0,%],dz) of Poisson point process NN, is of the form

A~

N,(ds,dz) = G(dz)ds,

where G(dz) is a Lebesgue measure. Then the solution of canonical
SDE (II-2) can be represented as;
(IT1-2)

bi(x) = +§ / 03 (€a ()WY + / C(Eo(x))ds

+ [ fean(X #u)E- @) - @), (ds.d2).

Jj=1
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where

£la) = Aw) + [ [eon(30)(w) =2 = 3 o, @)G(d2)
Az) = (1/2) Z v3 () + vo ().

J=1

Form the equation (III-2), we put as
c(x,z) = exp(z ;) (x) — ,
j=1

and
¢(x,z) =c(x,2) + x.

Then we know that D,¢(x, z) is invertible.
On the other hand, if we put

(I11-3) B(z) = (a**(x))axd,

where _
(@™ (%)) axd = Taxm(®)(Caxm(x))"

and

v%(x) U%(x) U,ln(a;)
o) = | 1@ @ e |
vf(x)  vs(x) v (x) ) g

then we see that
B(&(z, 2)) = (D.c(z, 2))(Dzc(x, 2))".

Thus we put as following;

(IT1-4) Clz, 2) = (Daé(z, 2)) 'B(E(x, 2))[(Daé(x, 2) .

We make two assumptions;
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Assumption (A). There exist two constants ¢, 6 > 0 such that
(@, 2)] < ¢(1+J2]%)

for all z € R% and 2z € E.

Assumption (B). There is a Borel subset I' = {(z,2)} CR? x E
such that for any y € R? and for the x-section I', C T, if G(I';) = oo,

(Uzer.{y|C(z, 2)y = 0}) N {y[B(x)y = 0} = {0},

if G(T',) < oo,
RN {y[B(z)y = 0} = {0}.

Then we get the existence theorem of density.

ProPOSITION III-1. (c.f[1]) Under (A) and (B), the solution & (z)
of (III-2) has a density y — p;(z,y) for all x € R? and t € (0,T].

REMARK. In some sense, this theorem is general. If RankB(z) = d,
then we can get the same result. See Corollary. Even though
RankB(z) < d, &(x) of (III-2) can have the density. In this case, to
get the density, it must be RankB(x) (or RankC(x, z))= d/2, because
of RankB(x) = RankC(x, z).

COROLLARY. If RankB(z) = d or RankC(z,z) = d for all z € E,
then the solution & (x) of (III-2) has a density y — p¢(x,y) for all
2 €R% and t € (0,T].

From the above Proposition III-1, we can define a density of sto-
chastic flow which is generated by some SDE (III-2). Therefore, we
can think the densities of the distribution of self-similar stochastic flow
generated by (III-2). We denote by P ;(x, A) the distribution of & ().
If the stochastic flow {{;+(z);0 < s <t < T} is self-similar, then we
have

PS,t(ma A) = PS,rt(wr(x)a@DT(A))-

Let psi(x,y) be the density of distribution Ps:(x, A) of & (x). For
the simplicity, we assume that p;(x,y) := po+(x,y). Then we get;
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PROPOSITION III-2. (c.f.[4] Theorem 4.1) Let the stochastic flow
{&.4(x);0 < s <t < T} generated by SDE (III-2) be self-similar with
respect to dilation {¢.},~o. If pi(x,y) is a density of the probability
distribution of &(x) with respect to Lebesgue measure G(-), then we
get

pile,y) = (1/det(0))pr (67 (), 67 (1),

Sketch of Proof. For a fixed s = 0, we put & +(z) := & (z). Then

Plee) € 4) = [ pia.y)Glay),
where G(+) is a Lebesgue measure, and

P(yp o & oty ' (z) € A) = P(&1(v; ' (2)) € ¥y ' (A))
p1(vy H(2),y)G(dy)

s H(A)

pr(Wr (@), ¥ (9)Gldy ()

Il
o~

T

Py (@), 9 () (1) det(4,)) G(dy).
Therefore, we get

pe(@,y) = (1/det(sp))pr (v ' (), ¥ (y)). u

For the forward-backward vector field-valued semimartingale X;(x),
let us think the backward SDE (II-3). If we use a backward Levy
process Z; = (Z},Z2,--- , Z™) for the Z; of (III-1), we can define the
inverse flow fs_tl (y) by the solution of the backward SDE;

(I11- 5)
-ﬂ+2/ —u)e wawd + [ 26 w)ds

+—/£ /;&mnx;g;zj<—vj»<s;1@n>-—5g¢< W, (ds, dz),
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where
£) = A + [ fean(3 2 (=0)) =y = 30 2 (<) WIG(2).
Aly) = (1/2)Y(=03)20) + () ).
j=1

Let Ps_,tl (y, A) be the distribution of f;}(y) Then, from the Propo-
sition III-1, we can define a density of the distribution of the inverse
flow fs_tl(y) If the inverse flow {f;tl(y);O < s <t < T} is backward
self-similar, we have

Py (y, A) = P (07 (1), 9, 1 (A)).

Let p;tl(x,y) be the density of distribution PS_,t1 (y,A). For the sim-
plicity, we assume that p; !(y,z) := p;%p(% x). Then we get;

THEOREM III-1. Let {ggg(y);o < s <t < T} be an inverse self-
similar stochastic flow with respect to inverse dilation {1 1},~¢ gen-
erated by SDE (II1-5). If p;1(y,z) is a density of the probability dis-
tribution of £;1(y), then we get;

by (y. ) = (1/det(v))py (¥s(y), ¥s(2)).

Proof. For a fixed t =T, we put f;ilp(y) = £ 1(y). Then

s

A

P () € A) = /A Py, 2)G(dx),
and

P(y; " 0 & oths(y) € A) = P61 (4s(y)) € $s(A))

1 (¥s(y), 2)G(dx)

/
_ /A P (04 (), 1 (@) G(din ()
/

Py (s (), ¥s (@) (1/det (15 1)) G (da).

Therefore, we get the result. U
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