범가자미 Verasper variegatus의 성성숙

김 윤－안철민－김경길－백혜자
국립수산진훙원 양식개발과

Abstract

범가자미 Verasper variegatus의 난소는 좌우 1 쌍의 대칭구조로 주머니 모양이며 산란기가 되면 생식소는 복강 뒤부터 뒷지느러미까지 길게 발달하였다．정소는 좌우 1 쌍을 가지나 산란기에 복강 내에서만 발달하였다．생식소중량지수（GSI）는 암컷의 경우 3월부터 7월까지는 낮은 값을 보이다가 8월부터 증가하기 시작하여 1월에 연중 최대값을 나타내었다．수컷의 GSI 변화도 암컷과 마찬가지 로 1월에 연중 최대값（1．7）을 나타내었다．산란기의 난소에는 $600 \sim 1,400 \mu m$ 사이의 난모세포들이 4 ~ 6 개의 무리를 이루어 발달하는 것으로 보아 범가자미는 4 회 이상 산란하는 다희 산란 어종으로 확 인되었다．군성숙도 조사에서 50% 산란에 참여하는 개체는 암컷이 전장 $42.0 \sim 44.0 \mathrm{~cm}$ ，수컷이 28.0 $\sim 30.0 \mathrm{~cm}$ 였으며， 100% 산란에 참여하는 전장은 암수 각각 44.0 cm 와 32.0 cm 였다．생식년주기는 8 ~ 10 월의 성장기， $11 \sim 12$ 월의 성숙기， 12 월 ~ 2 월의 완숙 및 산란기， $3 \sim 7$ 월의 퇴화 및 휴지기 등으 로 구분할 수 있였다．

서 론

범가자미는 가자미목（Order Pleuronectida）붕 넙치과（Family Pleuronectidae）범가자미속 （Genus Verasper）에 속하는 어류로서 우리나라 남 부 및 일본 중부 이남의 연해에 분포하고 있으며， 크기는 전장 60 cm ，체중 5 kg 까지 성장하는 대형 종으로 경제적 가치가 매우 높은 종이다（期， 1977）．
범가자미에 관한 연구는 일본에서 난 발생 및 부 화 자어에 관한 연구（水戶，1963；田北等，1967）， 범가자미의 종묘생산（津䛴，1992）등이 있고，우리 나라에서는 범가자미의 종묘생산에 관한 연구（曺等，1995），범가자미의 난모세포 성숙 유도를 위한 HCG 와 스테로이드 호르몬의 in vitro 효과（백• 김，1996），범가자미의 연령과 성장（전 둥，1996） 둥이 있다．그러나 새로운 양식 대상종으로 개발 중인 범가자미의 성성숙 연구는 본 중의 중묘생산 기술을 개발하기 위한 기초 연구로써 반드시 선행

되어야 합에도 불구하고 전무한 실정이다．따라서， 본 연구는 범가자미의 성성숙에 대한 기초 자료를 얻고자 생식소의 외부 형태，생식소중량지수，생식 소 발달의 월변화，군성숙도 및 포란수 등을 조사 하였다．

재료 및 방법

본 연구에 사용된 범가자미는 1993년 1월부터 12 월까지 매월 1 희씩 전라남도 여천군과 고훙군 의 인근 연안 어장에서 어획된 활어를 구입하여 사 용하였으며，시료는 구입 즉시 활어 상태로 연구실 로 옮긴 후 전장과 체장，체중 및 생식소 중량을 각 각 $0.1 \mathrm{~cm}, 0.1 \mathrm{~g}$ 까지 계측하였다．구입된 시료의 체 장 및 체중 현황은 Table 1과 같다．

생식소중량지수（gonadosomatic index，GSI）는 군성숙도 조사에서 50% 이상 산란에 참여한다고 판단되는 크기 이상의 개체들을 대상으로 생식소 중량지수 $=$ 생식소중량 $/$ 체중 $\times 100$ 의 식으로 구

감 윤 - 안철민 - 김졍길 - 낵혜자

Table 1. The total length and body weight of sampled spotted flounder, Verasper variegatus in 1983

Month	Sex	Number	Mean total length (cm)	Mean body weight (g)
Jan.	q	16	48.5(32.0-67.5)*	2082.5(450-4361)*
	$\hat{\gamma}$	11	34.5(29.8-44.0)	529.8(353-939)
Feb.	우	20	37.3(14.0-62.2)	827.6(75-4501)
	$\hat{\delta}$	10	30.9(20.0-38.4)	327.2(84-605)
Mar.	우	29	31.1(17.1-48.0)	486.4($51-1577$)
	§	13	22.6(15.5-32.7)	147.6($37-382)$
Apr.	우	10	37.4(17.5-58.9)	$813.1(61-2577)$
	舍	23	28.7(19.3-41.2)	310.2(80-915)
May	우	17	31.0(18.2-66.9)	640.6(84-4259)
	ช	13	27.7(20.0-34.5)	304.5(127-552)
Jun.	우	7	27.8(26.3-30.0)	293.7(450-4361)
	¢	4	29.6(26.5-35.2)	387.3(258-634)
Jul.	운	11	26.0(22.8-26.5)	274.1(162-275)
	§	8	27.4(24.3-27.6)	306.2(199-371)
Aug.	아	3	45.5(38.5-51.9)	1549.7(868-2319)
	含	3	40.0(35.2-40.2)	699.8(598-921)
Sep.	우	19	43.5(35.0-54.4)	1473.6(780-2970)
	$\hat{\gamma}$	12	37.4(23.2-44.0)	781.7(160-1080)
Oct.	¢	10	33.1(23.9-52.8)	581.2(187-2189)
	$\hat{1}$	15	27.4(18.8-39.5)	344.7(108-953)
Nov.	아	18	36.9(25.6-51.2)	771.4(218-1992)
	¢	6	$30.1(26.7-33.0)$	350.7(248-464)
Dec.	우	16	47.1(28.5-65.0)	1614.1(315-4438)
	¢	11	34.1(30.0-42.3)	503.7(347-952)

()*: range.

하였다. 생식소 발달은 쿠출한 생식소를 Bouin's 용액에 고정하여 파라핀으로 포매한 후 $5 \sim 6 \mu \mathrm{~m}$ 두깨의 절편을 만들어 Hansen's Haematoxylin eosin으로 이중 염색하여 광학현미경하에서 조사 하였다. 난경 조사는 난소률 10% formalin에 고정 한 다옴 1 cm 두께로 난소막에서 난소강까지 절단 하여 절단된 난소조직을 Gilson액(Love and Westphal, 1981)에 넣어 결합조직과 난들을 분리 한 후 해부현미경으로 측정하였다.
군성숙도는 산란기로 추정되는 12 월에서 3 월까 지 구입한 모든 개체들을 대상으로 생식소 조직 표 본을 만든 후 현미경으로 난졍을 조사하여 암수별 로 산란에 참여하는 크기를 조사하였다.

포란수는 다희산란종으로 추정되었기에 난황형 성기 단계라고 판단되는 $600 \mu \mathrm{~m}$ 이상의 난들을 습 중량법으로 계수하였다.

결 과

1. 생식소 욉부 형태

반소는 원추형의 낭상으로 복강 후면에서 뎃지 느러미쁠 따라 길게 발달하며, 척추 혈관극을 중심 으로 좌우 한 쌍으로 되어있다(Fig. 1). 생식공은 항문 부위와 연결되어 있으나 개구부는 항문 위쪽 에 있으며 산란 시기를 제외하고는 관찰이 불가눙 하였다. 완숙된 난소의 내부는 난소막에서 기원한 졀합조직으로 구성된 소낭들로 인하여 주름져 있 으며, 중앙부분은 난소강을 이루고 있다. 정소는 난소와는 달리 복강 뒤쪽의 복강막을 따라 발달하 면서 복강내에서만 주머니 모양을 이루고 있으며 복강 바로 뒤쪽의 혈관극율 중심으로 한쌍으로 구 성되어 있다(Fig. 2). 정소내부는 정소막을 따라 정 소소엽들이 발달하고 이들 소엽들은 생식공과 연

Fig. 1. Photographs of the ovary in the spotted flounder, V. variegatus. A pair of ovary(arrow) developed from the posterior part of the abdomen (A). Mature ovary showing the well-developed blood vessels on the surface of the ovary (B).

Fig. 2. Photographs of the tesitis in the spotted flounder, V. variegatus. Testis(arrow) showing a pair of sac-like structure bilaterally in the abdomen (A). Fully matured testis showing grey-white in color (B).

결된 수겅관과 연결되어 있다. 생식공은 항문과 함 께 개구되어 있는 것이 아니라 항문 개구부의 위쪽 에 위치하고 있으며, 정액을 산출할 때를 제외하고 는 관찰이 쉽지 않았다.

2. 생싁소중량지수 (GSI) 의 월별 변화

월별 GSI 변화 및 수온과 낮의 길이 변화률 조사 한 결과는 Fig. 3과 같다. 시료 채집시기인 1993년 도 자연해수의 수온 및 낮길이의 변화를 보면, 수 온은 1월이 평균 8.8 C 로 가장 낮았고 8월이 22.9 C로 가장 높았다. 한편 동 기간중의 낮길이는 산 란 시기인 1 월중에는 연중 일조시간 $(9 \mathrm{~L} / 15 \mathrm{D})$ 이 가 장 짦은 기간이었다. 이와 같은 수온과 낮길이 조 건하에서 자연산 범가자미의 생식소중량지수의

Fig. 3. Monthly changes in gonadosomatic index(GSI), water temperature and day length under the natural condition. Symbols and verical bars show means and standard errors, respectively.

주년 변화률 보면 암컷의 생식소중량지수는 수은 이 8° ㅇㅈㄴ후인 1 월에 18.0 으로 최대값을 나타내었 으나 2월로 접어들면서 급격히 감소하여 3월에는 0.7 로 매우 낮은 값을 나타내었다. 이후 생식소중 량지수는 7월까지 매우 낮은 수준을 유지하다가 고수온기인 8월부터 10 월에 걸쳐 다소 상숭하기 시작하고 수온이 $15{ }^{\circ} \mathrm{C}$ 이하로 낮아지는 11 월과 12 월에 15.4 로 급격히 상승하였다. 수컷 GSI의 주년 변화는 암컷과 유사하여 1 월에 1.7 로 가장 높았으 나 12 월과 1 월을 제외하고는 1.0 미만으로 매우 낮 았다.

3. 생식소 발달 및 생식주기

생식소 내 배우자형성에 따른 생식소 발달 단계 들은 주기성을 나타내고 있어 이들 생식소 발달 단 계에 따라 생식주기를 연속적인 4단계로 나눌 수 있었다.

1) 난소

퇴화 및 휴지기
3 월의 난소소엽에는 미처 홉수되지 못한 일부 변성난과 주변인기 난모세포들이 존재하며, 소엽 상피에는 다수의 난원세포들이 무리를 이루고 있

고, 이들 주위률 따라 염색인기 난모세포들이 관찰 되었다. 이와같온 난소 조직상은 7월까지 지속된 다(Fig. 4-A).

성장기
8,9 월에 접어들면서 난소소엽은 난모세포의 성 장과 함께 비후되기 시작하며, 난경이 $60 \sim 100$ μm 에 이르는 난모세포들의 세포질에는 난황포가 출헌하기 시작하는 난황포기 난모세포들이 점차 증가하였고, 이들 세포질에서 난황핵을 관찰할 수 있었다(Fig. 4-B). 10 월이 되면서 난황포기 난모 세포들의 세포질에는 난황과립들이 출현하면서 초기난황형성기 난모세포들로 성장하였다. 이때 난경은 $250 \mu \mathrm{~m}$ 전후가 된다(Fig. 4-C).
성숙기

11 월의 난소는 난소소엽내에 난황 축적이 할발 히 진행되고 있는 난경 $250 \mu \mathrm{~m}$ 전후의 후기 난황 형성기 난모세포들로 대부분이 구성되어 있으며 (Fig. 4-D), 이들 난황형성기 난모세포들 사이로 성숙 난모세포들도 일부 관찰돤다. 12 월에는 일부 난황 축적중인 난모세포들과 난황축적이 완료되 어 핵이 원형을 잃은 난경 $800 \mu \mathrm{~m}$ 전후의 성숙기 난모세포들이 난소률 구성하고 있으며, 이들 사이

Fig. 4. Ovarian developmental stages of the spotted flounder V. variegatus. A, degenerative and resting stage (March~July) ; B, growing stage (August~September) ; C, growing stage (October) ; D, maturing stage (November) ; E, mature stage (December) ; F, spent stage (February).
(CO : chromatin nucleolus oocyte, FL : follicle layer, MO : mature oocyte, N : nucleus, $N U$: nucleolus, $O G$: oogonium, $P O$: oocyte in the perinucleolus stage, $P Y O$: oocyte in the primary vitellogenic stage, SYO : oocyte in the secondary vitellogenic stage, VO : oocyte in the yolk vesicle stage, YG : yolk globule, YN : yolk nucleus, \mathbf{Y} : yolk vesicle, $\mathbf{Z R}$: radiata).

로 초기 난모세포들도 관찰된다(Fig. 4-E).
완숙 및 산란기
12 월에는 개체에 따라서는 핵이 이동 중이거나, 핵의 이동이 완료된 완숙기 난모세포들을 가진 것 도 있다. 1월의 난소 조직상은 난황형성기 및 성숙 기 난모세포들과 함께 핵이 동물극 쪽으로 이동 중 에 있는 난경 $1,000 \mu \mathrm{~m}$ 전후의 완숙기 난모세포들 로 구성되어 있으며, 해부시 배란된 난들이 빠져나 오는 개체들도 많았다. 2 월에는 개체에 따라 난소 조직상은 많은 차이가 있는 것으로 나타났는데, 일 부 개체들은 1 월의 난소 조직상과 유사한 반면, 거 의 대부분의 개체들은 산란으로 인하여 난소소엽 이 허술하게 나타넜으며, 소엽내에는 여포세포들 이 잔존하여 산란 흔적을 보이고 있다(Fig. 4-F).

2) 정소

퇴화 및 휴지기
4 월의 정소 조직은 일부 잔존 정자들이 관찰되 나 정소소엽 구조가 명확하게 형성되어 있으며, 이 들 소엽내에는 단일 인을 가진 정원세포들로 가득 차 있다. 이러한 조직상은 7월까지 유지되는 것으 로 나타났다(Fig. $5-\mathrm{A}$).

성장기
8,9 월에는 정소소엽의 크기는 크게 변하지 않 고, 소엽내에 정모세포들이 일부 출현하고 있다. 그러나 이들 정모세포들은 아직 완전한 포낭을 형 성하고 있지 않다(Fig. 5-B). 10월과 11월에는 정 소소엽내 포낭들이 현저하게 발달하여 소엽은 비 후해지고, 소엽벽을 따라 정모세포군이 포낭을 형 성하여 발달하였으며, 정세포를 가진 포낭들의 발 달이 두드러진다(Fig. 5-C)

성숙기
12 월에는 정소소엽 내강에 변태된 정자들이 출 현하고 있으며, 소엽벽을 따라 각기 발달단계가 다 른 생식세포들을 가진 포낭들도 여전히 발달하고 있다(Fig. $5-\mathrm{D})$.

완숙 및 방출기

1월의 정소조직은 소엽벽을 따라 포낭구조가 불 명료한 정원세포군들이 존재하나 소엽의 대부분 을 정자들이 가득 채우고 있다(Fig. 5-E). 이후 2 월에는 1 월과 유사한 조직상을 나타내는 일부 개 체들도 있으나, 대부분의 개체들은 정소소엽의 구 조가 정자의 방출 혼적을 나타내었다(Fig. 5-F).

Fig. 5. Testicular developmental stages of the spotted flounder, V. variegatus. A, degenerative and resting stage (April~July) ; B, growing stage (August~September) ; C, growing stage (October~November) ; D, mature stage (December) ; E, ripe stage (December~January) ; F, spent stage (February). (C : cyst, \mathbf{N} : nucleus, NU : nucleolus, PSC : primary spermatocyte, SC : spermatocyte, SG : spermatogonium, SSC : secondary spermatocyte, ST : spermatid, SZ : spermatozoa).

3 월의 모든 개체들의 정소 조직온 잔존 정자들과 함께 정소소엽이 재배치되면서 소엽을 형성하는 결합조직이 산성 색소에 염색되어 나타난다.

4. 군성숙도

범가자미 개체군이 재생산에 참여하기 시작하 는 암 - 수 개체의 전장의 크기률 알기 위해 군성숙 도를 조사하였다.
산란기가 시작되는 12 윌부터 산란이 종료되는 3 월까지 전장 $22.0 \sim 56.0 \mathrm{~cm}$ 사이의 암컷 39 마리 와 수컷 43 마리률 대상으로 산란 참여 유무률 생 식소 조직 표본을 통하여 조사한 결과는 Table 2와 같다. 개체군 군성숙도 조사에 사용한 암컷의 전장 범위는 $30.0 \sim 56.0 \mathrm{~cm}$ 이며, 조사 개체들 중 가장 많이 출현한 전장 범위는 $40.0 \sim 46.0 \mathrm{~cm}$ 였다. 그 리고 수컷의 전장 범위는 $22.0 \sim 44.0 \mathrm{~cm}$ 였으며, 개체수가 많은 전장 범위는 $28.0 \sim 36.0 \mathrm{~cm}$ 였다.

암컷의 경우 전장 40.0 cm 이하에서는 20% 만이 산란에 참여 하였고, 전장 $42.0 \sim 44.0 \mathrm{~cm}$ 에서는 57% 가 산란에 참여하여, 군성숙도가 50% 를 넘었 다. 전 개체가 산란에 참여하는 것으로 판단되는 전장은 44.0 cm 이상으로 나타났다. 수컷의 경우는

Table 2. The total length at first sexual maturity of the spotted flounder, V. variegatus

Total length (cm)	Female			Male	
	Number	Mature(\%)		Number	Mature(\%)
$22.1-24.0$	-	-		2	0
$24.1-26.0$	-	-		2	0
$26.1-28.0$	-	-		5	20
$28.1-30.0$	-	-		6	50
$30.1-32.0$	1	0		9	78
$32.1-34.0$	4	0		8	100
$34.1-36.0$	4	0		4	100
$36.1-38.0$	3	0		2	100
$38.1-40.0$	4	25		2	100
$40.1-42.0$	5	20		2	100
$42.1-44.0$	7	57		1	100
$44.1-46.0$	5	100		-	-
$46.1-48.0$	2	100		-	-
$48.1-50.0$	1	100		-	-
$50.1-52.0$	1	100		-	-
$52.1-54.0$	1	100		-	-
$54.1-56.0$	1	100		-	-
Total	39			43	

전장 $28.0 \sim 30.0 \mathrm{~cm}$ 에서 50% 의 군성숙도률 보이 고 있으며, 전장 32.0 cm 이상에서는 전 개체가 재 생산에 참여하고 있는 것으로 나타났다.

5. 산란기 중 난소 내 난경 조성

산란기 동안의 산란 휫수률 추정하기 위하여 산 란기 전후의 개체들을 대상으로 난경 조성을 조사 한 결과는 Fig. 6 과 같다. 산란기 전인 12 월에는 $250 \mu \mathrm{~m}$ 이하의 소형 난모세포 군들과 $500 \sim$ $900 \mu \mathrm{~m}$ 사이의 난모세포들이 5 개의 군을 형성하 고 있으며, $1,000 \mu \mathrm{~m}$ 이상의 대형 난모세포 군들도 출현하고 있었다. 1 월에는 $200 \mu \mathrm{~m}$ 이하의 소형 난 모세포 군들은 계속 출현하고 있으나 12 월과는 달 리 $850 \sim 1,250 \mu \mathrm{~m}$ 의 대형 난모세포들이 7 개의 군 을 이루고 있었다. 2 월에는 $1,000 \mu \mathrm{~m}$ 이상의 대형 난모세포 군은 사라지고 없으며 $600 \sim 1,000 \mu \mathrm{~m}$ 사 이의 난모세포들이 4 개의 군을 형성하고 있었다. 3 월에는 $200 \mu \mathrm{~m}$ 이상의 난모세포들은 볼 수 없었 고, $200 \mu \mathrm{~m}$ 이하의 난모세포들이 난소률 구성하고 있었다.

Fig. 6. Frequency distribution of etrg diameter of the spotted flounder, V. variegatus from December to March.

6．포란수

범가자미의 재생산력올 알기 위하여 포란수를 조사한 결과는 Table 3과 같다．조사한 개체들 중 최대 포란수를 가진 개체의 전장은 51.0 cm 로 포란 수는 $1,830,849$ 개 였으며，최소 포란수를 가진 개체 의 전장은 44.0 cm 로 포란수는 257,014 개 였다．

전장 1 cm 당 상대포란수는 전장 $41.0 \sim 45.0 \mathrm{~cm}$ 범위에 속하는 개체들에서는 평균 7,601 개 였으 며，전장 $50.1 \sim 55.0 \mathrm{~cm}$ 범위에 속하는 개체들에서 는 평균 23,607 개 였고， $65.1 \sim 70.0 \mathrm{~cm}$ 범위에 속 하는 개체들은 평균 17,350 개 였다．따라서 상대포 란수는 전장 $50.1 \sim 55.0 \mathrm{~cm}$ 를 정점으로 점차 감소 하는 경향을 보였다．

고 찰

어류의 생식소 발달에 영향을 미치는 수온과 광 주기는 어종에 따라 다양한 범위를 가지므로 각 어 종의 산란기는 봄，여름，가을，겨울 등 어느 한 계 절이나 또는 두 계절 이상에 걸쳐 이루어지고 있 다．범가자미는 수온과 낮의 길이가 점차 감소할수 록 생식소중량지수는 상숭하고 있으며，수온과 낮 의 길이가 연중 가장 낮은 시기에 생식소중량지수 는 가장 높게 나타나고 있다．따라서 범가자미는 동계 산란중에 속하며，생식소 활성화에는 수온이 낮아지고，낮길이가 짧아지는 것이 영향을 미친다 고 생각할 수 있으며，성숙에는 짧은 낮길이와 저 수온이 관여한다고 생각된다．그러나 이들 두 요인 중 어느 것이 생식소 성숙에 더 큰 영향을 미치는 지에 관해서는 상세한 연구가 있어야 할 것으로 생 각된다．

수컷의 평균 최대 생식소중량지수는 1.7 로 암컷 의 18.0 에 비하여 매우 낮은 값을 나타내고 있다． 일 반적으로 어류에서는 수컷의 생식소중량지수가 암컷에 비하여 낮은데，자리돔 Chromis nota－ $t u s$（李•李，1987）에서는 최대 생식소중량지수가 6．1，그물코쥐치 Rudarius ercodes（李•弱生， 1984）에서는 6．9，전어 Konosirus punctatus（金－李，1984）에서는 4．4로 각 어종의 암컷에 비하면 낮 지만 범가자미 수컷에 비하면 매우 높게 나타나고 있다．그러나 덕대 Pampus echinogaster 및 병어 Pampus argenteus（李•陳，1989）수컷의 최대 생 식소중량지수는 각각 $1.98,0.96$ 이며，황놀래기 Pseudolabrus japonicus（李 等，1992）는 0．38，짱 뜽어 Boleophthalmus pectinirostris（䡛 等，1991） 는 0.48 로 범가자미와 같이 체중에 대한 정소 중량 이 차지하는 비율이 낮은 종들도 있다．해산 경골 어류이며 체외수정을 하는 어종에 있어서 이와 같 이 다양한 생식소중량지수를 가지는 것은 산란 행 동이 다르기 때문으로 생각되고 있다（Billard， 1986）．즉，수컷의 생식소중량지수가 낮은 어종들 은 짝을 지어 산란행동을 하는데 비하여，생식소중 량지수가 높은 어종들은 무리를 지어 산란행동올 한다고 가설을 제시하고 있다（Suquet et al．， 1994）．그러나 범가자미의 산란행동을 관찰한 보 고가 없기 때문에 앞서 서술한 가설과의 일치성은 차후 검토할 문제라 생각된다．

어종에 따라서는 유구의 출현시기는 다르게 나 타나는데，Guppy Lebistes reticulatus（Takano， 1964），농어 Lateolabrax japonicus（Hayashi， 1972）둥에서는 난황포가 생기기 전에 출현하며， 무지개송어 Salmo gairdneri（山本 等，1965）에서 는 난황포의 형성과 동시에 생긴다．그리고 자리돔

Table 3．Composition of absolute fecundity and relative fecundity of female spotted flounder，V．variega－
tus

Total length (cm)	Absolute fecundity	Relative fecundity $($ per cm$)$
$41.1-45.0$	$338,320(257,014-417,780)^{*}$	$7,601(5,841-9,284)^{*}$
$45.1-50.0$	$516,530(348,250-890,040)$	$12,664(89,380-14,870)$
$50.1-55.0$	$1,199,414(567,980-1,830,849)$	$23,607(11,314-35,899)$
$55.1-60.0$	-	-
$60.1-65.0$	$1,006,964(957,164-1,056,765)$	$15,864(14,956-16,774)$
$65.1-70.0$	$1,129,575(1,082,091-1,544,888)$	$17,350(16,272-22,887)$

[^0]C．notatus（李•李，1987）에서는 난항구의 형성이 시작된 후에 생긴다．그러나 범가자미에서는 난자 형성과정 중 유구라고 생각되는 형태를 난소 조직 상에서 관찰할 수 없었으며，배란된 완숙난에서도 유구가 없으므로 유구가 없는 것이 범가자미 난의 특징이라고 생각된다．

범가자미 중 50% 가 산란에 참여하는 크기는 암 컷에서는 전장 $42.0 \sim 44.0 \mathrm{~cm}$ ，수컷에서는 전장 $28.0 \sim 30.0 \mathrm{~cm}$ 로 나타낪는데，전 등（1996）은 이러 한 전장에 해당되는 연령온 암컷이 3 세，수컷이 2 세라고 보고하였다．산란기 동안 암컷의 전장과 생 식소중럏지수 관계에서 생물학적 최소형 이상의 개체들에서는 전장에 따른 생식소중량지수의 차 이는 없었으며，산란성기인 1월에도 44.0 cm 이상 의 개체에서는 모두 생식소중량지수가 높게 나타 나고 있어 생물학적 최소형 이상의 개체들에서는 전장에 따른 성숙시기의 차이롤 발견할 수 없었다． 그러나 암컷에서는 전장 $45.0 \sim 50.0 \mathrm{~cm}$ ，수컷에서 는 전장 $30.0 \sim 35.0 \mathrm{~cm}$ 에 해당되는 개체들의 생식 소중량지수가 상대적으로 높게 나타나고 있어，이 러한 크기의 암수들이 가장 할발한 생식 활동기에 있다고 생각된다．

산란기 개체들의 난소내 난경 조성에서 600～ $1,400 \mu \mathrm{~m}$ 사이의 난모세포들이 $4 \sim 6$ 개의 무리를 이루어 출현하고 있는데，난소 조직상에서도 난황 형성중인 난모세포에서부터 배란되기 직전의 난 모세포에 이르기까지 여러 단계의 난모세포들이 무리를 이루어 발달하고 있다．이러한 난 발달 양 식은 다희산란하는 어종에서 볼 수 있는 비동기발 달형（Wallace and Selman，1981）과 일치한다．그 리고 津崎（1995）는 범가자미의 자연 산란이 수조 내에서 14 일 동안 충 9 희에 걸쳐 일어났다고 보고 한 바 있다．따라서 범가자미는 한 산란기 내에 다 희산란하는 종임이 분명하며 적어도 4회 이상 산 란할 것으로 판단된다．

인 용 문 헌

金烔培•李罩烈．1984．전어，Konosirus punctatus의 生殖生物學的 研究．轉水認 17 （3）：206～218．
백혜자－김 윤．1996．범가자미，Verasper variegatus의

난모세포 성숙（GVBD）유도를 위한 HCG와 스테로 이드 호르몬의 in vitro 효과．한국양식학혀지 $9(1)$ ： 57～63．
李架敦•李罩烈．1987．자리둠의 生殖周期에 관한 研究．䡛水誌20（6）：509～519．
李柇敦•安哲民•李定宰•李澤烈．1992．황늘래기， Pseudolabrus japonicus의 生殖周期와 性轉換．渧州大 海洋研報 $16: 55 \sim 66$ ．
李澤烈•羽生功．1984．그몰코쥐치，Rudarius ercodes 의 生殖周期．䩞水誌 $17(5): 423 \sim 435$ ．
的研究．2．成熟车 産卵．韓水誌 22 （5）：266～280．
전 북순－박병하－전임기 • 강용주．1996．범가자미， Verasper variegatus의 연령과 성장．韓魚誌8（1）：56 ~ 63 ．
勧文基．1977．嘾國魚圖譜．一誌坖，서울， 567 pp ．
勧義泳•安暂民•李澤烈．1991．깡뚱어，Boleophthal－ mus pectinirostris의 性成熟．㫌水誌24（3）：167～ 176.

曽基采•金宗焌•高昌淳•金潤•金庚吉．1995．범가자 미，Verasper variegatus의 種苗生産에 關한 研究．水振研究報告 $50: 41 \sim 57$ ．
Billard，R．1986．Spermatogenesis and spermatology of some teleost fish species．Reprod．Nutr．Dev． $26: 877 \sim 920$.
Hayashi，I．1972．On the ovarian maturation of the Japanese sea bass，Lateolabrax japonicus． Japan．J．Ichthyol． $19: 243 \sim 254$.
Love，M．S．and W．V．Westphal．1981．Growth，repro－ duction and food habits of olive rockfish，Sebastes serranoides，off central California．Fish．Bull． $79: 533 \sim 543$.
Suquet，M．，R．Billard，J．Cosson，G．Dorange，L． Chauvaud，C．Mugnier and C．Fauvel． 1994. Sperm features in turbot（Scophthalmus max－ imus）：a comparison with other freshwater and marine fish species．Aquat．Living Resour． 7 ： 283～294．
Takano，K．1964．On the egg formation and the follic－ ular changes in Lebistes reticulatus．Bull．Fac． Fish．Hokkaido Univ． $15: 147 \sim 155$.
Wallace，R．A．and K．Selman．1981．Cellular and dynamic aspects of oocyte growth in teleosts． Am．Zool． 21 ：325～343．

水戶勧．1963．魚雑 9（3－6）：88，Pls．32－33．
津崎龍雄．1992．ホシガレイの種苗生産．水産の研究 11（4）：105～111．

津崎龍雄．1995．ホシガレイの種苗生産の現狀と問題點．水産增殖 $43(2): ~ 273 ~ 276$.
田北徹•藤田矢郎•道津喜鿉．1967．ホシガレイの卵發

生およびふ化仔魚について．長崎大學水産學部研究報告23：101～106．
山本喜一郎•太田䵢•高野和則•石川徽二．1965．ニジ
マスの成熟に聞する研究－1．1年魚の卵巢の發達 について，日水誌 31 ：123～132．

Sexual Maturation of the Spotted Flounder Verasper variegatus

Yoon Kim，Cheul Min An，Kyung－Kil Kim and Hea Ja Baek
Aquaculture Division，National Fisheries Research
and Development Institute（NFRDI），Pusan 619－900，Korea

The ovary of the spotted flounder Verasper variegatus is a conical bag in shape and is bilat－ eral structure develops lengthily from the posterior of the abdomen to the end of the anal fin． The testis also is bilateral in structure，usually located in small size in the abdomen．In females，the gonadosomatic index（GSI）showed very low from March to July，and then began to increase from August，thereafter reached the maximum in January through out the year．In males，the GSI reached the maximum（1．7）in January through out the year，as seen in females．Compared with the male GSI in other fishes，the maximum GSI of this species were very lower than those of other fishes．According to the distributions of egg diameter in the spawning season，it is assumed that the spotted flounder spawn four times or more in the spawning season．The total length of female and male reached 50% first sexual maturity were $42.0 \sim 44.0$ and $28.0 \sim 30.0 \mathrm{~cm}$ ，respectively and total length of female and male reached 100% maturity were 44.0 and 32.0 cm ，respectively．The reproductive cycle could be classified into four successive developmental stages ：growing stage（August～October），mature stage （November \sim December），ripe and spent stage（December \sim February），degenerative and rest－ ing stage（March～July）．

[^0]: （ ）＊：range

