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ON MONOTONICITY OF ENTROPY

Youngsoo Lee

Abstract. In this paper we define the entropy rate and stationary Markov chain and

we show the monotonicity of entropy per element and prove that the random tree Tn

grows linearly with n.

1. Introduction

The asymptotic equipartition property (A.E.P) states that
1

n
log

1

p(X1, X2, · · · , Xn)
is closed the entropy H, where X1, X2, · · · , Xn are independent identically distribu-
tion (i.i.d) random variables and p(X1, X2, · · · , Xn) is the probability of observing the
sequence X1, X2, · · · , Xn, p(X1, X2, · · · , Xn) is close to

∑

2−nH with high probability.

Let B
(n)
δ < æn be any set with Pr{B

(n)
δ } ≥ 1 − δ and let X1, X2, · · ·Xn be i.i.d.

Then the theorem 3.4 see that
1

n
log|B

(n)
δ | > H − δ for n sufficiently large.

When the limit exists, we define two definitions of entropy rate for a stochastic
process as follows

H(æ) = limn→∞

1

n
H(X1, X2, · · ·Xn),

H ′(æ) = limn→∞ H(Xn|Xn−1, Xn−2, · · · , X1).

In particular, for a stationary stochastic process,

H(æ) = H ′(æ).

In this paper we will show that the thorem 4.4 is established. In detail, the contents
of this paper is as follows. In 2, we explain the terminology of typical set and entropy.
In 3, we define typical set and we prove the theorem 3.4. In 4, we define entorpy rate
and we prove the theorem 4.4, theorem 4.5.
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2. Preliminary

Let X be a discrete random variable with alphabet æ and probability mass function
by p(x). Then the entropy H(X) of a discrete random variable X is defined by

H(X) = −
∑

x∈X

p(x) log p(x).

We often denote the H(X) as H(p) and entropy is expressed in bits.
H(X,Y ) of a pair of discrete random variable (X,Y ) with a joint distribution p(x, y)

is called the joint entropy and it is defined as

H(X,Y ) = −
∑

x∈X

∑

y∈Y

p(x, y) log p(x, y).

Also H(Y |X) is called the conditional entropy as

H(Y |X) =
∑

x∈X

p(x)H(Y |X = x)

= −
∑

x∈X

p(x)
∑

y∈Y

p(y|x) log p(y|x)

= −
∑

x∈X

∑

y∈Y

p(x, y) log p(y|x).

The relative entropy between two probability mass function p(x) and q(x) is defined
as

D(p||q) =
∑

x∈X

p(x) log
p(x)

q(x)
.

The relative entropy between the joint distributions and the product distributions
p(x), p(y) are called the mutual information and it is represented as

I(X;Y ) =
∑

x∈X

∑

y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
.

The following properties are well-known ([2],[3],[9])
(i) H(X) ≥ 0
(ii) For any two random variables X,Y,H(X|Y ) ≤ H(X)
(iii) H(X1, X2, · · · , Xn) ≤

∑n
i=1 H(Xi).

The random variables Xi are independent iff equality holds.
(iv) H(X) ≤ log | æ| where X is uniformly distributed over æ iff equality holds.

The joint entropy and conditional entropy can make the chain rule as follows.

H(X,Y ) = H(X) +H(Y |X)
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Indeed,

H(X,Y ) = −
∑

x∈X

∑

y∈Y

p(x, y) log p(x, y)

= −
∑

x∈X

∑

y∈Y

p(x, y) log p(x)p(y|x)

= −
∑

x∈X

∑

y∈Y

p(x, y)logp(x)−
∑

x∈X

∑

y∈Y

p(x, y)logp(y|x)

= −
∑

x∈X

p(x)logp(x)−
∑

x∈X

∑

y∈Y

p(x, y)logp(y|x)

= H(X) +H(Y |X).

Proposition 1.1. H(X,Y |Z) = H(X|Z) +H(Y |X,Z).

Proof.

H(X,Y |Z) =
∑

z∈Z

p(z)H(X,Y |Z)

= −
∑

z∈Z

p(z)
∑

x∈X

∑

y∈Y

p(x, y|z) log p(x, y|z)

= −
∑

x∈X

∑

y∈Y

∑

z∈Z

p(x, y, z) log {p(x|z) · p(y|x, z)}

= −
∑

x∈X

∑

z∈Z

p(x, z)log p(x|z)

−
∑

x∈X

∑

y∈Y

∑

z∈Z

p(x, y, z)log p(y|x, z)

= H(X|Z) +H(Y |X,Z).

Let I(X;Y ) be a mutual information. Then by the definition,

I(X;Y ) =
∑

x,y

p(x, y) log
p(x, y)

p(x)p(y)

=
∑

x,y

p(x, y) log
p(y)p(x|y)

p(x)p(y)

= −
∑

x,y

p(x, y) log p(x) +
∑

x,y

p(x, y) log p(x|y)

= −
∑

x

p(x) log p(x)− (−
∑

x,y

log p(x, y) log p(x|y))

= H(X)−H(X|Y ).

By symmetry, I(X;Y ) = H(Y )−H(Y |X). SinceH(X,Y ) = H(Y )−H(Y |X), I(X;Y ) =
H(X) +H(Y )−H(X,Y ).
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Finally we obtain that

I(X;X) = H(X)−H(X|X) = H(X).

The relationship between H(X), H(Y ), H(X,Y ), H(X|Y ), H(Y |X) and I(X;Y ) is ex-
pressed in a Venn diagram.

I(X;Y ) = H(X)−H(X|Y ), I(X;Y ) = H(Y )−H(Y |X),
I(X;Y ) = H(X) +H(Y )−H(X,Y ),
I(X;Y ) = I(Y ;X), I(X;X) = H(X).

3. The smallest probable set

The asymptotic equipartition property (AEP) is a direct consequence of the weak
law of large numbers. If X1, X2, · · · , Xn are independent, identically distributed (i.i.d.)
random variables and p(X1, X2, · · · , Xn) is the probability of observing the sequence

X1, X2, · · · , Xn, then the AEP states that
1

n
log

1

p(X1, X2, · · · , Xn)
is close to the en-

tropy H. Indeed, since the Xi are i.i.d. So are log p(Xi).

Hence −
1

n
log p(X1, X2, · · · , Xn) = −

1

n

∑

i log p(Xi)

= −E log p(X) in probability = H(X).

We define that the typical set A
(n)
ǫ with respect to p(x) is the set of sequences

(x1, x2, · · · , xn) ∈ æ with the following properties :

2−n(H(x)+ǫ) ≤ p(x1, x2, · · · , xn) ≤ 2−n(H(x)−ǫ).

We obtain that the typical set A
(n)
ǫ has the following properties ([3], [6], [9]).

Proposition 3.1. 1. If (x1, x2, · · · , xn) ∈ A
(n)
ǫ , then

H(x)− ǫ ≤ −
1

n
log p(x1, x2, · · · , xn) ≤ H(x) + ǫ.

Also Pr{A
(n)
ǫ } > 1− ǫ for n sufficiently large.

2. |A
(n)
ǫ | ≤ 2n(H(x)+ǫ), where |A| denotes the number of elements in the set A.
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|A
(n)
ǫ | ≥ (1− ǫ)2n(H(x)−ǫ) for n sufficiently large.

Proof. 1. Since (x1, x2, · · · , xn) ∈ A
(n)
ǫ ,

2−n(H(x)+ǫ) ≤ p(x1, x2, · · · , xn) ≤ 2−n(H(x)−ǫ).

Taking the log with base 2 to both sides,

−n(H(x) + ǫ) ≤ log 2p(x1, x2, · · · , xn) ≤ −n(H(x)− ǫ).

Therefore H(x) − ǫ ≤ −
1

n
log p(X1, X2, · · · , Xn) ≤ H(x) + ǫ since the probability of

the event (X1, X2, · · · , Xn) ∈ A
(n)
ǫ tends to 1 as n → ∞. For any δ > 0 there exist an

n0, such that for all n ≥ n0,

Pr

{
∣

∣

∣

∣

−
1

n
log p(X1, X2, · · · , Xn)−H(X)

∣

∣

∣

∣

< ǫ

}

> 1− δ.

2. 1 =
∑

x∈Xn P (x) ≥
∑

x∈A
(n)
ǫ

P (x) ≥
∑

x∈A
(n)
ǫ

2−n(H(x)+ǫ)

= 2−n(H(x)+ǫ)|A
(n)
ǫ |,

Finally, since Pr {A
(n)
ǫ } > 1− ǫ, 1− ǫ < Pr {A

(n)
ǫ }

≤
∑

x∈A
(n)
ǫ

2−n(H(x)−ǫ) = 2−n(H(x)−ǫ)|A
(n)
ǫ |.

Hence |A
(n)
ǫ | ≥ (1− ǫ)2n(H(x)−ǫ).

Now we divide all sequences in æn into two sets :

One is the typical set A
(n)
ǫ and the other is complement A

(n)c
ǫ and we order all

elements in each set according to lexicographic order.

Then we can represent each sequence of A
(n)
ǫ by giving the index of the sequence in

the set.
Giving the index of the sequence in the set, we can represent each sequence of

A
(n)
ǫ . Since there are ≤ 2n(H−ǫ) sequences in A

(n)
ǫ , the indexing requires no more than

n(H + ǫ) + 1 bits because n(H + ǫ) may not be an integer.
We prefix all their sequences by a 0, giving a total length of ≤ n(H + ǫ) + 2 bits to

represent each sequence in A
(n)
ǫ .

We denote æn as a sequence X1, X2, · · · , Xn. Let I(x
n) be the length of the code

word corresponding to xn.



130 YOUNGSOO LEE

Lemma 3.2. Let Xn be independent identically distribution (i. i.d.) with probability
p(x). Let ǫ > 0. Then there exists a code which maps sequences xn of length n into

binary strings such that the mapping is one to one and E[
1

n
l(Xn)] < H(X) + ǫ, for n

sufficiently large.

Proof. E(l(Xn)) =
∑

xn P (xn)l(xn)
=

∑

xn∈A
(n)
ǫ

P (xn)l(xn) +
∑

xn∈A
(n)c
ǫ

P (xn)l(xn)

≤
∑

xn∈A
(n)
ǫ

P (xn)[n(H + ǫ) + 2] +
∑

xn∈A
(n)
ǫ

P (xn)(nlog| æ|+ 2)

= Pr{A
(n)
ǫ }{n(H + ǫ) + 2}+ Pr{A

(n)c
ǫ }(nlog| æ|) + 2

≤ n(H + ǫ) + ǫn( log | æ |) + 2 = n(H + ǫ1)

where ǫ1 = ǫ+ ǫ( log | æ|) +
2

n
, {B

(n)
δ } ≥ 1− δ.

Definition 3.3. For each n = 1, 2, · · · , let B
(n)
δ ⊂ æn be any set with Pr{B

(n)
δ } ≥

1 − δ must have significant intersection with A
(n)
ǫ and therefore must have about as

many elements.

Theorem 3.4. Let X1, X2, · · · , Xn be i.i.d. with p(x). For δ < 1
2 and any δ1 > 0,

if Pr {B
(n)
δ } > 1 − δ, then

1

n
log |B

(n)
δ | > H − δ1 for n sufficiently large. Thus B

(n)
δ

must have at least 2nH elements, to first order in the exponent. But A
(n)
ǫ has 2n(H±ǫ)

elements.

Proof. Let any two sets A,B such that Pr(A) > 1− δ1 and Pr(B) > 1− ǫ2. Then this

shows that Pr(A ∩B) > 1− ǫ1 − ǫ2, hence Pr(A
(n)
ǫ ∩B

(n)
δ ) > 1− ǫ− δ. Indeed, since

X1, X2, · · · , Xn are i.i.d. with p(x), if we fix ǫ < 1
2 , then

Pr(A ∩B) = Pr(A) · Pr(B) > (1− ǫ1)(1− ǫ2) = 1− ǫ1 − ǫ2.

Accordingly, Pr(A
(n)
ǫ ∩ B

(n)
δ ) = Pr(Aǫ) · Pr(Bδ) ≥ (1 − ǫ)(1 − δ) = 1 − ǫ − δ by

Proposition 3.1.(1).
Next by the chain rule of inequalities,

1− ǫ− δ < Pr(A(n)
ǫ ∩B

(n)
δ )

=
∑

A
(n)
ǫ ∩B

(n)
δ

P (xn) ≤
∑

A
(n)
ǫ ∩B

(n)
δ

2−n(H−ǫ)

= |A(n)
ǫ ∩B

(n)
δ |2−n(H−ǫ) ≤ |B

(n)
δ |2−n(H−ǫ),

|B
(n)
δ | ≥ (1− ǫ− δ)2n(H−ǫ).

Taking the logarithm with base 2 to both sides,

log 2|B
(n)
δ | ≥ log (1− ǫ− δ) + n(H + ǫ),

1

n
log |B

(n)
δ | >

1

n
log (1− ǫ− δ) + (H − ǫ).
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Accordingly for n sufficiently large, we obtain

1

n
log |B

(n)
δ | > H − δ1.

We denote the notation an
.
= bn as follows.

lim
n→∞

1

n
log

an

bn
= 0.

Then we can now restate the theorem 3.4. as

|B
(n)
δ |

.
= |A(n)

ǫ |
.
= 2nH .

4. Monotonicity of entropy

Let the joint distribution of any subset of the sequence of random variables to be
invariant with respect to shifts in the time index, i.e.

Pr{X1 = x1, X2 = x2, · · · , Xn = xn}

= Pr{X1+l = x1, X2+l = x2, · · · , Xn+l = xn}

for every shift l and for all x1, x2, · · · ∈ X. Then a stochastic process is called to be
stationary.

Let random variables X1, X2, · · · be a discrete stochastic process. If for n = 1, 2, · · ·

Pr(Xn+1 = xn+1|Xn = xn, Xn−1 = xn−1, · · · , X1 = x1)

= Pr(Xn+1 = xn+1|Xn = xn)for all x1, x2, · · · , xn, xn+1 ∈ æ.

Then a discrete stochastic process X1, X2, · · · is said to be a Markov chain or a
Markov process. ([6],[7])

Definition 4.1. The Markov chain is said to be time invariant if the conditional
probability P (Xn+1|Xn) does not depend on n, i.e. for n = 1, 2, · · ·

Pr{Xn+1 = p|Xn = q} = Pr{X2 = p|X1 = q}, for all p, q ∈ æ.

Let {Xi} be a Markov chain. Then Xn is said the state at time n. The Markov chain
is called to be irreducible if it is possible to go with positive probability from any state
of the Markov chain to any other state in a finite numer of steps.

Definition4.2. The entropy rate of a stochastic process {Xi} is defined as follow.

H(X) = lim
n→∞

1

n
H(x1, x2, · · · , xn), when the limit exists.

Another definition of entropy rate is, when the limit exists,

H ′(X) = limn→∞ H(xn|xn−1, xn−2, · · · , x2, x1).
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Proposition 4.3. For a stationary stochastic process, their entropy rate H(æ) and
H ′(æ) are equal, i.e.

H(æ) = H ′(æ).

Proof. Since H(Xn+1|X1, X2, · · · , Xn) ≤ H(Xn+1|Xn, · · · , X2)
≤ H(Xn|Xn−1, · · · , X1), H(Xn|Xn−1, · · · , X1) is a decresing sequence of nonnega-

tive numbers.
Hence it has a limit, H ′(æ).([6]) · · · · · · · · · (∗1) In general, we can prove that if an → a

and bn = 1
n

∑∞

i=0 ai, then bn → a.([6]) · · · · · · · · · (∗2)
Since by the chain rule the entropy rate is the time average of the conditional

entropies,

H(X1, X2, · · · , Xn)

n
=

1

n

n
∑

i=1

H(Xi|Xi−1, · · · , X1).

Also the conditional entropies tend to a limit H ′(æ). By (∗2), their running average
has a limit equal to the limit H ′(æ) of the terms. By (∗1),

H(æ) = lim
H(X1, X2, · · · , Xn)

n
= limH(Xn|Xn−1, · · · , X1) = H ′(æ).

For a stationary Markov chain, the entropy rate is

H(æ) = H ′(æ) = lim(Xn|Xn−1, · · · , X1) = limH(Xn|Xn−1) = H(X2|X1).

Let µ be stationary distribution and P be transition matrix. Then since

H(æ) = H(X2|X1) =
∑

i
µi(

∑

j
− Pij log Pij),

H(æ) = −
∑

ij
µijPij log Pij .

For example, consider a two-state Markov chain with probability transition matrix

P =

[

1− p p

1 0

]

Put µ1 and µ2 be the stationary probability of state a and b respectively. Then we

obtain µ1p = µ2 · 1, since µ1 + µ2 = 1, the stationary distribution is µ1 =
1

1 + p
, µ2 =

p

1 + p

Accordingly the entropy of the state Xn at time n is

H(Xn) = H(
1

1 + p
,

p

1 + p
).
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The entropy rate is H(æ) = H(x2|x1) =
1

1 + p
H(p) +

p

1 + p
H(1).

Theorem 4.4. (i) Let {Xi}
∞
i=−∞ be a stationary stochastic process, then

H(x0|x−1, x−2, · · · , x−n) = H(x0|x1, x2, · · · , xn).

(ii) Let X1, X2, · · · , Xn be a stationary stochastic process. Then

H(X1, X2, · · · , Xn)

n
≤

H(X1, X2, · · · , Xn−1)

n− 1
.

Proof. (i) For a stationary stochastic process, the probability of any sequence of state
is the same forward or backward. i.e. time-reversible.

Pr(X1 = x1, X2 = x2, · · · , Xn = xn)

= Pr(Xn = x1, Xn−1 = x2, · · · , X1 = xn).

H(X0|X−1, X−2, · · · , X−n)

= H(X0|X−n, X−n+1, · · · , X−n+(n−2), X−n+(n−1)).
Replacing n = −1,

H(X0|X−1, X−2, · · · , X−n) = H(X0|X1, X2, · · · , Xn−1, Xn).

This means that the present has a conditional entropy given the past equal to the
conditional entropy given the future.

(ii) 0 ≤ p(x) ≤ 1 implies H(x) =
∑

p(x) log 1
p(x) ≥ 0. So H(X1, X2, · · · , Xn) ≥ 0.

By the chain rule, H(X1, X2, · · · , Xn) =
∑n

i=1 H(Xi|Xi−1, · · · , X1).

By the proposition 4.3, the conditional probability has a limit. Since the running

average
1

n

∑n
i=1 H(Xi|Xi−1, · · · , X1) has a limit equal to the limit H(X) of the terms.

H(X1, · · · , Xn)

n
=

1

n

∑n
i=1 H(Xi|Xi−1, · · · , X1)

= H(Xn|Xn−1, · · · , X1) as n → ∞.

Therefore

H(X1, · · · , Xn)

n
= H(Xn|Xn−1, Xn−2, · · · , X2, X1)

≤ H(Xn|Xn−1, Xn−2, · · · , X2)

= H(Xn−1|Xn−2, · · · , X1)

=
H(x1, x2, · · · , xn−1)

n− 1
for large n enough.

We wish to compute the entropy of a random tree. From this we can find that the
expected number of necessary to describe the random tree Tn grows linearly with n.

The following method of generating random trees yields the same probability dis-
tribution on trees with n terminal nodes. Choose an integer N1 uniformly distributed
on {1, 2, · · · , n− 1}. Then we have the picture.
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Choose an integerN2uniformly distributed over {1, 2, · · · , N1−1} and independently
choose an other integer N3 uniformly over {1, 2, · · · , (n−N1)− 1}.

We continue the process until no further subdivision can be made. Then we can
make n-terminal nodes tree.

Let Tn denote a random n-node tree generated as above, then the entropy H(T2) =
0, H(T3) = log 2. For n = 4, we have five possible trees, with probbilities 1

3 ,
1
6 ,

1
6 ,

1
6 ,

1
6 .

Let N1(Tn) denote the number of terminal nodes of Tn in the right half of the tree.

Theorem 4.5.

(n− 1)Hn = nH(n− 1) + (n− 1)log(n− 1)− (n− 2)log(n− 2)

or
Hn

n
=

Hn−1

n− 1
+ Cn for appropriately defined Cn.

Proof. By the definition of entropy and the construction of random tree,

H(Tn) = H(N1, Tn) = H(N1) +H(Tn|N1) · · · · · · < by chain rule for entropy >

= log (n− 1) +H(Tn|N1) · · · < by conditional disribution >

= log(n− 1) +
1

n− 1

n−1
∑

k=1

[H(Tk) +H(Tn−k)] · · · · · · < by definition of tree >

= log (n− 1) +
2

n− 1

n−1
∑

k=1

H(Tk) · · · < by restriction >

= log (n− 1) +
2

n− 1

n−1
∑

k=1

Hk.

Let H(Tn) be Hn. Then H(Tn−1) = Hn−1, H(Tn−2) = Hn−2, · · · ,

Hn−1 = log (n− 2) +
2

n− 2

∑n−2
k=1 H(Tn). Accordingly,

(n− 1)Hn = (n− 1)log(n− 1) + 2
n−2
∑

k=1

Hk + 2Hn−1

= (n− 1)log(n− 1) + (n− 2){log(n− 2)

+
2

n− 2

n−2
∑

k=1

Hk} − (n− 2)log(n− 2) + 2Hn−1

= (n− 1) log (n− 1) + nHn−1 − (n− 2) log (n− 2) + 2Hn−1

= (n− 1) log (n− 1) + nHn−1 − (n− 2) log (n− 2).
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By dividing both sides as n(n− 1),

Hn

n
=

Hn−1

n− 1
+ Cn

where Cn =
1

n
log (n − 1) − (1 −

2

n
)(

1

n− 1
) log (n − 2). Since

∑

Cn = C < ∞, you

have proved that
1

n
H(Tn) converges to a constant.
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