Ni/KIT-1 촉매를 이용한 메탄의 이산화탄소 개질반응 연구

Carbon Dioxide Reforming of Methane over a Ni/KIT-1 Catalyst

  • 투고 : 1998.07.24
  • 심사 : 1998.09.22
  • 발행 : 1998.12.10

초록

농축상을 포함한 다원 반응계의 Gibbs Free Energy 최소화 계산을 수행하여 이산화탄소 개질반응에 대한 열역학적 분석을 수행하였으며, $Al_2O_3$, $La_2O_3$, ZSM-5, MCM-41, 그리고 KIT-1의 담체에 담지된 니켈 촉매와 상업용 개질 촉매 ICI 46-1상에서 이산화탄소에 의한 메탄의 개질 반응 실험을 수행하였다. 메탄의 이산화탄소에 의한 개질반응 열역학 계산은 $CH_4$, $CO_2$, CO, $H_2$, $H_2O$, C계에서 수행하는 것이 바람직하였고, 수증기나 산소의 첨가 효과는 이산화탄소의 개질 반응 기여도를 감소시키는 것으로 예상되었다. Ni/ZSM-5, Ni/MCM-41, Ni/KIT-1등 실리케이트 계열의 분자체 담체에 니켈을 담지시킨 촉매가 메탄과 이산화탄소의 전화율이 우수하며, 일산화탄소 수율도 높은 것을 알 수 있었다. 이산화탄소 개질 반응에 대한 코크의 침적은 칼슘 산화물을 첨가함으로써 감소되었으며, 10% Ni과 3% Ca를 담지시킨 Ni/Ca/KIT-1 촉매가 20시간 동안 $650^{\circ}C$ 이상에서 평형 전화율에 근접한 이산화탄소와 메탄의 전화율을 나타냄이 확인되었다. 또한 상대적으로 높은 공간 속도에도 우수한 활성을 나타내었다.

Thermodynamic analysis on carbon dioxide reforming of methane was performed using a computer program which can handle condensed species in the products, and the reforming experiments were conducted over $Al_2O_3$, $La_2O_3$, ZSM-5, MCM-41, KIT-1 supported nickel catalysts, and a commercial ICI 46-1. It was estabished that a system which consists of $CH_4$, $CO_2$, CO, $H_2$, $H_2O$, and C is appropriate for theoretical equilibrium calculations and addition of water vapor or oxygen was found to diminish the contribution of carbon dioxide in reforming. Silicate molecular sieve-supported catalysts such as Ni/ZSM-5, Ni/MCM-41, Ni/KIT-1 were effective for high $CH_4$ and $CO_2$ conversions as well as for high CO yield. Coke formation was suppressed when CaO was added as a promoter. Ni/Ca/KIT-1 which contains 10% Ni with 3% Ca showed conversion approaching equilibrium levels above $650^{\circ}C$ and maintained constant activity over 20 h. Despite increased space velocity, relatively high conversion and CO yield were observed.

키워드

과제정보

연구 과제 주관 기관 : 인하대학교

참고문헌

  1. New J. Chem v.18 M. Aresta;E. Quaranta;I. Tommasi
  2. Chemical Industry and Technology v.12 S. E. Park;J. S. Chang;K. W. Lee
  3. Appl. Catal v.61 J. T. Richardson;S. A. Paripatiyadar
  4. Chem. Eng. Sci. v.44 A. M. Gadalla;M. E. Sommer
  5. Chem. Eng. Sci. v.43 A. M. Gadalla;B. Bower
  6. Chem Lett. O. Yamazaki;T. Nozaki;K. Omata;K. Fujimoto
  7. Stud. Surf. Sci. Catal. v.84 J. S. Chang;S. E. Park;K. W. Lee;M. J. Choi
  8. J. Catal v.144 J. R. Rostrup-Nielsen;J. H. Bak hansen
  9. J. Catal v.141 A. Erdohelyi;J. Cserenyi;F. Solymosi
  10. Stud. Surf. Sci. Catal. v.81 K. Seshan;H. W. ten Barge;W. Halley;A. N. J. van Keulen;J. R. H. Ross
  11. Appl. Catal. v.145 J. S. Chang;S. E. Park;H. Chon
  12. Catal. Today v.13 P. D. F. Vernon;M. L. H. Green;A. K. Cheetham;A. T. Ashcroft
  13. Catal. Today v.21 Z. L. Zhang;X. E. Verykios
  14. Appl. Catal. v.144 T. Horiuchi;K. Sakuma;T. Fukui;Y. Kubo;T. Osaki;T. Mori
  15. Appl. Catal. v.31 K. Fujimoto;L. Shikada
  16. J. Phys. Chem v.100 R. Ryoo;J. M. Kim;C. H. Ko;C. H. Shin
  17. Stud. Surf. Sci. Catal. v.36 J. R. Rostrup-Nielsen
  18. Appl. Catal. v.138 Z. Zhang;X. E. Verykios
  19. J. of Korean Ind. & Eng. Chemistry v.8 S. S. Hong;J. S. Yang;B. K. Kim;C. S. Ju;G. D. Lee
  20. J. Catal. v.102 T. Mori;A. Miyamito;N. Takahashi;H. Niizuma;T. Hattori;Y. Murakami
  21. Catalysis v.5 J. R. Rostup-Nielsen;J. R. Anderson(ed.);M. Boudart(ed.)
  22. Energy Convers. Mgmt. v.33 K. Fujimoto;K. Omata;T. Nozaki;O. Yamazki;Y. Han