The Preparation and the Gas Permeation Characteristics of the Soluble Polyimides

용해성 폴리이미드의 제조 및 기체투과특성

  • Chun, Kyoung-Yong (Department of Chemical Engineering, Yonsei University) ;
  • Kim, Han-Sung (Department of Chemical Engineering, Yonsei University) ;
  • Han, Hak-Soo (Department of Chemical Engineering, Yonsei University) ;
  • Joe, Yung-il (Department of Chemical Engineering, Yonsei University)
  • Received : 1998.01.07
  • Accepted : 1998.02.13
  • Published : 1998.04.10

Abstract

The soluble polyimides(PMDA/diamine/dianhydride) were prepared and investigated. After coating the prepared PMDA/diamine/dianhydride solution into the commercial tubular alumina ceramic membranes, gas permeation characteristics was investigated. $T_g{\prime}s$ of the polyimides were in the range of $337{\sim}358^{\circ}C$ and thermal stability was good. The polymer was soluble in NMP, DMAc, DMSO, THF, and m-cresol. The adhesion between the alumina membrane and the soluble polyimide was excellent. The soluble polyimide/alumina membranes containing 6FDA showed the highest permeability among others. The permeability of nitrogen of PMDA/1,3PDA/6FDA-alumina membrane was about $7.6{\times}10^{-7}(mol/m^2{\cdot}Pa{\cdot}s)$ in the gas permeation experiments. The ideal separation factor of $O_2/N_2$ and $H_2/N_2$ in PMDA/1,3PDA/6FDA-alumina membrane were 6.19, and 70.0, respectively.

용해성 PMDA/diamine/dianhydride 폴리이미드를 제조하여 특성을 고찰하고, 상용 알루미나 세라믹막내에 제조한 PMDA/diamine/dianhydride 용액을 코팅하여 기체투과특성을 알아보았다. Tg는 $337{\sim}358^{\circ}C$의 범위로 열적안정성은 우수함을 보였다. 용해성에 있어서는 NMP, DMAc, DMSO, THF, m-cresol의 극성 용매에 대해 대부분 좋은 결과를 보여 주었다. 알루미나막과 용해성 폴리이미드의 점착은 잘 이루어졌으며, 기체투과실험에 있어 6FDA를 포함한 폴리이미드의 경우 높은 투과도를 보였다. PMDA/1,3PDA/6FDA의 경우 질소투과도는 약 $7.6{\times}10^{-7}(mol/m^2{\cdot}Pa{\cdot}s)$의 값을 나타내었고, 질소에 대한 산소의 이상적 분리도, $P(O_2/N_2)$는 6.19였으며, $P(H_2/N_2)$의 경우는 약 70.0의 이상적 분리도를 보였다.

Keywords

References

  1. Macromolecules v.22 J. A. Moor;D. R. Robello
  2. J. Membr. Sci. v.37 T. H. Kim;W. J. Koros;G. R. Husk;K. C. O'Brie
  3. J. Appl. Polym. Sci. v.47 K. Matsumoto;P. Xu
  4. Mod. Plasat. Int. A. S. Wood
  5. Polym. J. v.21 Y. Oishi;K. Itoyo;M. Kakimoto;Y. Imai
  6. Polym. J. v.21 D. S. Lee;G. Quin
  7. J. Polym. Bull. v.16 L. Leung;D. J. William;F. E. Karasze;W. Macknigh
  8. J. Polym. Sci. Part A: Polym. Chem. v.32 T. M. Moy(et al.)
  9. J. Polym. Sci. Part A: Polym. Chem. v.33 J. P Gao;Z. Y. Wang
  10. Polym. Prepr.(Am. Chem. Soc. Div. Polym. Chem.) v.15 G. L. Brode(et al.)
  11. Macromolecules v.24 T. Matsuura(et al.)
  12. HWAHAK KONGHAK v.35 no.6 전경수;한학수;조영일
  13. J. Membr. Sci. v.111 Y. Hirayama(et al.)
  14. J. Memb. Sci. v.50 M. R. Coleman;W. J. Koros
  15. Macromolecules v.26 S. B. Rhee;J. W. Park;B. S. Moon;J. Y. Chang
  16. J. Polym. Sci., : Part B: Polym. Phys. Ed. v.27 S. A. Stern(et al.)
  17. J. Membr. Sci. v.13 T. H. Kim;W. J. Koros;G. R. Husk;K. C. O'Brien
  18. Polymer v.33 K. Tanaka;H. Kita;MOkano;K. Okamoto