References
- Atalik, T.S. and Utku, S. (1976), "Stochastic linearization of MDOF nonlinear systems", Earthquake Eng. Struct. Dyn., 4, 411-420. https://doi.org/10.1002/eqe.4290040408
- Baber, T. (1984), "Nonzero mean random vibration of hysteretic systems", J. Eng. Mech. ASCE, 110(7), 1036-1039. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:7(1036)
- Baber, T. and Noori, M. (1985), "Random vibration of degrading, Pinching systems", J. Eng. Mech. ASCE, 111(8), 1010-1025. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:8(1010)
- Baber, T. and Noori, M. (1986), "Modeling general hysteresis behavior and random vibration application", J. Vibration, Acoustics, Stress and Reliability in Design, 108, 411-420. https://doi.org/10.1115/1.3269364
- Baber, T. and Wen, Y.K. (1981), "Random vibration of hysteretic, degrading systems", J. Eng. Mech. ASCE, 107(EM6), 1069-1085.
- Bouc, R. (1967), "Forced vibration of mechanical systems with hystersis", Abstract, Proceedings of the Fourth Conference on Nonlinear Oscillation, Prague, Czechoslovakia.
- Cai, G.Q. and Lin, Y.K. (1990), "On randomly excited hysteretic structures", J. Applied Mech. ASME, 112.
- Caughey, T.K. (1960), "Random excitation of a system with bilinear hysteresis", J. Applied Mech. ASME, (Dec), 649-652.
- Caughey, T.K. (1963), "Equivalent linearization techniques", J. Acoust. Soc. Am. 35(N11), 1706-1711. https://doi.org/10.1121/1.1918794
- Crandall, S.H. (1980), "Non-gaussian closure for random vibration of nonlinear oscillators", Int. J. Nonlinear Mech., 15, 303-313. https://doi.org/10.1016/0020-7462(80)90015-3
- Dobson, S. (1984), "Hysteresis models with applications in structural mechanics", Worcester Polytechnic Institute, M.S. Thesis.
- Dobson, S., Noori, M., Hou, Z., Dimentberg, M. and Baber, T. (1997), "Modeling and random vibration analysis of SDOF systems with asymmetric hysteresis", Int. J. Nonlinear Mech., 32, 4, 669-680. https://doi.org/10.1016/S0020-7462(96)00090-X
- Foliente, G. (1993), "Stochastic dynamic response of wood structural systems", Virginia Polytechnic Institute, Ph.D. Dissertation.
- Iwan, W.D. (1973), "A generalization of the concept of equivalent linearization", Int. J. Nonlinear Mech., 8, 279-287. https://doi.org/10.1016/0020-7462(73)90049-8
- Iyengar, R.N. and Dash, P.K. (1978), "Study of the random vibration of nonlinear systems by the gaussian closure technique", J. Applied Mech., 45, 393-397. https://doi.org/10.1115/1.3424308
- Nielsen, S.R.K., Mork, K.J. and Thoft-Christensen, P. (1990), "Stochastic response of hysteretic systems", Struct. Safety., 9, 59-71. https://doi.org/10.1016/0167-4730(90)90021-G
- Noori, M. and Davoodi, H. (1990), "Comparison between equivalent linearization and gaussian closure for random vibration analysis of several nonlinear systems", Int. J. Engineering Sci., 28, 897-905. https://doi.org/10.1016/0020-7225(90)90039-L
- Park, Y.J., Wen, Y.K. and Ang, A. (1986), "Random vibration of hysteretic systems under bidirectional ground motions", J. Earthquake Engng. Struct. Dyn., 14, 543-557. https://doi.org/10.1002/eqe.4290140405
- Pradlwater, H.J. and Schueller, G.I. (1992), "Equivalent linearization - A suitable tool for analyzing MDOF systems", Prob. Eng. Mech., 8, 115-126.
- Roberts, J.B. (1987), "Application of averaging methods to randomly excited hysteretic systems", Proceedings of the IUTAM Symposium on Nonlinear Stochastic Dynamic Engineering Systems. Sptinger-Verlag, Berlin, 361-374.
- Roberts, J.B. and Spanos, P. (1986), "Stochastic averaging: An approximate method of solving random vibration problems", Int. J. Nonlinear Mech. 21.
- Spanos, P.D. (1981), "Stochastic linearization in structural dynamics", Applied Mech. Review. 34.
- Wen, Y.K. (1976), "Method for random vibration of hysteretic systems", J. Eng. Mech. ASCE, 102(EM2), 249-263.
- Wen, Y.K. (1980), "Equivalent linearization for hysteretic systems under random excitation", J. Applied Mech. ASME, 47, 150-3. https://doi.org/10.1115/1.3153594
- Zaiming, L., Katukura, H. and Izumi, M. (1991), "Synthesis and extension of one-dimensional nonlinear hysteretic models", J. Eng. Mech. ASCE, 117(1), 100-109 (1991). https://doi.org/10.1061/(ASCE)0733-9399(1991)117:1(100)
Cited by
- Linearization in Analysis of Nonlinear Stochastic Systems: Recent Results—Part I: Theory vol.58, pp.3, 2005, https://doi.org/10.1115/1.1896368
- Drift response of a bilinear hysteretic system to periodic excitation under sustained load effects vol.41, pp.4, 2006, https://doi.org/10.1016/j.ijnonlinmec.2006.01.001
- Drift response of bilinear hysteretic systems under two-frequency excitations vol.41, pp.8, 1998, https://doi.org/10.1016/j.ijnonlinmec.2006.06.003