
A Provably Secure and Practical Signature Scheme for

Smart Cards

Yong Kuk You and Sang Geun Hahn

Korea Advanced Institute of Science and Technology,
Department of Mathematics, Taejon 305-701, Korea

J. KSIAM Vol.2, No.1, 15-26, 1998

Abstract

By ”secure”, we mean that some well-defined computational assumption can be
shown to be sufficient for the scheme not to be existentially forgeable, even under
an adaptive chosen message attack. Most, if not all, signature schemes used in
practice are based on a computational assumption that is certainly necessary for
this kind of security, not known to be sufficient. Since the work of Goldwasser,
Micali and Rivest[?], many researches have been done for the secure signature
schemes. We modify the Cramer-Damgȧrd scheme to implement a practical and
secure signature scheme for smart cards.

1 Introduction

For most digital signature schemes used in practice, it has only been shown that certain
plausible cryptographic assumptions, such as the collision-intractibility of factoring
integers, computing discrete logarithms or the collision-intractibility of certain hash
functions are necessary for the securities of the schemes, while their sufficiency is an
open question.

A clear advantage of such schemes over many signature schemes with security proven
relative to such common cryptographic assumptions, is their efficiency. We want to
design a digital signature scheme that offers both high security and practical value.
First, relative to some plausible cryptographic assumption, a proof must be given that
the scheme is not existentially forgeable under adaptively chosen message attacks [?].
A signature scheme is existentially unforgeable if, given any polynomial (in the security
parameter) number of pairs

(m1, S(m1)), (m2, S(m2)), · · · , (mk, S(mk)),

where S(m) denotes the signature on the message m, it is computationally infeasible
to generate a pair (mk+1, S(mk+1)) for any message mk+1 6∈ {m1, · · · ,mk}, even if it

15

16 Yong Kuk You and Sang Geun Hahn

is random or nonsensical. And an adaptive chosen message attack means that the
enemy can use the signer A as an ”oracle”; not only may he request from A signatures
of messages which depend on A’s public key but he may also request signatures of
messages which depend additionally on previously obtained signatures.

Secondly, we require that the amount of computation and the size of the signatures
are small, and finally, the amount of storage needed is resonally limited. Benefit-
ting from the special properties of claw-free trapdoor permutations, the secure scheme
presented in [?] achieves signatures of size O(k · log i), where k stands for a security
parameter and i indicates the number of signatures made. Recently, progress has been
made in this area. Starting with [?], it can be concluded that proven security, mod-
erate amount of computation and provision of any reasonable number of small-sized
signatures, can be satisfised [?]. Schemes in [?], [?] are based on RSA-assumptions, but
our scheme in this paper is base on the Schnorr scheme.

To present a digital signature that offers both proven security and practical value,
we modify the Cramer-Damgȧrd’s schnorr-based scheme in [?].

2 Preliminaries

2.1 Elliptic Curves over F2m

In 1985 a variant of discrete log cryptography based on the discrete log problem in
the group of points of an elliptic curve defined over a finite field was proposed. These
cryptosystems have two potential advantages: (1) the great diversity of elliptic curves
available to provide the groups and (2) the absence of subexponential time algorithms
that could find discrete logs.

These systems potentially provide equivalent security as the existing public key sys-
tems, with shorter key lengths. This can be a crucial factor in some applications, for
example the design of smart card systems [?]. We will consider only non-supersingular
elliptic curves. A non-supersingular curve E over F2m is the set of all solution to an
equation of the form y2 + xy = x3 + ax2 + b with a, b ∈ F2m , b 6= 0 together with the
identity O. (It is most convenient to represent O by (0,0).) The following algorithm in-
puts the points P0 = (x0, y0) and P1 = (x1, y1) on E and returns their sum P2 = (x2, y2).

Algorithm 1. (Group Operation on E)

If P0 = O then output P2 ←− P1 and stop
If P1 = O then output P2 ←− P0 and stop
If x0 = x1

then
if y0 + y1 = x1 then output O and stop
else

λ←− x1 + y1

x1

x2 ←− λ2 + λ+ a
y2 ←− x2

1 + (λ+ 1)x2

A Provably Secure and Practical Signature 17

else
λ←− y0+y1

x0+x1

x2 ←− λ+ λ+ x0 + x1 + a
y2 ←− (x1 + x2)λ+ x2 + y1

Output P2 ←− (x2, y2)

[−1]P = (x, x + y) if P = (x, y). Except for the special cases involving O, the above
operations each require 1 multiplicative inversion and 2 or 3 multiplications.

If we let α, β be the roots of the equation x2− tx+q = 0, where t = q+1−#E(Fq),
then

#E(Fqn) = qn + 1− αn − βn = qn + 1− tn.
And tn = αn + βn is the sequence satisfying t0 = 2, t1 = t and tn+1 = tn − qntn−1

(n ≥ 1).

2.2 Operations on Elliptic Curve E(F2m)

Elliptic public-key protocols are based on the operation of [n]P, which is called scalar
multiplication by n. Koblitz introduced a family of curves which admit specially fast
elliptic scalar multiplication. This algorithm was later modified by Meier and Staffel-
bach. We will use the Solinas method[?] in this paper.

Squaring
We will assume that the field F2m is represented in terms of a normal basis over F2

of the form
{θ, θ2, θ22

, · · · , θ2m−1}.
Then squarng a field element can be accomplished by a one-bit cyclic shift of the bit
string representing the element.

Elliptic Scalar Multiplication
The basic technique is the addition-subtraction method . This begins with the

nonadjacent form (NAF) of coefficient n : a signed binary expansion with the property
that no consecutive coefficients are nonzero. For example,

NAF (29) =< 1, 0, 0,−1, 0, 1 >

since 29 = 32 − 4 + 1. The average cost of the operation of this way is 3
4m elliptic

operations.

Anomalous Binary Curves (ABC’s)
Two extremely convenient familes of curves are the curves E0 and E1 defined over

F2 by
Ea : y2 + xy = x3 + ax2 + 1.

To avoid attacks such as Pohlig-Hellman Algorithm and Shank’s baby step giant step
attack, #Ea(F2m) should be a prime or the product of a prime and small integer.

18 Yong Kuk You and Sang Geun Hahn

From the Frobenius map over F2 :

τ(x, y) = (x2, y2),

we have the following equation :

(τ2 + 2)P = (−1)1−aτP, for all p ∈ E.

Since the Frobenius map is just left bit-rotate for the normal basis representation, the
multiplication by τ, is essentially free. Thus it is worthwhile, when computing [n]P, to
regard n as an element of Z[τ]. The following algorithm is for computing the τ − addic
NAF.

Algorithm 2.(τ − addic NAF)

Input x0, y0

Set x←− x0, y ←− y0

Set S ←−<>
While x 6= 0 or y 6= 0,

If x odd,
then set u←− 2− (x− 2y (mod 4))
else set u←− 0

Set x←− x− u
Prepend u to S
Set (x, y)←− (y + (−1)ax/2,−x/2)

EndWhile
Output S

There is a drawback to this representaton, the τ − adic NAF of an integer n is about
twice as long as its ordinary NAF. The solution is the fact that multiplication by τ
is done by a one-bit circular shift. So α, β ∈ Z[τ] with α ≡ β mod (τm − 1), then
[α]P = [β]P, for all P. Thus the τ − adic NAF of the remainder will have length m,
half as long as the τ − adic NAF of n. The ring Z[τ] is Euclidean with norm function

N(x+ yτ) = x2 + (−1)1−axy + 2y2.

The following algorithm inputs the dividend u + vτ and divisor r + sτ and outputs a
quotient w + zτ and remainder x+ yτ with smaller norm then the divisor.

Algorithm 3.(Division in the Ring Z[τ])

Input u, v, r, s
Set k ←− ru+ su+ 2sv,

l←− rv − su
Set h←− r2 + (−1)1−ars+ 2s2

A Provably Secure and Practical Signature 19

Set w ←− bk/hc,
z ←− bl/hc

Set x←− u− rw − rz − sz,
y ←− v − sw − rz − sz

Output w, z, x, y

Let U0 = 0, U1 = 1, and
Uk = (−1)1−aUk−1 − 2Uk−2

for k ≥ 2. Then
τm = Umτ − 2Um−1.

In this way, one can compute [n]P with m
3 elliptic operations. Our scheme will not use

the τ − adic NAF in the signature generation step, since only required operations are
doublings and additions. But the τ − adic NAF, will be useful in the verification step.

2.3 Schonorr’s Preprocessing Algorithm

The purpose of this preprocessing algorithm is to reduce the computational effort to
compute gr on a week power smart card. Schnorr’s original proposal was presented
at Crypto’89 [?] and cryptanalyzed by de Rooij[?]. The following revised algorithm
was presented in [?], which was also cryptanalyzed by de Rooij[?]. We will apply this
algorithm to the Cramer-Damgȧrd scheme.

In the followings, p is a large prime, q is a prime that divides p− 1, and α ∈ Zq is a
primitive qth root of unity. Suppose that the smart card keeps a collection of k pairs
(ri, xi), (0 ≤ i < k), ri ∈R Zq, such that xi = gri mod p, and set v = k.

1. Pick a random permutation (av(0), · · · , av(k−1)) of (0, · · · , k−1), and set av(k) =
0, av(k + 1) = k − 1.

2. Compute the following values:

r∗v = rv−k + 2rv−1 mod q,

rv =
k+1∑
i=0

2irav(i)+v−k mod q,

x∗v = xv−kx
2
v−1 mod p,

xv = Πk+1
i=0 (xav(i)+v−k)2

i
mod p.

3. Keep (r∗v , x
∗
v) ready for the next signature. Replace (rv−k, xv−k) with (rv, xv).

4. Set v = v + 1 and goto step 1. for the next signature.

This requires 2k + 2 multiplications mod p, a storage of k pairs (ri, xi) and an update
of a pair each time a new pair is an output. De Rooij developed an attack to find the
secret key of the signer in (k!)2 steps using

√
1
2π(k − 1)k! consecutive signatures. So to

20 Yong Kuk You and Sang Geun Hahn

achieve level of 272, we have to choose k = 14.

De Rooij’s Attack

The following two equations can be obtained from the signature (yj , ej) for j ≥ k.

rj−1 =
1
2

(yj − sej − rj−k) mod q, (1)

rj =
k+1∑
i=0

2irav(i)+j−k mod q. (2)

By repeated substitution of (2.1) into (2.2), we can obtain, from each signature one
equation with k − 1 unknowns, r0, · · · , rk−2, and s.

The basic idea of de Rooij’s attack is to find two equations in which the unknowns,
r0, · · · , rk−2, have the same coefficients. This then directly gives the secret key s. (See
[?].)

3 Elliptic Curve Signature Scheme

3.1 Initialization

M denotes the message space, and two one-way hash functions H : M−→ Z, G :
E(F2m)3 −→ Z are made public. Signer picks a point P ∈ E(F2m), with N = Ord(P),
and makes them public.

Signer gengerates two independent instances

(X,w) ≡ ((Xi, w1), · · · , (Xd, wd)) and
(X,w) ≡ ((X1, w1), · · · , (Xd, wd)),

with Xi = [wi]P and Xi = [wi]P for i = 1, · · · , d. The roots of the authentication trees,
A1

1 = [z1
1]P,A2s+2

1 = [z2s+2
1]P,A2(2s+1)+1

1 = [z2(2s+1)+1
1]P, · · · , Ac(2s+1)+1

1

= [zc(2s+1)+1
1]P, where z1

1 , z
2s+2
1 , z

2(2s+1)+1
1 , · · · , zc(2s+1)+1

1 ∈ ZN are precomputed by
the following preprocessing with the renewal parameter s and an integer c. And all
z1
1 , z

2s+2
1 · · · , zc(2s+1)+1

1 are different mod N.

(X,X,A1
1, A

2s+2
1 , · · · , Ac(2s+1)+1

1) are placed in the public directory, and wi, wi for
i = 1, · · · , d are secret. By storing A1

1 and the differences between consecutive values,
this requires hardly any storage. And the smart card only stores (X,w), (X,w) and
(Ai∗

b , z
i∗
b), b ∈ {0, 1}, 0 ≤ i < k of the following section.

3.2 Preprocessing over E(F2m)

For (Ai∗
b , z

i∗
b), 0 ≤ i < k such that Ai∗

b = [zi∗
b]P, b ∈ {0, 1}, set v = k.

1. Pick a random permutatoin (av(0), · · · , av(k−1)) of {0, · · · , k−1} and set av(k) =
0, av(k + 1) = k − 1.

A Provably Secure and Practical Signature 21

2. Compute the following values:

zv
b = zv−k∗

b + 2zv−1∗

b mod N,

zv∗
b =

k+1∑
i=0

2iz
av(i)+v−k∗

b mod N,

Av
b = Av−k∗

b + 2Av−1∗

b over E(F2m),

Av∗
b =

k+1∑
i=0

2iA
av(i)+v−k∗

b over E(F2m).

3. Keep (Av
b , z

v
b) ready for the next signature. Replace (Av−k∗

b , zv−k∗

b) with (Av∗
b , z

v∗
b).

(i.e. Keep (Ai∗
b , z

i∗
b), v − k + 1 ≤ i ≤ v.)

4. v = v + 1 and goto step 1. for the next signature.

3.3 Signature Generation

For a ith message M i ∈M, 1 ≤ i ≤ (c+ 1)s, with i = ps+ q, 0 ≤ p ≤ c, 1 ≤ q ≤ s,

M i
1 ‖ · · · ‖M i

d ≡ H(M i) mod dN.

First, ri
0 = zi

0 + M i
1w1 + · · · + M i

dwd. Before establishing an authentication for Ai
0,

signer computes Ap(2s+1)+2q
1 , A

p(2s+1)+2q+1
1 . Next, Ai

0 is authenticated, together with
A

p(2s+1)+2q
1 , A

p(2s+1)+2q+1
1 , by computing ri

1 = z
p(2s+1)+q
1 + µiw1 + · · ·+ µdwd, where

µ1 ‖ · · · ‖ µd ≡ G(Ap(2s+1)+2q
1 ‖ Ap(2s+1)+2q+1

1 ‖ Ai
0) mod dN.

Let Auth(Ai
0) be an authentication path for Ai

0 i.e., Auth(Ai
0) consists of all tuples

of the form (Ap(2s+1)+j
1 , A

p(2s+1)+2j
1 , A

p(2s+1)+2j+1
1 , Aps+j

0 , rps+j
1), with 1 ≤ j ≤ q, such

that Ap(2s+1)+j
1 is an ancestor of Ap(2s+1)+q

1 . The signature σ(M i) on M i consists of
(Auth(Ai

0),ri
0).

We suggested that the authentication tree be renewed after each s time generations
of signatures. That is, after each s-th signature, all authentication paths generated
before will be removed, and a new authentication path will continue. This is merely
for storage. The renewal parameter s and a parameter c will be determined in the
consideration of storage of smart card, the size of data transmission and the required
number of signatures to be signed respectively. The smart card will generate (c + 1)s
number of signatures.

3.4 Signature Verification

The verifier puts σ(M i) ≡ (Auth(Ajr
0), rjr

0), where r is the number of tuples in Auth(Ai
0)

and (Ajl
1 , A

2jl
1 , A2jl+1

1 , Ajl
0 , r

jl
1) is the l-th tuple in Auth(Ajr

0).
Verifier checks whether

22 Yong Kuk You and Sang Geun Hahn

1. Aj1
1 ∈ {A1

1, A
2s+2
1 , · · · , Ac(2s+1)+1

1 },

2. Ajl
1 ∈ {A

2jb l
2 c

1 , A
2jb l

2 c
+1

1 } for j = 2, · · · , r,

3. [rjr
0]P = Ajr

0 + [m1]X1 + · · ·+ [md]Xd,

4. [rjr
1]P = Ajr

1 + [µ1]X1 + · · ·+ [µd]Xd,

with M i
1 ‖ · · · ‖ M i

d ≡ H(M i) mod dN, µ1 ‖ · · · ‖ µd ≡ G(A2jr
1 ‖ A2jr+1

1 ‖ Ajr
0) mod

dN.

3.5 Security

First the original scheme of Cramer-Damgȧrd[?] is secure in the sense that under an
adaptive chosen message attack, it is not existentially forgeable. But its signature size
is O(k log i) bits, where k is the number of bits needed to represent an element, and i
indicates the number of signatures made, so we modified it to have restricted size of
signatures. And our modification does not affect the security of it. Proof of security
of

∑
P , which is shown in [?] is slightly changed and it is obvious as we shall see later.

The authentication trees will be the binary trees. Although the smart card forget the
passed authentication values periodically, the simulation in the proof will not forget
the values and the proof of

∑
P [?] will be applied to the trees.

Secondly, Schnorr’s preprocessing is secure even for k = 8 in our application. In
the de Rooij’s attsck two equations from two signatures, (yi0 , ei0) and (yi1 , ei1), have
the same coefficients in ri (0 ≤ i ≤ k − 2) if and only if i0 ≡ i1 mod k − 1 and the
corresponding permutations ai0(·) and ai1(·), are identical[?]. Thus, if one possesses
the signatures (yi, ei) for i0 < i ≤ i1 +1 and if i0 ≡ i1 (mod k−1), one has a candidate
to determine the secret key s. But in the application of it to our scheme, the determi-
nation of w1, · · · , wd requires more steps in addition. Determining d unknowns requires
d linear equations, so it will require (k!)2d steps. Hence if we let d = 3, k = 8, then the
security is about 293, which is larger than the intended security 272 of Schnorr. So our
scheme in this paper has sufficient security.

Proof of the security of the modified scheme

Cramer-Damgȧrd have shown that interactive protocols P’s of certain types can be
transformed into secure protocols

∑
P ’s. Our scheme has the interactive protocol P in

the Figure 3.1 as a primitive, and P is considered collision intractible in the sense that
there is no probabilistic polynomial time algorithm that, given X as input, can generate
two accepting conversations (with respect to X) (A, c, r), (A, c′, r′), with c 6= c′, except
with negligible probability of success.

We do not consider the Schnorr preprocessing here, so the following zi
b’s are chosen

at random. And we need a special simulator S such that on input X and any challenge
c ∈ {0, 1}dN , S outputs an accepting conversation (A, c, r) of P.

A Provably Secure and Practical Signature 23

Prover Verifier

(X,w) = ((X1, w1), · · · , (Xd, wd))
[w1]P = X1, · · · , [wd]P = Xd

A = [z]P, z ∈r ZN

−→
A

c← {0, 1}dN

←−
c = c1 ‖ · · · ‖ cd

r = z + c1w1 + · · ·+ cdwd

−→
r

[r]P ? = A+ [c1]X1 + · · ·+ [cd]Xd

Figure 1: Protocol P, common input X = (X1, · · · , Xd)

Theorem Any probabilistic polynomial time crcking algorithm A that forges a signa-
ture on a new message with probability ε(k), after at most polynomially many calls to
a signer, can be compiled into probabilistic polynomial time procedure A∗ that, breaks
the collision interactability of P with probability of the order of ε(k). The running time
of A∗ is of the same order as the running time of A.

Proof. Let X be an instance of P. We now describe how A∗ can cracks the collision
intractability of P by using the forgerA and the following simulation of

∑
P .A∗ receives

X as input.
A∗ first finds a solved instance (X ′, w′) = ((X1, w1), · · · , (Xd, wd)). Then a bit e is

chosen at random. Put (Xe, we) = (X ′, w′), and X1−e = X.

For the simulation, we distinguish between two cases.
case e = 0 : We create authentication trees with P (k)(≤ (c + 1)s) internal nodes,
starting at the leaves. The leaves Aj

1 are generated as follows.

1. cj ←− {0, 1}dN

2. (Aj
1, c

j , rj
1)←− S(X1, c

j).

For children A
p(2s+1)+2q
1 and A

p(2s+1)+2q+1
1 , 0 ≤ p ≤ c, 1 ≤ q ≤ s, generate Ai

0 =
[zi

0]P, with i = ps+ q, zi
0 ∈R ZN . Then the parent Ap(2s+1)+q

1 will be generated as

24 Yong Kuk You and Sang Geun Hahn

(Ap(2s+1)+q
1 , A

p(2s+1)+2q
1 ‖ Ap(2s+1)+2q+1

1 ‖ Ai
0, r

i
1)

←− S(X1, A
p(2s+1)+2q
1 ‖ Ap(2s+1)+2q+1

1 ‖ Ai
0).

In this way, the authentication trees are generated. If c′(< c+1) number of authen-
tication trees are generated, the other c− c′+ 1 number of roots are chosen at random.
The resulting instance (X0, X1, A

1
1, A

2s+2
1 , · · · , Ac(2s+1)+1

1) of
∑
P is sent to the forger

A. After this, the cracking algorithm can start making its (at most P (k)) calls. Note
that this simulation can now deal with any signature request, as the i-th signature, on
a message M i, can be computed by computing ri

0 = zi
0 + M i

1w1 + · · · + M i
dw

i
d, with

M i
1 ‖ · · · ‖M i

d ≡ H(M i) mod dN.

case e = 1 :

1. GenerateA1
1 = [z1

1]P,A2s+2
1 = [z2s+2

1]P, · · · , Ac(2s+1)+1
1 = [zc(2s+1)+1

1]P with z1
1 , · · · , zcs+1

1 ∈R

ZN and send the instance (X0, X1, A
1
1, A

2s+2
1 , · · · , Ac(2s+1)+1

1) to the forger A.
2. Let M i ∈M be the i-th message to be signed. Generate Ai

0 ←− S(X,H(M i)). Pro-
ceed as the signature generation phase 3.3. Note again that zi

b are chosen at random
without considering the preprocessing.

Note that in both cases the simulation can deal with any signature request, by the
special simtlator S. Furthermore, the distribution of the Ai

0, r
i
0, A

i
1 and ri

1 is always
according to the honest signer who has access to both w0 and w1. Thus the simulation
is perfect, and we may now assume that the cracking algorithm, outputs a forgery on
a new message (i.e, a message that has not been signed by the simulatior) M̃. Without
loss of generality, we assume that this happens after exactly P (k) calls, with probability
ε(k).

Let (Auth(A0), r0) be the forgery, on a new message M̃. Suppose that A0 = Aj
0

for some 1 ≤ j ≤ P (k), with probability ε1(k). As M̃ has not been signed by the
simulation, we must have M̃ 6= M j , so A∗ can get a collision for P from (A0, M̃ , r0)
and (Aj

0,M
j , rj

0).
If, on the contrary, A0 6= Aj

0 for all 1 ≤ j ≤ P (k), then there clearly exists a tuple
(A′1, A

′′
1, A

′′′
1 , A

′
0, r
′
1) in Auth(A0) and a node Ai

1 in the tree, with A′1 = Ai
1, such that Ai

1

is a leaf or Ai
1 is an internal node with A′′1 ‖ A′′′1 ‖ A′0 6= A

p(2s+1)+2q
1 ‖ Ap(2s+1)+2q+1

1 ‖
Ai

0, with i = ps+ q, 0 ≤ p ≤ c, 1 ≤ q ≤ s.
In case Ai

1 is an internal node, say with probability ε2(k), we immediately get a
collision. If Ai

1 is a leaf, with probability ε3(k), however, the probability that A′′1 ‖
A′′′1 ‖ A′0 6= ci is 1− 1

2dN , as the distribution of Ai
1 is independent of the distribution of

cj (by the properties of the special simulator), and cj was chosen uniformly at random.
Thus in this case we get a collision with probability 1 − 1

2dN . From the perfectness of
the simulation it follows that the distribution of everything sent to A is independent of
e. Therefore the probability that A∗ can compute a collision for the instance X1−e = X
is

1
2
ε1(k) +

1
2
ε2(k) +

1
2

(1− 1
2dN

)ε3(k) ≥ 1
2
ε(k)− 1

2dN+1
ε3(k),

A Provably Secure and Practical Signature 25

which is clearly of the same order as ε(k). Thus we have shown that any forger of
the signature scheme

∑
P can be turned very efficiently into a cracker of the collision

intractibility of P, with essentially the same probability of success.

3.6 Conclusion

We modified the original scheme of Cramer-Damgȧrd[?] for smart card application. The
use of elliptic curve cryptosystem and Schnorr’s preprocessing with the periodic renewal
of authentication is crucial for smart card application. The computational effort in the
smart card is mainly due to the computations for Av∗

b ’s in the preprocessing, which are
additions and doublings. So the use of elliptic curves over F2 will be better than over
other base fields for hardware implementation. Our suggested signature scheme has
bounded size of signature and the computation in the smart card is very effective with
high security.

References

[1] S. Goldwasser, S. Micali and R. Rivest, A Digital Signature Scheme Secure Against
Chosen Message Attacks, SIAM Journal on Computing, 17(2):281-308, 1988.

[2] C. P. Schnorr, Efficient Identification and Signatures for Smart Cards, Advances
in Cryptology-Crypto’89, LNCS 435, Springer-Verlag, 1990, pp.239-252.

[3] C. P. Schnorr, Efficient Signature Generation by Smart Cards, J. Cryptology, 4(3),
1991, pp.161-174.

[4] P. de Rooij, On the Security of the Schnorr Scheme Using Preprocessing, Advances
in Cryptology-EUROCRYPT’91, LNCS 547, Springer-Verlag, 1991, pp.71-78.

[5] P. de Rooij, On Schnorr’s Preprocessing for Digital Signature Schemes, Advances
in Cryptology-EUROCRYPT’93, LNCS 765, Springer-Verlag, 1994, pp.435-439.

[6] R. Cramer, I. Damgȧrd, Secure Signature Schemes Based on Interactive Protocols,
Advances in Cryptology-Crypto’95, LNCS, Springer-Verlag, 1995, pp.297-310.

[7] A. J. Menezes, Elliptic Curve Public Key Cryptosystems, Kluwer Academic Pub-
lishers, 1993.

[8] A. J. Menezes, T. Okamoto, and S. A. Vanstone, Reducing Elliptic Curve Loga-
rithms to Logarithms in a Finite Field, Proc. 23rd, ACM Symp. Theory of Com-
puting, 1991.

[9] W. Meier, O. Staffelbach, Efficient Multiplication on Certain Non-supersingular
Elliptic Curves, Advances in Cryptology-Crypto’92, LNCS, Springer-Verlag, 1993,
pp.333-344.

[10] J. H. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag, 1992.

26 Yong Kuk You and Sang Geun Hahn

[11] J. Solinas, An Improved Algorithm for Arithmetic on a Family of Elliptic Curves,
Advances in Cryptology-Crypto’97, LNCS, Springer-Verlag, 1997, pp.357-371.

[12] R. Cramer, I. Damgȧrd, New Generation of Secure and Practical RSA-based Sig-
natures, Advances in Cryptology-Crypto’96, LNCS, Springer-Verlag, 1996, pp.173-
185.

[13] C. Dwork, M. Naor, An Efficient Existentially Unforgeable Signature Scheme and
its Applications, Advances in Cryptology-Crypto’94, LNCS 839, Spriner-Verlag,
1994, pp.234-246.

[14] D. Pointcheval, J. Stern, Security Proofs for Signature Schemes, Advances in
Cryptology-EUROCRYPT’96, LNCS 1070, Springer-Verlag, pp.387-398.

[15] N. Koblitz, A Course in Number Theory and Cryptography, Springer-Verlag, 1987.

