ESTIMATIONS OF THE GENERALIZED REIDEMEISTER NUMBERS II

SOO YOUP AHN, EUNG BOK LEE AND KI SUNG PARK

ABSTRACT. This paper is a continuation of [1]. Let $\sigma(X, x_0, G)$ be the fundamental group of a transformation group (X, G). Let $R(\varphi, \psi)$ be the generalized Reidemeister number for an endomorphism $(\varphi, \psi) : (X, G) \to (X, G)$. The main results in this paper concern the conditions for $R(\varphi, \psi) = |Coker(1 - (\varphi, \psi)_{\bar{\sigma}})|$.

1. Introduction

F. Rhodes introduced the concept of the fundamental group $\sigma(X, x_0, G)$ of a transformation group (X, G), a group G of homeomorphisms of a space X, as a generalization of the fundamental group $\pi_1(X, x_0)$ of a topological space X in [6]. Recently, we gave a definition of the generalized Reidemeister number $R(\varphi, \psi)$ for an endomorphism (φ, ψ) : $(X, G) \to (X, G)$ and studied the algebraic computations of $R(\varphi, \psi)$ in [1] and [5].

This article deals with the problem of determining the conditions for $R(\varphi, \psi) = |Coker(1 - (\varphi, \psi)_{\bar{\sigma}})|$ as a continuation of [1].

Throughout this paper, the space X is assumed to be a compact connected polyhedron. In this paper, we follow F. Rhodes [6] for the basic terminologies.

2. Preliminaries

Let (X, G) be a transformation group and let $(\varphi, \psi) : (X, G) \to (X, G)$ be an endomorphism. Since $\varphi(gx) = (\psi g)(\varphi x)$ for every pair (x, g), if α is a path in X of order g with base-point x_0 , then $\varphi \alpha$ is a path in X of order $\psi(g)$ with base-point $\varphi(x_0)$. Furthermore, if two

Received December 29, 1997.

¹⁹⁹¹ Mathematics Subject Classification: 55M20, 57M05.

Key words and phrases: $(\varphi, \psi)_{\sigma}$ -equivalent, generalized Reidemeister number.

path α and β of the same order g is homotopic, $\alpha \simeq \beta$, then $\varphi \alpha \simeq \varphi \beta$. Thus (φ, ψ) induces a homomorphism

$$(\varphi, \psi)_* : \sigma(X, x_0, G) \to \sigma(X, \varphi(x_0), G)$$

defined by $(\varphi, \psi)_*[\alpha; g] = [\varphi \alpha; \psi(g)].$

If λ is a path from $\varphi(x_0)$ to x_0 , then λ induces an isomorphism

$$\lambda_*: \sigma(X, \varphi(x_0), G) \to \sigma(X, x_0, G)$$

defined by $\lambda_*[\alpha; g] = [\lambda \rho + \alpha + g\lambda; g]$ for each $[\alpha; g] \in \sigma(X, \varphi(x_0), G)$, where $\rho(t) = 1 - t$. This isomorphism λ_* depends only on the homotopy class of λ .

Conveniently, we denote by $(\varphi, \psi)_{\sigma}$ the composition $\lambda_*(\varphi, \psi)_*$.

DEFINITION. ([5]) Let $(\varphi, \psi)_{\sigma} : \sigma(X, x_0, G) \to \sigma(X, x_0, G)$ be a homomorphism. Two elements $[\alpha; g_1]$, $[\beta; g_2]$ in $\sigma(X, x_0, G)$ are said to be $(\varphi, \psi)_{\sigma}$ -equivalent, $[\alpha; g_1] \sim [\beta; g_2]$, if there exists $[\gamma; g] \in \sigma(X, x_0, G)$ such that

$$[\alpha; g_1] = [\gamma; g][\beta; g_2](\varphi, \psi)_{\sigma}([\gamma; g]^{-1}).$$

For an endomorphism $(\varphi, \psi): (X, G) \to (X, G)$, the Reidemeister number $R(\varphi, \psi)$ of (φ, ψ) is defined to be the numbers of equivalence classes of $\sigma(X, x_0, G)$ under $(\varphi, \psi)_{\sigma}$ -equivalence.

3. The estimates of the generalized Reidemeister number

In this section, we always assume that the group G is an abelian. Let $C(\sigma(X, x_0, G))$ be a commutator subgroup of $\sigma(X, x_0, G)$ and let

$$\bar{\sigma}(X, x_0, G) = \sigma(X, x_0, G) / C(\sigma(X, x_0, G)).$$

Then $\theta_{\sigma}: \sigma(X, x_0, G) \to \bar{\sigma}(X, x_0, G)$ is a canonical homomorphism such that $Ker\theta_{\sigma} = C(\sigma(X, x_0, G))$. Let $\eta_{\bar{\sigma}}: \bar{\sigma}(X, x_0, G) \to Coker(1 - (\varphi, \psi)_{\bar{\sigma}})$ be the natural projection. Then $\eta_{\bar{\sigma}}\theta_{\sigma}$ is an epimorphism.

THEOREM 3.1. ([5]) If $(\varphi, \psi) : (X, G) \to (X, G)$ is an endomorphism, then $R(\varphi, \psi) \geq |Coker(1 - (\varphi, \psi)_{\bar{\sigma}})|$, where 1 and $(\varphi, \psi)_{\bar{\sigma}}$ denote respectively the identity isomorphism and the endomorphism of $\bar{\sigma}(X, x_0, G)$ induced by (φ, ψ) . Furthermore, if $\sigma(X, x_0, G)$ is abelian,

$$R(\varphi, \psi) = |Coker(1 - (\varphi, \psi)_{\bar{\sigma}})|.$$

THEOREM 3.2. If the epimorphism $\eta_{\bar{\sigma}}\theta_{\sigma}$ induces a one-one correspondence between the set of $(\varphi, \psi)_{\sigma}$ -equivalent classes and $Coker(1 - (\varphi, \psi)_{\bar{\sigma}})$, then $[\alpha; g_1] \sim [\beta; g_2]$ implies $[\alpha; g_1][\gamma; g] \sim [\beta; g_2][\gamma; g]$ for any $[\gamma; g] \in \sigma(X, x_0, G)$.

Proof. Note that the $\eta_{\bar{\sigma}}\theta_{\sigma}$ images of all elements of a $(\varphi,\psi)_{\sigma}$ – equivalent class are the same element of $Coker(1-(\varphi,\psi)_{\bar{\sigma}})$, that is, if $[\alpha;g_1] \sim [\beta;g_2]$, then $\eta_{\bar{\sigma}}\theta_{\sigma}([\alpha;g_1]) = \eta_{\bar{\sigma}}\theta_{\sigma}([\beta;g_2])$ (See proof of Theorem 3.5 in [5]). Since $\eta_{\bar{\sigma}}\theta_{\sigma}$ is a homomorphism,

$$\begin{split} \eta_{\bar{\sigma}}\theta_{\sigma}([\alpha;g_1][\gamma;g]) &= \eta_{\bar{\sigma}}\theta_{\sigma}([\alpha;g_1]) + \eta_{\bar{\sigma}}\theta_{\sigma}([\gamma;g]) \\ &= \eta_{\bar{\sigma}}\theta_{\sigma}([\beta;g_2]) + \eta_{\bar{\sigma}}\theta_{\sigma}([\gamma;g]) \\ &= \eta_{\bar{\sigma}}\theta_{\sigma}([\beta;g_2][\gamma;g]). \end{split}$$

Hence from the assumption of Theorem, we obtain

$$[\alpha; g_1][\gamma; g] \sim [\beta; g_2][\gamma; g].$$

COROLLARY 3.3. If $(\varphi, \psi) : (X, G) \to (X, G)$ is an endomorphism, then the following statements are equivalent:

- (1) The epimorphism $\eta_{\bar{\sigma}}\theta_{\sigma}$ induces a one-one correspondence between the set of $(\varphi, \psi)_{\sigma}$ -equivalent classes and $Coker(1 (\varphi, \psi)_{\bar{\sigma}})$.
- (2) For any $[\gamma; g] \in \sigma(X, x_0, G)$, $[\alpha; g_1] \sim [\beta; g_2]$ implies $[\alpha; g_1][\gamma; g] \sim [\beta; g_2][\gamma; g]$.
 - (3) For any $[\alpha; g_1], [\beta; g_2], [\gamma; g_3] \in \sigma(X, x_0, G),$

$$[\alpha; g_1][\beta; g_2][\gamma; g_3] \sim [\beta; g_2][\alpha; g_1][\gamma; g_3].$$

Proof. For $(2) \Rightarrow (3) \Rightarrow (1)$, we refer to [1, Lemma 2.4 and Theorem 3.2]. Hence it is clear from Theorem 3.2.

COROLLARY 3.4. If one of the three statements in Corollary 3.3 holds, then

$$R(\varphi, \psi) = |Coker(1 - (\varphi, \psi)_{\bar{\sigma}})|.$$

Proof. From the first statement of Corollary 3.3, the proof is straight forward. $\hfill\Box$

LEMMA 3.5. ([1]) Let $(\varphi, \psi)_{\sigma} : \sigma(X, x_0, G) \to \sigma(X, x_0, G)$ be a homomorphism. Then, for any $[\alpha; g_1], [\beta; g_2] \in \sigma(X, x_0, G)$,

- (1) $[\alpha; g_1][\beta; g_2] \sim [\beta; g_2](\varphi, \psi)_{\sigma}([\alpha; g_1]).$
- (2) $[\alpha; g_1] \sim (\varphi, \psi)_{\sigma}([\alpha; g_1]).$

THEOREM 3.6. Let $Z(\sigma(X, x_0, G))$ be a center of $\sigma(X, x_0, G)$. If $(\varphi, \psi)_{\sigma}$ image of $\sigma(X, x_0, G)$ is contained in $Z(\sigma(X, x_0, G))$, that is,

$$(\varphi, \psi)_{\sigma}(\sigma(X, x_0, G)) \subseteq Z(\sigma(X, x_0, G)),$$

then

$$R(\varphi, \psi) = |Coker(1 - (\varphi, \psi)_{\bar{\sigma}})|.$$

Proof. It is sufficient to prove that the third statement of Corollary 3.3 holds. For any $[\alpha; g_1], [\beta; g_2], [\gamma; g_3] \in \sigma(X, x_0, G)$, from (2) of Lemma 3.5 and hypothesis of Theorem,

$$[\alpha; g_1][\beta; g_2][\gamma; g_3] \sim (\varphi, \psi)_{\sigma}([\alpha; g_1][\beta; g_2][\gamma; g_3])$$

$$= (\varphi, \psi)_{\sigma}([\alpha; g_1])(\varphi, \psi)_{\sigma}([\beta; g_2])(\varphi, \psi)_{\sigma}([\gamma; g_3])$$

$$= (\varphi, \psi)_{\sigma}([\beta; g_2])(\varphi, \psi)_{\sigma}([\alpha; g_1])(\varphi, \psi)_{\sigma}([\gamma; g_3])$$

$$= (\varphi, \psi)_{\sigma}([\beta; g_2][\alpha; g_1])(\varphi, \psi)_{\sigma}([\gamma; g_3])$$

$$= (\varphi, \psi)_{\sigma}([\beta; g_2][\alpha; g_1][\gamma; g_3])$$

$$\sim [\beta; g_2][\alpha; g_1][\gamma; g_3].$$

COROLLARY 3.7. ([1]) Let $(\varphi, \psi)_{\sigma} : \sigma(X, x_0, G) \to \sigma(X, x_0, G)$ be a homomorphism. If $\sigma(X, x_0, G)$ is abelian, then

$$R(\varphi, \psi) = |Coker(1 - (\varphi, \psi)_{\bar{\sigma}})|.$$

References

- 1. S. Y. Ahn, E. B. Lee and K. S. Park, *Estimations of the Generalized Reide*meister numbers, Kangweon Kyungki Math. Jour. 5 (1997).
- 2. R. F. Brown, *The Lefschetz Fixed Point Theorem*, Scott, Foresman and Company, Glenview, Illinois, 1971.

- 3. B. J. Jiang, Lectures on Nielsen fixed point theory, Contemporary Math., 14 Amer. Math. Soc. Providence, R. I. (1983), 1–99.
- 4. T. H. Kiang, *The theory of fixed point classes*, Science Press, Beijing, 1979 (Chinese); English edition, Springer-Verlag, Berlin, New York, 1989.
- 5. K. S. Park, Generalized Reidemeister number on a transformation group, Kangweon Kyungki Math. Jour. 5 (1997), 49–54.
- 6. F. Rhodes, On the fundamental group of a transformation group, Proc. London Math. Soc. 16 (1966), 635–650.

Department of Mathematics Education Kon-Kuk University Seoul 143–701, Korea

Department of Liberal Arts DaeYoo Technical College Sungnam 461–714, Korea

Department of Mathematics Kangnam University Yongin 449–702, Korea