The Effect of Crystalline Type of Carbonaceous Materials on Performance of the Carbon Anode for Lithium Ion Secondary Battery

리튬이온이차전지에서 결정성 탄소재료가 탄소부극 특성에 미치는 영향

  • Kim, Hyun-Joong (Department of Chemical Engineering, College of Engineering, Dankook University) ;
  • Lee, Chul-Tae (Department of Chemical Engineering, College of Engineering, Dankook University)
  • 김현중 (단국대학교 공과대학 화학공학과) ;
  • 이철태 (단국대학교 공과대학 화학공학과)
  • Received : 1998.07.20
  • Accepted : 1998.09.18
  • Published : 1998.12.10

Abstract

We have investigated various kind of graphite and MCMB6-28 to develop carbon negative electrode for lithium ion secondary battery. The interlayer length of them was $3.358{\sim}3.363{\AA}$ and the BET specific surface area was $2.95{\sim}26.15m^2/g$. From this study, When the interlayer of them was large and the BET specific surface area was high, the electrochemical characteristics of them was very excellent. Adding 0, 3, 5, wt% of KJ-Black as conducting agent to various graphitic carbon active materials, interface resistance of electrode and electrolyte was less, but rechargeability was better at 3 wt%. At constant current charge and discharge test, discharge capacity was small according to large current.

본 연구는 리튬이온 이차전지용 탄소전극을 개발하기 위하여 다양한 종류의 흑연과 MCMB6-28을 대상으로 이루어졌다. 이들의 층간거리는 $3.358{\sim}3.363{\AA}$, BET 비 표면적은 $2.95{\sim}26.15m^2/g$이었다. 이들의 전기화학적 특성은 층간거리가 크고 적절한 크기의 BET 비 표면적을 가질 때 리튬의 삽입과 탈삽입 거동이 우수하였다. 다양한 결정성계 탄소전극 활물질에 도전재로 KJ-Black을 0, 3, 5wt% 첨가하였을 때 도전제의 함량이 많을수록 전극과 전해질의 계면저항은 작아지나 3wt%를 첨가하였을 때 우수한 가역성을 보였다. 정전류 충 방전 시 인가되는 전류밀도를 증가시킴에 따라 탄소부극의 방전용량은 작아졌다.

Keywords

Acknowledgement

Supported by : 단국대학교

References

  1. Allg. Che,. v.238 no.1 W. Rudorff;U. Hofmann;Z. Arorg
  2. Handbook of Carbon, Graphite, Diamond, and Fullerences H. O. Pierson
  3. Ullmann's Encyclopedia of Industrial Chemistry(5th ed.) v.5A O. Vohler;F. von Sturm;E. Wege;H. von Kienle;M. Voll;P. Kleinschmitt;W. Gerhartz(ed.)
  4. J. Electrochem. Soc. v.142 M. Winter;P. Novak;A. Monnier
  5. J. Electrochem. Soc. v.137 R. Fong;U. von Sacken;J. R. Dahn
  6. Lithium Batteries : New Materials, Developments and Perspectives J. R. Dahn;A. K. Sleigh;H. Shi;B. M. Way;W. J. Weydanz;J. N. Reimers;Q. Zhong;U. von Sacken;G. Pistoia(ed.)
  7. Proceeding of International Workshop on Advanced Batteries(Lithium Battery) v.1A-05 K. Sato;M. Noguchi;A. Demachi;M. Endo;Y. Sasabe
  8. Carbon v.32 H. Fujimoto;K. Tokumitsu;A. Mabuchi;T. Kashu
  9. J. Electrochem Soc. v.142 A. Mabuchi;K. Tokumitsu;H. Fujimoto;T. Kashu
  10. J. Electrochem. Soc. v.142 Tao Zheng;Yinghu Liu;E. W. Fuller;Shilla Tseng;U. von Sacken;J. R. Dahn
  11. PV 93-23 M. Fujinoton;K. ueno;T. Nohma;M. Takahashi;K. Nishio;Saito
  12. Phy. Rev. v.B62 J. R. Dahn;R. Fong;M. J. Spoon
  13. J. Electrochem. Soc. v.142 Yinghu Liu;E. W. Fuller;Shilla Tseng;U von Sacken;J. R. Dahn
  14. J. Power Sources J. O. Besenhard;M. winter;J. Yang;W. Biberacher
  15. J. Electrochem. Soc. v.141 D. Aurbach;Y. Ein-Eli;O. Chusid;Y. Carmeli;M. Babai;H. Yamin
  16. GDch-Monographite v.3 M. Winter;J. O. Besenhard;P. Novak
  17. Synthetic Marals v.31 Y. Maeda;S. Harada
  18. JCS Faraday v.1 no.76 J. Koresh;A. Soffer
  19. JCS Faraday X. Chu;W. H. Smyrl;L. D. Schmidt
  20. Handbook of carbon, Graphite, Diamond and Fullerenes H. P. Pierson
  21. Thermodynamic Contents of Inorganic and Organic Compounds M. K. H. karapet Yants;M. L. Karapet Yants