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State Transformations for Regenerative Sampling in Simulation

Experiments

Yun Bae Kim*

{Abstract

The randormess of the input variables in simulation experiments produce output responses which are also
realizations of random variables. The random responses make necessary the use of statistical mferences to
adequately describe the stochastic nature of the output. The analysis of the simulation output of non-termmating
simulations is frequently complicaied by the autocorrelation of the output data and the effect of the initial
conditions that produces biased estimates.

The regenerative method has been developed to deal with some of the problems created by the random nature
of the simulation experiments. It provides a simple solution to some tactical problems and can produce valid
statistical results. However, not all processes can be modeled using the regenerative method. Other processes
modeled as regenerative may not retum 1o a given demarcating state frequently enough to allow for adequate
statisticat analysis.

This paper shows how the state transformation concept was successfully used in a queueing model and a job
shap model. Although the first example can be analyzed using the regenerative method, it has the problem of
too few recurrences under certain conditions. The second model has the problem of no recurrences. In both cases,
the state transformation increase the frequency of the demarcating state. It was shown that time state transformations

are regenerative and produce more cycles than the best typical discrete demarcating state in a given run length.

1. Introduction

Simulation is a technique often used for the study of large
andfor complex systems. Simulation modeling and analysis is
usually used when systerns cannot be adequately studied
analytically. The effects of some variables of the simulation
model are generated randomly from statistical frequency
distributions. The randomness of the input variables produce
output responses which are also realizations of random
variables. The random responses make necessary the use of
siatistical inferences—such as confidence intervals—to ade-

quately describe the stochastic mamre of the outpul. The

analysis of the simulation output of non-terminating simulations
is frequently complicated by the autocorrelation of the output
data, as well as the effect of the initial conditions that produces
biased estimates. Some tactical issues that the simulationist has
to address are how 1o start the simulation, when to begin
collecting data, how long 10 rue the simulation and how fto

deal with the highly correlated output.
2. The Regenerative Method

The regenerative method hias been developed to deal with

some of the problems created by the random nature of the
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simulation experiments. It provides a simple selution to some
tactical problems and can produce valid statistical results,
However, not all processes can be modeled using the
regenerative method. Other processes modeled as regenerative
may not return to a given demarcating state frequently enough

for adequate statistical analysis (Crane & Iglehart 1974).
2.1 Regenerative Processes in Discrete Time

A sequence {X, n=1} of random vectors in k dimensions
15 a regenerative process if there is an increasing sequence 1
<alad ..
epochs, such that at cach of these epochs the process starts

of random discrete times, called regeneration

afresh probabilistically according to the same probabilistic
structure governing it at epoch «,.

Let S, represent the state of the system at time T, Suppose
that the system starts at time 1, and Jet T, denote the time at
which the k® return to state 5, occurs. We define the k* epoch
as the period between returns k-1 and k to state S, {Fishman
1978). If the state behavior in each of the k epochs is
independent from the others and each obeys the same
probability law, then we say that the process is regenerative.
Given a sequence of regeneration times, {T,, T.... T.} with
observed sums of a performance measure {7, Z,..., Z,) and

number of observations [N, N,,...N,}, mathematically,

4= Dy (1)
E

where D, is the observation for the performance measure of

the j occurrence in the i* cycle.

Further, the sequence {Z, Z.... Z} of k, Lid. random
varizbles is called a renewal process. Regenerative processes
can thus be analyzed through the application of classical
statistical analyses {Law and Kelton 1982).

2.2 Regenerative Processes in Continuous Time
A regenerative process {X(t), t=0} in m dimensions is a

stochastic process which starts afresh probabilistically at each
clement of an increasing sequence 0¢ £,{ 5, of random epochs

on the time axis (0, @ ). Thus, between any two consecutive
regeneration epochs A and B,,, the time spent in state X(1),
{X(t), B=t{§ ], is an iid. replicate of the time between
any other twe comsecutive regeneration epochs (Crane and
Lemeine 1977).

Let 7, = 8, - &, j21. Then the sequence {r, j=1}
represents the time spans between consecutive epochs of
regeneration and is a sequence of i.id. random variable.

Just as with regenerative processes in discrete time.
regenerative processes in continuous time alse have limiting or
steady-state distributions. Let f: ®¥— R (a function in k
dimensions taking real values) and suppose the goal of the
simulation is to estimate the value of r =E{f(x)}. For jz 1.
ler

Z, = | B fatonde

that is, Z; is the integral of f(x(1)) over the * regeneration
cycle. The following resnits are analogous to the discrete case.
The sequence {(Z, ), j=1} consists of i.id. random vectors.
If B} [fx)]| )€z, then, r=E(f(x)) = E(Z)E(z ). If we denote
by . t,....L, the time points in the interval § to A, where
the process has a change in state and we let t, = £ and 1,
= f., then,

[ F]

Z

[ 3 fxlende

i}

r

2.3 Demarcating State Transformation as an Alternative

The regencrative method, as used in stochastic simulation,
allows for data collection at the eniry times to a single recurrent
state of the process of interest. In order to implement the
regenerative method a specific state to which the system retums
has to be chosen. The system has to return to this state enough
times during the simulation to yield good estimates. An
example of such a state is empty and idle. Every time the
sysiem reaches the empty and idle state the system is known
to restart afresh probabilistically. The main problem is that
very few systems return to the empty and idle state frequently.
Therefore, it is desirable to have other demarcating states that
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yield better statistical results.

The concept of state space transformations can also be
applied to simulations in which the behavior of the existing
recurrent states is already acceptable. Here, a transformed state
can be used 1o produce more regeneration cycles in a fixed
run length. This transformed demarcating state, that can be
derived as a function of an actual demarcating state of the
system, is a time lapse. The time lapse is the discrete or
centinuous time spent in a specific state,

Furthermore, few systems can be modeled as regeneration
processes because they do not return fo specific states.
Therefore, the system states have io be approximated. Crane
and Iglehart{1973) proposed four approximations to the
regenerative method that allow the analyst 1o deal with this
problem.

This paper shows how the state transformation concept can
be successfully used. Although two of the models can be
analyzed using the regenerative method. the problem is that it
vields toe few or zero retun to the regeneration state under
certain conditions. The state transformation used increases
recurrence of the demarcating state. For all models it was
shown that time state transformations are regemerative and
produce more cycles than the best typical discrete demarcating
state in a given run length. Therefore, it is an altemnative
procedure  which can produce substantial savings in the

simulation of stochastic processes.

3. Relevant Studies

In his theory of recurrent events, Feller (1950} studied
stochastic processes, X, in discrete time in which a certain
type of megenerative event is found. This evemt, R, is
characterized by the property that if it is known that R happens
at t = t, then further knowledge of X for all t<t, has no
predictive value. Feller restated the analytic content of the
convolution equations which served as a basis for the theory
of recurrent events.

Smith (1953) expanded on Feller's work and developed a
theory of regenerative processes applicable to continuous time

stochastic processes. Smith (1958) presented a theoretical

description of regenerative stochagtic processes. Miller (1972)
complemented Feller's work regarding non-lattice distributions.
Crane and Iglehart (1974) introduced remewal theory in the
analysis of simulation of stochastic systems in the steady-state.
They presented regeneration as a step toward avoiding the
problem of statistical dependence and the effects of inirial
conditions in simulations of stable stochastic systems. In their
second paper Crane and Iglehart (1974) demonstrated that the
choice of the starting state of regenerative simulations has no
effect on the expected length of the confidence interval. In
their third paper, Crane and Iglehart (1975} extended the
regenerative method to discrete event simulations, characterized
as a sample path realization of two-vector stochastic processes
{Tit): 120} and {Z{t): t=0} that change state at a finite
number of event times 0<t{1.{... generated in the course of
the simulation. Crane and Iglehart (1975) presemted four
approximation techniques for obtaining confidence intervals
when the simulation does not contain the required renewal
Process.

Gunther and Wolff (1980 presented the almost regenerative
method applicable to processes not having the regenerative
property. Igiehart (1975) evaluated 2 variety of point and
interval estimators which can be used in conjunction with the
regenerative method.

Iglehart {1976} and Seilz (1976} worked on the estimation
of quantiles of the stationary distribution of regeneration
processes, Seila {1982) used the batch quantile method in which
a simalation run is divided in batches and the batches in cycles.

Fishman (1977) and Lavenberg and Sauer {1977) dealt with
sequential stopping rules for regenerative simulations. Fishman
used the Chow-Robbins sequential estimation procedure and
the Shapiro-Wilk test for the normality test.

Heildelberger and Lewis (1981} exploited two aspects of the
regenerative structure of the simulated process combining them
in a graphical picture of the bias structure that can be obrained.
Meketon and Heildelberger (1982} derived a new point estimate
which they claim reduces the bias. Lavenberg, Moeller and
Saucer (1979) investigated using muitiple concomitant control
variables to reduce the width of confidence intervals when

estimating steady-state response variables via the regeneralive



92 Yun Bae Kim: State Transformations for Regenerative Sampling in Simulation Experiments

method.

4. Methodology
4.1 Development of State Transformations

The use of transformations as a tool 10 help in the design
and analysis of stochastic problems had been accepted m the
fields of statistical analysis and experimental design for a long
time (Box, et al. 1978}, This paper is based on an extension
of this concept to the regenerative method in simulation (Crane
& Iglehart 1975).

1) Complete State-Space Discretization

Since the problem is that the input random varizbles are
continuous and therefore the waiting times are also continuous,
one altermative is to modify the generated interarrivals and
service times m such a way that they are discrete distributions.
Using this approximations the interarrival and service times
could only take on values {0, 8,26 36} for some &30,
& represents the size of the discrete interval. This will cause
the wailing times to be restricted to take on values {0, &, 2
&, 34...). This should result in enough regeneration points,

The cheice of & will affect the accuracy of the approxima-
tion and the estimates, The smaller the value for &, the betser
the approximation will resemble the original process. However,
if the values for & are o small too few cycles will be
generated.

2) Partial State-Space Discretization

The second approximation dees not modify variables, but
rather modifies certain values for the waiting times. Whenever
the waiting time falls in a “trapping interval” [S- £, S+ ¢), the
waiting time is set equal to S,

Mathematically this can be expressed zs,

W, =40 if W0
W o= W if W8 ¢or WzSte
or, W.=35§ if W,=§-¢ and W, <S8+ ¢ {7)

Therefore the only discretization necessary is in the
neighborhood of 8. Since €20 it can be shown that the
expected time to retumn to the trapping interval is finite for
any S. As expected, the smaller the value for e, the closer
the approximation is to the actual process and the better the
estimates will be. Moreover, if ¢ is 100 small too few cycles
will be generated.

3) Stochastic Bounding

In this case we will approximate the process in such a way
that the final resuit will be a confidence interval of the real
process. In this case we define two modified waiting time
estimates, W' and W*

W.o=10 if Wz,

W o= W, if W.28+¢ or W<8§-¢

W o= §-¢ if W28-¢ and W,<8+ ¢ (8
And,

W' = 0 if W20,

W' o= W, if W,=8+¢ or WS¢

W o= S+ ¢ if W,z5-¢ and W <8+ ¢ Q)

It can be shown that E(W)<E(W)<E(W"), therefore we
can form a confidence interval for the real process by taking
the limits of the two medified processes the following way.

Let L'<EMW)<U" be a confidence interval for the first
approximation, and L” <E(W”}<U" be a confidence mterval
for the second approximation. We can combine both intervals
1o obtain, L' <E{W)<U", a confidence interva! for the actual
process.

Since the actual process is being estimated, how the width
of the trapping interval influences the estimates is of no
concern. However, this approximation requires two simulation

nmns,

4) Approximate Regeneration Times

This case is a special case of the partial state-space
discretization, where the observation that lies within the
wapping interval is not moedified to take the value S, As we

can see there is no modification of the state space. However,
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the times «(S$), at which the value of W, returns to the trapping
interval are not regeneration times for the process because they
do not result in identically distributed blocks [Crane & Iglehart
i975). Furthermore, the observations taken om of the
regeneration cycles less correlated. This comelation decreases
as the value for ¢ decreases.

This technique yields approximate confidence intervals
because the observations are treated as iid. random variables
when they are not. However, if the analyst is able to keep the
correlation low and a large sample size {number of cycles) is
obtained, the method will give accurate estimates.

For implementation purposes the classical regenerative
method and the partial state-space discretization approximation
have been chosen. The major goal is to compare the classical
method with one of the approximations describe above,

The partial state-space discretization was chosen because it
appears to yield the best estimates while it also has some other
convenient characteristics, namely, low simulation cost and ease
of programming.

The method of stochastic bounding was eliminated because
it akes twice the compuiing tme to generate a single
confidence interval and two different programs have to be
wntten, The complete siate-space discretization approximation
requires a large modification of the original system. Also, the
impact of the discretization is unknown to the analyst, These
facts make it an undesirable system to implement.

The real difference berween the two remaining methods is
not specifically konown if the conditions are favorable for the
approximate regengration times. Smce it i3 sometimes difficult
to know when the correlation is low a pricri, and the method
is approximate, the partial stare-space discretization method

was chosen for implementation.

5. Implementation of the Regenerative Method
5.1 Description of the System to be Analyzed
A Single Server-Single Queue system (M/M/1 queue) with

traffic intensity facior (milization of the server), #=0.8 has

been chosen for the experiment. This experiment was chosen

because the results can be compared with analytical solutions
obtained from gqueneing theory. The process of interest is a
sequence of customer waiting times |W: i=0}. Let /(%) the
i* value of n such that W=S5, the demarcating state. I is
known that the times { &{S) 120} are regeneration times for
the system. Since the distributions of the interarrival times are
continuous the expected time between retums to S is infinite
except for the case where S=0, where there is no line and
the server is idie, thus there is no waiting time. Since this
is a problematic state, because most systems de not return
to & frequently, in most cases the process must be approxi-
mated.

1) Description of the Experiment

The performance measure of interest is the average quene
waiting time. The comparison is based on four criteria, the
effect of sample size on the estimators, accuracy of the
estimator, half-length of the confidence interval generated, and
the coverage of the confidence intervals.

In order to study the effect of the sample size on the
estimators the study was performed with runs of 1,000, 10,000,
50,000, and 100,000 customers.

The accuracy of the estimator is determined by comparing
the estimates generated by each method and comparing them
with the analytical value. Statistical testing is done by running
the simulation 100 times and recording the average of the
estimators and the standard deviation. Then. confidence
intervals are generated for the averapge waiting time.

In order to compare the half-lengths of the confidence
intervals generated, the half-lengths of the corresponding .

intervals generated by each method are compared.

2) Implementation of the Classical Regenerative
Method

The system under study is an M/M/1 Quepe with iid.
imerarrival times {A, A, ..., A}, and iid. service times |S,,
8,:5.}. The arrival times and service times are generaled as
exponentially with means of A and s, rtespectively. The
discrete time stochastic process of delays in queue {D, i=1}
can be defined as follows [Law & Kelton 1982],
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D, =10, and
D, = MAXID + § - A_, 0} for i=1,2,..k {11}

These recursive telationships were used in modeling the
system and the programming language used was FORTRAN.
In order 1o use the algorithm described above we must realize
that the waiting time for a customer will be zero if the system
is empty and idle. Therefore when a customer’s waiting time

is zero we have a regeneration time.

3) Implementation of the Partial State-Space Discret-
ization
In this case the variable selected as the basis for determining
the regeneration points is the average waiting time. The
approach used was (o set a frapping interval of the form {S+
€} where S represents the analytical expected waiting time.
In this case. with A=] and £=10/8 the expected waiting
time can be shown to be equal to 3.2. Since the values for
¢ affect the outcome of the experiment, the effect that different
values have were studied. Specifically the values e={3, 1, 0.5}

were studied.
4) Results

Classical Regenerative Method

Tables 1-2 show the results of the experiment. As it can be
seen from (Table 13, the accuracy of the estimates increases
as the sample size increases. This is evident from the mcrease
in the number of cycles as the sample size is increased. We

find that when 1006 customers are included the average waiting

time generated by the classical method is much higher than
the theoretical value of 3.2. When the number of customers is
increased 10 10,000, the average waiting time staris to converge
o the analytical value of 3.2,

The half-length of the confidence interval decreases very fast
as the number of customers increases. This resulis from the
fact that as the sample size increases there is less variability
on the estimates and smalier half-lengths. The half-length seem
to level off at 50,000 observations.

From {Table 2) it can be scen that the coverage increases
as the sample size increases. This is a proof that the estimates
are better as the sample size increases. Once again the coverage
is approaching the desired value of 90%. Note that the coverage
for the case of 100,000 customers was found to be 100%.
However the half-length of the interval is very small (6% of
the mean).

Partial State-Space Discretization
In this case there is another variable 1o take into
consideration, the size of the trapping interval. From (Table
1 it can be seen that with a constant number of customers,
the smaller the interval, the closer our estimates are to the
analytical value. This follows from the fact that the smaller
the interval, the closer the approximation is to reality.

It can be seen that with a number of customers of 50.000
and small (1 or 0.5) the estimate starts to converge to the
analytical value of 3.2. Actually, the difference between the
two valoes of ¢ s very small. At 50,000 customers the values
for the average waiting time are the same for hoth €=1 and

0.5. Nevertheless, the half-lengths are slightly less as ap-

{Table 1> 80% C.I. on Average Waiting Time based on 100 runs

[ Number of Classical Partial Siate-Space Discretization .
Customers Method =3 e=] =05 —|
1.000 1889 177 3253 + 1746 2106 = 1.347 2399 = 1.253
10,000 3202 + (.589 3528 + 0.558 3013 £ 0.59% 2867 + (1595
30,000 1208 + 0270 3630 + 0296 318 £ 0.264 3186 £ 0.246
100,000 3205 x 0193 3.621 0.176 3221 = 0193 3183 + 0192
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{Table 2> Percent Coverage of C.l. based on 100 runs .

Number of Classica! Panial State-Space Discretization

Customers Method £=1 e=1 e=0.5
1,600 T 73 44 44
10,000 86 76 77 75
50.060 90 100 89 87
100.000 100 100 100 86

proaches zero. However, the half-lengths of the intervals are
not systematically reduced as the value of ¢ decreases. This
is evident from the fact that the smaller the intervals, fewer
cycles are obtained and thus the less precise the estimates are,
Therefore, the estimate is closer to the real value, but with a
shighdy higher variability.

Also. as the oumber of customers increases and ¢
approaches zero this effect decreases. In fact, the half-length
for 100,000 customers and ¢=1 is actually less than the one
for the same number of customers and £=0.5. Thus, by
carefully choosing the value for ¢ and the number of
customers, good and consistent estimates can be obtained.

{Table 2) shows that the coverage of the confidence
intervals s not only dependent on the value of ¢, but is also
highly dependent on the number of customers. The size of the
interval is more significant when the simutation is run for fewer
customers than for larger numbers. There is much more
variation for smaller sample sizes than for larger sample sizes.

{Table 2) also shows many coverage values reached 100%.
Obviously this is because the confidence interval is 100 wide.
However, there are also coverage valves around %0%.

Based on the previous analyses, the best approximation will
be to set the values of 1o €=0.5 and to run the simulation for
at least 50,000 customers, This will produce a good confidence
interval without significamt bias. The coverage for this
confidence interval is §7% which is very close to the desired
90%.

Despite the previous analysis, the regenerative method only
calls for one run because that man provides the sample size

necessary for adequate statistical analyses. The first confidence

imerval generated in the experiment was 32378 +£ 30555
As can be seep, the average waiting time is very close to the
analytical value. The width of the interval is found to be small,

therefore we can conclude that the interval is appropriate.

5) Comparison of both Methods

The classical method is now compared with the partial state-
space discretization with €=0.5. It has been already stated that
this size for the trapping interval yields the best results. It can
be seen from (Table 1} that the average waiting time estimator
is slightly closer to the aralytical value for the classical method
than for the other method. This means that the appreximation
vields slightly biased estimates for the mean response. As the
table shows this bias is greatly reduced as approaches zero.

In terms of the variability of the estimator we can see that
the approximation provides a smaller half-length than the
classical method, This difference decreases as the number of
custermers increases. This supports the previous claim rhat the
approximation converges to the classical method as the sample
size increases. Nonetheless, a smaller half-length for the
estimates for the approximation i preferable because it
preduces more precise estimates.

In terms of coverage, it can be seen from (Table 2 that
the coverages are higher for the classical methed. This is due
1o the fact that the estimators are less biased with a wider
confidence interval. When 50,000 customers are considered,
the difference in coverage is only 3%. However, when 100,000
customers are included the difference is much larger, a 100%
coverage resulted for the classical estimate.

All of the above results are obtained in spite of the
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significant difference between the aumber of cycles generated
by the two methods.

5.2 Description of Another System: Job Shop Mode!

A job shop model will be used 1o represent the case of no
recumrences 1o the empty and idle state. The job shop is
comprised of six different groups of machines. Each group
consists of a number of identical machines as summarized in
{Table 3).

-{Table 3> Data of Machine Group

Machine Group Type of Machine # of Machine
1 Casting units 14 !
2 Lathes 5
3 Planners
4 Drill Presses 8
f 5 Shapers i6
b Pelishing machines { 4

Jobs arrive to the jobshop according w0 a Poisson process
with a mean interamrival time of 9.6 minutes. The job mix
consists of three job types, with each 1ype having a different

machine visitation sequence and different-operation times on

each machine. All operation times are exponentially distributed.
The dara for the three job types are summarized in {Table 4.

1} Description of the Experiment

A plot of the cumulative average time in system and planners
utilization is used in determining when the system reaches
steady-state. The simulation is executed for 70,000 time units
{minutes). See Figures 1 and 2. We can presume that the
system reaches the steady-state at around 10000 simulation
time units. In this study the variable selected as the basis for
determining the regeneration points is the average time in the
system. The analytical solution for the average time in the
system 1s not attainable, so this pilot run is used to estimate
the average time in the system. Using the QUTPUT Processor
of the ARENA package we estimate the average time in the
system as 405 time umits, which will be used as § value, with
70,000 time units,

The approach used to set a trapping interval [S+ €] where
S represents the estimated time in the system. Since the value
of ¢ affects the outcome of the experiment, the effect of the
different ¢ values was studied. Specifically we set ¢ value
as £=15,10,15]). A FORTRAN program was writien o handle
the Partial State-Space Discretization approximation method
and it was linked 1o the ARENA model. To determine the

{Table 4> Data of Three Job Types

Job Type % of Tatal Jobs 1 Machine Visitation Sequence Mean Operation time (Minute)
Seq. No. Machine Type
1 24 l Casting unit(1) 125
2 Planer(3) 33
3 Lathe{2) 20
4 Polishing Unit(6) 60
2 44 1 Shaper(5) 105
2 Drill Press(4) 9%
3 Lathe(2) 65
3 32 1 Casting Unit(1) 235
2 Shaper(5) 250
3 Drill Press(4) 50
4 Planer(3) 30
5 Polishing Unit(6) 25

This model was taken from [Pegden,1995] with minor modifications and i writlen in ARENA.
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Job Shop Mode!
500 r
400 +
—— Currulative Avg. time
300 in Systemn
200 t | ! ; !
1000 2500 10000 25000 43000 55000
Simulation Time Unit(minute}
Figure 1> Average Time in the System
Job Shop Model
05 r
0.4 -
| —— Planers Ut |
0.3
4
0.2 1 1 1 ! !
1000 2500 10000 25000 43000 55000
' Simulation Time Unit{minute)
{Figure 2} Planers Utilatization
effect of the simulation run length in the accuracy of the based on the result of 100 runs for each value of & and each
confidence interval. the simulation run length as varied as tun length,
10,000, 50,000, 100,000 units. Finally, 100 multiple runs were
executed for each ¢ valve in conjunction with different 2) Results

simulation time lengths. A confidence interval is genmerated Tables 5-12 show the results of this experiment. In a single
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run, the partial state-space discretization method keeps
decreasing the half-length of confidence intervals as ¢ value
and time length increases. In an identical time length
simulation, the partial state-space dicretization method yields
low variability as ¢ value varies. Comparison of single run

results shows that in an identical simulation time length the

regenerative method yields better estimates.

Even if the system is not regeneraiive, with approximation
techniques the system can be implemented by regenerative
method. Specifically, 2 job shop model was studied which does
not have an analytical solution for the average time in the

system. Thus, the regenerative method can be expanded to

{Table 5> Resuits of a Single Run Using Baich Means

Without Truncation

10,000 Time Units Truncation

Average Time in

Average Time in System

405 406
Lower Upper Half Lower Upper Haif
Lirnit Limit Width Limit Limit Width
397 412 1.5 395 416 10.5
{Table 6 Results fo a Single Run Using the Regenerative Method and 10,000 Run Length
1
10,000 Avg. Lower Upper Half # of
Time Units Time Limit Limit Width Cycles
e=3 395,426 364.534 426.317 30.892 12
e=10 395,452 366.356 424.549 29.356 19
e=15 396.487 368272 424 665 28.196 41
{Table 7 Results of a Single Run Using the Regenerative Method and 50,000 Run Length
50,000 Avg. Lower Upper Half # of
Time Units Time Limtt Limit Width Cycles
e=3 395457 384.412 406,502 11.045 63
e=10 395.966 384392 407.539 11.547 130
e=15 395.968 385246 406.689 10.721 206
{Table 8> Results of a Single Run Using the Regenerative Method and 100,000 Run Length
50,000 Avg. Lower Upper Haif # of
Time Units Time Limit Limit Width Cycles
£=5 405.348 394.769 413.188 10.579 126
e=10 405.335 395.836 414.834 9.449 254
e=13 405.723 396.259 413188 B.465 420
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{Table 3> Results of Multiple {100} Runs Using Batch Msans

10,000 Time Length

50,000 Time Length

100.00¢ Time Length

Average Time in System

Average Time in System

Average Time in System

Lower Upper Halt Lower Upper Half Lower Upper Half |
Limmit Lt Width Limir Limit Width Limit Limit Widih |
393 i 403 4.52 408 412 2.28 410 414 203
[
{Table 10 Results of Multiple (100} Runs Using the Regenerative Method and 10,000 Runs Length
T ]
10,000 Avg. i Lower Upper Half i
Time Units Time Lirnit Limit Width )
¢=5 397.597 %93.293 401,89 4.303
e=10 397.631 393.167 402,095 4.465
t=15 397827 i 393.332 402323 4496
(Table 11) Results of Multiple {100} Runs Using the Regenerative Method and 50,000 Runs Length
50,000 Avs. 5 Lower Upper Half
Time Units Time ! Limit Limit Width
=5 410.204 407,998 412409 2.206
e=10 410,196 407.991 412402 2.205
£=15 410.216 407.998 412434 2201
{Table 12 Resuits of Multipie (100} Runs Using the Regenerative Method and 100,000 Runs Length
: 100,000 Avg. Lower Upper Half
Time Units Time Limnut Limit Width )
£=5 412,151 410.147 414.154 2,003
=10 412117 410,113 414.121 2004
e=15 42,114 410,112 414115 2.002

those models which do not have analytical solutions. A pilot

run was suggested to replace the analytical solution with the

average of that pilot run. The estimate from the pilot run can
be used as §, the demarcating state. Also if the analyst knows

the process well, his knowledge may help to determine the

demarcating state.

6. Conclusions and Recommendations

The regenerative method is a statistical approach which has
been used successfully in dealing with some of the most

important tactical issues of stochastic simulation. Not every

System possesses regeneration points, so this regenerative

method of collecting data cannot always be used. Farthermore,

even when there are regeneration points, the one chosen fo
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demarcate the epochs may not recur frequently resulting in a
substantial amount of compuier time needed to produce the
desired pumber of cycles.

It has been shown that the regenerative method is a viable
approach for the analysis of simulation output. Furthermore, a
method was described to implement the regenerative method
In systems that are not regenerative, This method, partial state-
space discretization, yields slightly biased estimates with a
lower vanability that the classical method. Since the difference
in the half-length of the confidence intervals generated by both
methods is so small, one shonid implement the classical methed
whenever possible. In many cases, however, the approximation
is easier to implement than the classical method and can
provide reliable results.

In most cases the analyst does not have access to the
analytical solution of the process 10 be studied. In those cases,
a demarcating state must be found that yields good estimates,
Sometimes a trial run can be done and the average for that
Ten can be used as the demarcating state. In other cases,
knowledge of the process may help in determining the
demarcating state.

The contribution of this research is twofold. First, it is
expected that through the nse of state time transformations the
regenerative method can be extended to other non-regenerative
models. Second, computer time requirements on regenerative
models may be reduced through the use of state time
wransformations with increased recumence.

There are several areas were additional research should prove
fruitful. One, is the investigation of the extension of time
ransformed states 1o other simulation models. The ideas
generated by this research should be tested in many other
models including models with regeneration structure. Further,
other transformations should also be developed and tested for
regeneralive properties. Second, the use of the independence
property in regenerative cycles should be taken advamtage of
in the estimation of confidence intervals. Sequential miles to
determine the optimum number of epochs within a replication
have been developed. But, the availability of increased
recurrence transformation states, should provide additional

reasons for further work in these sequential rules which may

result in additional computer time savings.
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