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Abstract

Full umover-based storage policy [FULL) is often used to minimize the travel fime needed fo perform i
storage/ retrieval operations in automated storage/retrieval systerns [AS/RSs). This paper presents an |
approach for defermining the required storoge capacity for a unit lood AS/RS under the FULL. An |
analyfic model is formulated such that the total cost related o storage space and space shortage is :
minimized while sotisfying a desired service level. To solve the model, some andlytic properties are
derived and based on them, an ilerative search algorithm which abways generates optimal solutions is
developed. To illusirate the validity of the approach, an application is provided when the standard
economic—order—quanfity inventory model is used.

1. Introduction

Automated storage and retrieval systems (AS/RS) have
been widely adopted in warehousing applications to handle
various materials in an effective way. A typical system
maintly consists of storage racks, storagefretrieval (S/R}
machines, conveying devices which link the system with
outside areas, and a controller. The systems are usually
regarded as highly specialized material handling systems
which require extensive mitial investments. In addition,
once constructed, it is difficult to medify the sysiem
structure such that new conditions are mel, Therefore,
issues of design in AS/RS are of considerable importance.

One of the important design issues, determining the
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storage capacity of the system. is being addressed m this
paper. The required storage capacity is defined as the
amount of storage space needed io accommodate the
materials to be stored in order to meet a desired service
level. The major factor that influences storage sizing is
the storage assignment policy used in the system. Three
kinds of storage assignment policies are usually addressed
in the literature. They are randomized storage assignment
{RAN), full turnover-based storage (FULL), and N-class
turnover-based storage {CN).

Assuming an identical storage size for the three policies,
Havsman et al[2,4] derived analytic expressions for the
system throughput, and show that significant improve-

menits in throughput are obtainable when FULL and CN
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are used. Later, Ko and Hwang[7] extended Hansman et
al.’s study by taking into account the storage space
required for each policy. However, in their study, the
storage space were determined without any consideration
of costs involved, Assuming dedicated storage assignment,
Kim[6] studied the problem of simultaneously determining
storage locations and space requirements for correlated
items in a mini-load AS/RS. Optimization of multi-class
dedicated storage layowt was addressed by Yang[!2]. The
objective of the study was to minimize the expected
single-command travel time. Rosenblatt and Roli[10]
presented a search procedure for finding the optimal
storage design which minimizes capital investment, space
shortage cost, and costs associated with storage policies.
Later. for a warchouse in a stochastic environment, the
major ¢lements that affect the required storage capacity
were examined using a simulation model by the same
authorsf 1 §]. Rosenblatt[9] studied four issues related 1o
Hie design and control of AS/RSs. One of the issues is
‘he determination of the items and the corresponding
nventory levels to be allocated 1o an AS/RS with limited
available space. Based on the probability of space
shortage, Francis et al.[3] presented mathematical models
of determining the storage capacities under different
storage policies. Other related research on storage sizing
ncludes those done by Mullen[8] and Bafna[l} where
seneral procedures that can be used in practice are
suggested,

A perusal of the literature shows that no research has
nvestigated as [0 how the storage capacity is determined
economically when space shortage is allowed meeting a
ziven service level. In this paper, we present a model for
determining the storage capacity such that the total cost
related to storage space and space shortage is minimized
while satisfying a desired service level for the FULL
storage policy. An application of the model 1© the
cconomic order quantity (EOQQ) inventory sysiem is
presenied with the investigation of the effects of demand

distribution and ratio of storage space cost to space

shortage cost on the storage capacity.

2. A Mathematical Model for Determining
Storage Capacity

In order to determine the required storage capacity for
the storage system. Francis et al.[3] present two different
approaches, a service-level approach and a cost-hased
approach. In the former approach, the total amount of
storage space is minimized withour exceeding a given
probability, & (0{z {1}, of a space shortagc occurring
{hereafier, we call it the shortage probability). If the
storage requirement is greater than the storage capacity.
2 space shortage cccurs. Under such conditions, the excess
space requirement is assumed to be met via leased storage
space. In the cost-based approach, the storage capacity is
determined to minimize the sum of the costs of owning
space and contracling space incurred by space shortage
without any consideration of the service level. In this
papet, in order to delermine the storage capucity we
present a hybrid one in which the total cost is minimized
subject to satisfying the service level required. The
approach may reflect real-world situations much betier
than the previous approaches.

Yet X and S{¢ ) be the random variables denoting the
aggregate inventory level of the system and the storage
capacity at the 1-¢ service level, respectively. Then, the

following holds :
PriX = 8egh=1-¢

Let X, i=1, ..., n, be a random variable which represents
the inventory level of item 1. In acwal warehousing
systems, the invemtory level depends on the inventory
model which specifies the reorder point and the ordering
quantity. In this paper, we consider the case where every

X, follows a uniform distribution as follows ;

X ~ Ufa, b), 1= 1..n
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One example of such a case is the system in which
the standard EQ() model with a being zero is applied to
all iems stored.

Throughout this paper, unless otherwise stated, items
are numbered in a decreasing order of b, values, X i
then expressed as a function of X5 and its storage level,
which is certainly influenced by the storage assignment
policy used.

We now present a model for delermining the economic
storage capacity which 15 large enough to accommodate
the incoming fuli pallet loads of items with a probability
not less than (1-¢ ). FULL is a kind of dedicated storage
policy in which items are assigned dedicatedly to storage
locations in an attempt to minimize the time required to
perform storagefretrieval operations. Therefore, in this
case, items with the larger ratio of their activity levels o
storage space are allocated preferably to the locations
closer o the IO point. In the unit load AS/RS concerned
in this paper. the ratio is referred to as ‘turnover

frequency’ and is given by
TE = d, /5 q,

where d, s, and g, are the demand rate, the space needed
to store a umit quanlity, and the maximum quantity that
can be stored for item i, respectively. If we assume that
¢q; is measured in a full pallet load of uniform size, then
s=1 and therefore TF, simply reduces to d/g.

Let £, be the shortage probability of item i Since X
is assumed o be uniformly distributed with the probability
density function hix)=/(b-a) for a <x =<b, the shortage
probability can be expressed as

JBi = Pr(Xi>qi) = Pr(Xi>a;+(] 'B;)(bi‘ai))-

Then, because of the statistical independence among the
distributions, the probability of no shortage occurring for

any item is given by

Pr(no shortage in the system) = H(I-,B ). {hH
=1

The probability is the overall service level of the
system. Of course, the service level can be defined in
different ways, One example is to achieve 100{l-v )%
service for each item. However, in order (o cxamine the
performances of storage policies on the same basis, the
service level should reflect the overall system as is given
by (1).

Now, we want to determine the minimum amount of
storage space required to provide the desired level of
assurance so that the resulting shortage probability will
not be greater than ¢ . Let w=brg, for all i. Here, for
convenience number the items such that w,=w . i=1..

n-1. Then, the storage capacity becomes
M
Sz )= I (a'l"'wi(l 'JB l))
I
It this case, the expected amount of space shorlage per

unit time will be

b
Ee)-3 | . Iasw (6] i,

=1 I aw-F,

n
S wh

where the probability density function, h(x}=1/w,. There-

fore, the total cost is given by

TC(e ) =xS{e MrEl7 )
" i .
=il (g 4wl SR LS W) wiﬂ /2
i=1 =1

n n
=k I g+ w)- (20 I w,
i =

1

+(\2) f wik-B ¥

where X =discount present worth cost per umil storage
space owned and operated for unil time,
A=discount present worth cost per unit leased

space or per unit of space shortage for a finite
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planning period,
ard
A=Ak,

If we consider only the variable part, the third term of

th: total-cost function, the problem reduces 1o

R
(P1) Mininimize I wix-§ ¢

=

subject to I[(1-8)=>1-a

0=§ =y, i

where u, is a common upper bound of shortage probabilicy
which holds the inequality, (l-u,}">1{-¢ . This model
se2ms to be a complex nonlinear program whose optimum
cannot be easily determined

Substimting ¥ =-in{!-# ) into {P1} vields the equivalent

program:

L]
(P2} Minimize I wi{h-14e2i)
i=

"
subject to Iy =-In{l-@ )
=l

i=

D=y, =u, Vi {2)
where u =-In{1-u,).

Theorem 1. Let g(y) = (A-1+¢v)2 Then, gly) is
convex over Y, = 0 for A=1 and 0<y,
<-In((1-302) for QAL

Proof. If we take the first and second derivatives of
gy ) with respect to Y, we obtain
gry = 201 +e’het
and
gy = 201 +2e T et

Ef A=1, it is obvious that for any Y (=0

8"y ) =0 which is the necessary and suffi-
cient ¢ondition for the convexity of giy ). If 0
<AL, the condition is equivalent to the follow-
ing inequality

AL+2e¥ iz,
Solving for (v, with (2) gives

0=y, <-In{(l-A)2).
This completes the proof.

Note that the minimum value of -In{(1-A)/2) is -In{0.5)
at A= 0. Since u <-In(0.3) assuming w, <05 (this
assumption may be justified for most real-life situations).
the convex region defined in Theorem 2 meets the
constramts (2), In addition, it should be noted that the
minimum peint of g(y ) lies at Y =-In(l-A) which is
certainly less than -In{(1-A¥2) for all O{ACL.

Theorem 2. g'(y ) is nonpositive and concave over v,
20 for A=1 and 0=y Z-In(l1-A) for 0
HT4N

Proof. The third derivative of g(y .} with respect o v,
will be
gUy )= 2n-1+det et
If A=1, then g(y ) <0 and g""(y } <0 for
any y; =0 Thus, g'(y,) is nonpositive and
concave over Y, > 0 for X, = 1. If OCACY, the
condition that g”’(y ) is nonnegative should be
Al+de iz 0.
Solving for y, with (6) gives
0=y, < -In{(1-A)/4).
It follows that g'(y ) is concave over 0=y =
-Inf(i-A)4) for QL.
Finally, since A-1+e” ' >0 for
0 <y, < -In(l-A), and -a((1-A) < -In((1-A)/4)
for 0CA(1, g'(y ;) is nonpositive and concave
over 0<y <-In{1-A} for ORI,
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3. A Constrained Convex Problem

Now, in order to deal with a class of similar problems,
we consider a constrained convex problem formulated in

a general way as follows:

"

(P3) Minimize Z = E &f(x;) (3)
L

subject to ; XxEn (4)

I<xy=r Vi (5)

where ¢lc, >c i{j,rand r (r, > by are positive
constants and f(xi) is a nonnegative convex function of x;
over 0 < x; < max(x, r;) whose mirimum lies at

% = %0 Vi We also assume that £'(x;) is nonpositive
and concave for 0 = x, = x.

Since equation (3) and the region defined by constraints
{4) and (5) are both convex, (P3) is a separable convex
program. Then, excluding the feasibility conditions, (4)
and (3), the Kubhn-Tucker necessary conditions [14] for
the optimal solution of the reduced problem will be

I CARSTIAS I | i (6)
p&—ng:O %)
vin-x) =0 (8)
1% =0 ©)
pE0, v <0 .50 Ji (10}

where {'(x;) = the first derivative of f(x) and ¢, v, and
1, = Lagrange multipliers. Notice that since the problem
is convex, the Kuhn-Tucker conditions are also sufficient
for the optimality. The following Theorems (3} and (4)
pave the way to solving the equations (6} to (10),

efficiently,

* . .
Theorem 3. Let, x,, i=1,..,n be the optimal solu-

tion of (P3). Then, x; § are nonincreasing,

as is given by

(}:x;=x:_,=.,,=x;£x;_,£ Sx;=_r:_,
=,..=xT=min(xn. Ia) (11
k*Cl l,..,n and f= 12, 0+l

where Jn. and x.

2 4re dummy variables.

Proof, Let p * v I* and r}; for all i be the solutions

of equations {6), {7), ..., (10).

Case 1: {r; < min(x,, r./m))
In [h;s case, every ¢f(x;) is swrictly decreasing and
thus I T K will be always equal to r, for 0 < x, < r.
Hence g =0 and o minimize Z each x, has o
be increased up to r.. Then the optirnal solution
will be x =r, v —cf’(ra) andr] =0 ¥i. Nowe
that this is 2 special case of (11} with £ = n.

Case 2 : (xa <r1/n and )
Since %, < n/n and r, x;= % is feasible for all i.
Thus, the optimal solution is certainly x;= %, and
piov : =1 -:= 0 i, which is also a special case
of {11y with &£ = n.

Case 3: (r/n {x<r)
Since r/n { % and ) x,, we get xi‘ < x 7ioand
the constraint (4) should be bounded, which implies
p (0. In addition, it follows from (8) and
x-r < xui{n Vi vi*= 0 Vi Therefore, the op-
timal solutions x; and § * can be obtained by
solving equations (6), {7), and (9, simultancously,

ie.,

pU=cf+n; Vi (12)
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n-3%x = (13)
x = 0. (14)

If n; {0, then from (14) x; = 0. Similarly, if
x-:}O, q; = 0. It follows that for a given p*, if
there exists a value xi* such that p - cif'(x;) for
0{x; (x, then 7] = 0 and thus, x; » 0; Otherwise,
[T ¢f (x:} and therefore 1 : {0 which resulis in

x: = 0. Solving equation (12) for x-l* gives
X = -1((p " - i),

Here, for any 1 <i(j<n, ¢ ¢ and P(x) is

nonpositive and concave for 0 < x, < X,, we have
¥ *
0<% £x<{® (13)

for an optimal value p : {0and 7 T = 0. Finally
since from (12) it is obvious that 1 : is decreasing
as i increases, the optimal soultion satisfying {I3)
will be
0=x:=x = ...=x; éx;_, <. Ex <m,
I=1,2,..,n+l

which is 2 special case of (11) with £ = 0.

Case 4: {t/m<n< %)
Since r/n{r, and r<x, in order to minimize Z
the constraint (4) should be bounded. Alse, p has
to be less than zero assuming 1< %, Now, for a
given value p (0, let t, and t, be the indices such
that for 0 ¢ x; in

efa(p’  ifl<i<y

efo)p”  ifugign

Then, for 1<i<t, from (6) the following should
hold

vi-n, (0. (16)

if x; =1, thenr}; = ( from (9) and hence cqua-
tion (16) always holds., On the other hand if
0¢x; (r, from (8) and (9) v = 7, = 0, which
contradicts equation (5). A similar argument can
be made for the case of L <1< n where the

following condition needs to be salistied
vi-ni)0 (7

In this case, if 0¢ x: =1, then equation (17) is
obviously not satisfied as derived above. However,
if ";: 0, V: ={), from (8) and thus eguation (17)
always true. Finally, when ¢;f" (x;) =q ‘, o< x: 4T
with v I* =1 ;= 0. Note that case 4 is a typical one
of (11) with =k, =4, and the right hand side
term being 1, This completes the proof.

1t follows from Theorem 3 that the optimal solutions
are of the form, either the trivial one such as x: = [{OrX.)
or the general one, 0 = x: = x:_, = .= xréx:,s,,,i'
x; = x:_, = ..= 1 = 1. Therefore. 1o find the optimal
solutions for the trivial cases we need only to check the
relationship between the known constants, r, r., and x,.
However, for the general case, we have to first find the
optimal valoe of the Lagrange variable, 2 * and then the
corresponding optimal solution is obtained using it as is
given by

X, = 0, if PP
S, ifef o) (pt
.
1

x = f(p */c;), otherwise,

X

Fig.] show a typical example of this case.
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. L3
X3 X; 0

P'i. =¢,fir,)

\

uh = f10) {

Xo

¢ fix)
e, f{x,;)
¢, f{xy)
¢, fix,)

{x; =r,and x, =0 for k =4, ,n)

Fig. 1 A typical example of case 4.

Theorem 4. Let x; be the one that satisfies equation
i
{6). Then, I x is nondecreasing over
=1
p =0

Proof, Since f{x;) is assumed to be nonpositive and
concave for 0 < x; € xx; = ({1 + v -1 i)
is nondecreasing as P increases to O for each
1,. Therefore, the sum of xs, fj % 15 also

nondecreasing over g <0.

From the foregoing analysis, we know that determina-
tion of p * satisfying the constraints {6) wili automatically
determine every x; in turn for the gemeral case. This can
be easily done by using any search procedure such as the
binary section method or the Fibonacci search method[3].
Here, we propose an efficient search procedure which is

mainly based on the latter one.

Step {: (Problem Type Check )
If {r: = min{x.r/n)), then x:= r- Vi and stop.

If (x, < r/nand x, < r.), then x; =% Vi and stop.

Otherwise, proceed to step 1.

Step 1: {inilialization)
Let F, be the j-th Fibonnacci number which is given
by

F = (/5" -1 -3y, =012

where [x] means the largest integer which is not
greater than x. Denote £} and p the initial upper
and lower bounds of p which are respectively defined

a5

P‘;, = lel(o)s
b ]u = ¢ fin) if =1
= {), otherwise.

Let J be the smallest integer satisfying F, = ip -y )

where ¢ 15 a required accuracy of the solution.
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Step 2: (Initial Solutien »
Find the following interior points
ui= FF) R, -p+1y and
Bh= FF @ -E+iy

Determine the row vecior
[ — 1 i | L _
Y p - (Y p|{p p)! "y Y P“(P lp])‘ p - l‘ 2 Whm
Y pillt 5y = min[max(0, £ fe;p), rl,
i=1,..,n (18}
Set the jteration index, j = 1 and go to siep 4.

Step 3: (lieration >
Set
e (B, /P )l -ph+n)
and (for Case 2 and Case 3) / or (for Case 1)
pl= B /F, )@ -a)+p)

The definition of each case is given in Step 4. Using
equation (18), find H and/for yJ with pf = p{), p=12,
respectively.
Step 4: (Evalvation;
" - - L3 . .
Case DI 2 yheh{nad 2 yLi@hory
=1 i=1 "
then set }IL'“: PJ }JJ;+I= PJ;, P'I:I =.U{,
or pift=pd pltapl pl-pl
3 . . H - .
Case 2)If £ yL (oo and I v} YT,
=l i=1 !
o " .
then set pi7=pdand pf = pi.
H . . 14 . .
Case ) If I yL(phy{rand I yL(ph{y
=1 i=1 ’

then set pj;f' = ,UJ]Il and p%:' = P*

Step 5: (Termination Test)
I piopl? <o | then set pr = (uif-pithra,

compute the optimum y *( *), and stop: Otherwise,

set j = j+! and go to siep 3.

Note that the above general procedure guarantees an
exact optimum since there must exist a unique p * when

nm{x and

4, Optimal Solution of the Storage Capa-
city Problem

Our problem (P2) can be solved by using the above

solution procedure with the following substitutions:

C, = W,
xi = Y i
fix) = (=147,
= -(l-e ),
T = l.l}.,

and
%y = -In{I-X).

The only thing left is to determine
x, = (i) Vi

for a given p. Substituting the relating variables into
equation (18) and rearranging it, we obtain
Teele? epiaw, = 0.

Solving for vy, yields

Y= -In((l-A * \.f(l—)\)z—Zjl W) f2).
Since p = 0 and 1-A{\/(1-RY - 20 fw,

for any A, the only feasible solution is

y; = ((1h+ 0020w 1)

Considering the constraini (5), the feasible solution for
a given p will be
Y (2) = min(max{0,y ;). u,. ).



5. Application to the EOQ Model

In this section, the storage capacily models developed
thus far are applied to the AS/R system in which alt items
are ordered based on the standard EOQ inventory model.
In this case, inventory level is uniform beiween ai and
bi such that

a=0andb = 264)" Vi (19

Where & is the ratio of ordering cost to holding cost
of item i, which is assumed, for simplicity, to be constant
for all items.

To investigate the effects of various item demand rates
on the storage capacity, we represent the demand rate of
item 1 by the function
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truncated geometric probability function which is assumed
to approximate the ABC curve of the inventory items.
From (19} and (20), the maximum storage requirement

of item i will be:
b=[2 Dep(1-p) 1 (1 - (L-p)™) ™

Note that in this case, the inventory level of item i,
X,, can be considered to follow the uniform distribution,
UOb} and w; = b, for all i

In order to examine the effects of change in item
demand rate on the solution pattern and the storage
capacity, example problems are solved under the following

conditions:

n=10, D= 100, =1, ug= 005, @ = 0.1,

h=1, %=01, 1, 10, 50,
p=0.0075, 0.0443, 0.1088.

[ =
n

= Difd

Dop(1-p} (1 - (1-p)")

i=l..,n {20) Table 1 lists the summary of the optimal solubions.
From the Table, the following observations can be made:
where D, and p are the total demand per period measured
in full pallet loads and the shape parameter of the i) The obtained solutions behave exactly following
distribution, respectively. Note that £{i) in (20) &5 a Theorem 3 where the general form of the optimal

Table1. The optimat values of and their corresponding storage capacities.

P 0.0075 (.0448 0.1088
A 10 1 0.1 0.02 10 1 0.1 0.02 10 1 0.1 002
B, 0.0248 | 0.0188 | 0.0118 | 0.0106 | 0.0500 | 0.0500 | 0.0187 | 0.0114 | 0.0500 | 0.0500 | 0.0278 | 0.0127
E. 0.0215 | 0.0169 | 4.0115 | 0.0106 | 0.0367 | 0.0367 | 0.0168 | 0.0112 | 0.0500 | 0.0405 | 0.0238 | 0.0123
g, 0.0181 | 0.0151 | 0.0112 | 0.0106 | 0.0184 | 0.0164 | 0.0152 | 0.0110 | 0.0027 | 0.0125 | 0.0197 | 0.0118
B. 0.0147 | 0.0132 | 0.0109 | 0.0105 | 0.0000 | 0.0000 | 0.0133 | 0.0108 | 0.0000 | 0.0000 | 0.0153 | 0.0113
B, 0.0113 | 0.6114 | 0.0106 | 0.0105 | 0.0000 | 0.0000 | 0.0115 | 0.0106 | 0.0000 | 0.0000 | 0.0107 | 0.0108
B, 0.0079 | 0.0095 | 0.0103 | 0.0105 | C.0000 | 0.0000 | (.0096 | 0.0104 | 0.0000 | 0.0000 ; 0.0058 | 0.0103
B, 0.0045 | 0.0076 | 0.0100 | 0.0104 { 0.0000 | 0.0000 | 0.0077 | 0.0101 | 0.0000 | 0.0000 | C.0008 | 0.0097
B. 0.0011 | 0.0058 | 0.0097 | 0.0104 | 0.0000 | 0.0000 | 0.0058 | 0.0089 | 0.0000 | 0.0000 | 0.0000 | 0.0091
B, 0.0000 | C.0039 | 0.0093 | 0.0103 | 0.0000 | 0.0000 | 0.0038 | 0.0097 | 0.00CC | 0.0000 | 0.0000 | 0.0085
By 0.0000 | 0.0020 | 0.0090 | 0.0103 | 0.0000 | 0.0000 | 0.0017 | 0.0095 | 0.0000 | 0.000C | 0.0000 | 0.0078
Sle,) | 44248 | 44248 | 44.248 | 44249 | 44123 | 44.124 | 44.142 | 44.154 | 43.563 | 43564 | 43.503 | 43.652
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solutions are piven. For example, when p=0.1088
and A=10, the solution certainly has the general form
(case 4) with k=2 and =4. Also, when p=0.0075
and A=19, the solution belongs to case 3 with =0
and =9.

2} As the value of demand distribution parameter p

—

increases, the shortage probability gets bigger for the
highly frequent items such as item | and 2. Also
observed is that the number of items having nonzero
shortage probability becomes smaller. This implies
that the higher shortage probabilities need to be
selectively assigned to high turnover-frequency items
when the skewness of demand carve becomes larger,
3) The effect of A on the shortage probabilities for each
item appears to be significant. Especially for the
highly frequen! items, the shortage probabilities
dramatically increase as the value of X gets larger,
which is intuitively expected from the beginning.
4y As the skewness of the demand curve increases, the
required storage capacity seems to decrease. The
same observation can be made for the change in A
However, their effect on the storage capacity is not

significant

6. Conclusions

This paper considers a storage sizing problem of a unit-
load AS/RS under the dedicated storage policy, the full
urnover-based assignment. We first formulate the problem
as a nonlinear optimization model. For the model, an
iterative search method is suggesied to determine the
optimal storage capacity such that the total cost of storage
space and space shortage is minimized while satisfying a
given service level. In the model, inventory levels of
storage items are treated to be statistically independent
random variables each of which follows a uniform
distribution. Due to the dynamic conditions and statistical
dependence among items thai typically exist in real

situations, it is very difficult to determine exactly the

storage requirements. Therefore, where possible, the
distribution of the aggregate storage requirement shouid
be developed directly from the historical data.
Nevertheless, we believe that the results obtained using
the statistical approach presented here can be used in
determining beounds or approximations for the first-cut
design of the siorage. In addition, since the previous
research on storage sizing is very limited, the suggested
approach could be a fundamental basis for further studies

in this area.
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