An Algorithm for Performance Index of Telecommunications Network

YongYeon Shin, SoYeon Lee, JaiSang Koh
Electronics and Telecommunications Research Institute
161 Kajong-dong, Yusong-gu, Taejon, 305-350, Korea

Abstract

Performance index is a measure of telecommunications network integrating reliability and capacity simultaneously. This paper suggests a computerized algorithm evaluating a performance index for telecommunications network and compares this computerized algorithm with the algorithm[1] by experimenting on several benchmarks. A computerized algorithm proposed by this paper is superior to the algorithm[1] with respect to the computation time for most of the benchmarks.

AMS Mathematics Subject Classification: 90B12, 90B15
Key word and phrases: link capacity, performance index, telecommunications network

1. Introduction

Any telecommunications network can be modeled as a graph $\mathrm{G}=(V, E)$, where V is the set of nodes (or vertices) and E is the set of links (or edges). There are two measures, network reliability and network capacity to evaluate the network performance. Traditionally, these two measures are used independently while neither is a true measure of the performance of the telecommunications network. Recent studies [1,2,3,5,7] have suggested a composite performance index of a network, integrating the important measures of reliability and capacity.

In this paper a manual technique which is proposed by Rushdi[5] has been computerized and a comparison of this computerized algorithm(henceforth computerized algorithm) with the Aggarwal's algorithm[1] has been carried out by experimenting on published benchmarks. The computerized algorithm proposed in this paper outperforms the algorithm [1] with respect to the computation time
for most of the benchmarks.
Section 2 introduces the assumptions and notations used in this paper. Section 3 presents a computerized algorithm to evaluate performance index of telecommunications network and section 4 provides an example to illustrate the computerized algorithm proposed in this paper. Section 5 shows the comparison of two algorithms. We conclude the paper in Section 6.

2. Assumptions

a. The telecommunications network is modeled by a graph $\mathrm{G}=(V, E)$ whose nodes are perfectly reliable and of unlimited capacities.
b. Each network link can have only two states, good or failed. The link failures are statistically independent.
c. Each network link is assigned specific values for its reliability and capacity. The link capacity is the upper bound on the link flow in either direction.

Notations

s, t source, terminal node
n number of links of the network
m number of minimal paths of the network
k number of minimal cutsets of the network
$M C_{j}$ Minimal cutset j of the network
$M P_{i}$ Minimal path i of the network
p_{l} reliability of link l
c_{l} capacity of link l
$\mathrm{C}_{\text {max }}$ maximum capacity of interconnection from the source node s to the terminal node t :

$$
\mathrm{C}_{\max }=\min _{j}\left\{\sum_{l \in M C_{j}} c_{l}\right\}
$$

PI Performance Index; the mean value of the source to terminal capacity normalized by its maximum:

$$
\mathrm{PI}=\mathrm{E}\left\{\mathrm{C}_{s t}\right\} / \mathrm{C}_{\max } \quad \text { where } \mathrm{C}_{s t} \text { is a source to terminal network capacity }
$$

3. Algorithm

A manual technique[5] using a generalized cutset procedure has been computerized as follows:

Main Algorithm

1. Find all minimal cutsets $\left\{M C_{j} \mid j=1,2, \cdots, k\right\}$ of the network[6].
2. Find all minimal paths $\left\{M P_{i} \mid i=1,2, \cdots, m\right\}$ of the network. It is better (but not necessary) if the paths are enumerated in order of their cardinality [4].
3. Define an n-dimensional vector $E_{i}=\left(\mathrm{e}_{i 1}, \mathrm{e}_{i 2}, \cdots, \mathrm{e}_{i n}\right), i=1, \cdots, m$ corresponding to $M P_{i}$ such that

$$
\left\{\begin{array}{l}
\mathrm{e}_{i l}=1 \text { if } l \in M P_{i} \\
\mathrm{e}_{i l}=0 \text { otherwis } \mathrm{e}
\end{array}\right.
$$

4. Define an n-dimensional vector $V_{j}^{*}=\left(\mathrm{v}_{j 1}^{*}, \mathrm{v}_{j 2}^{*}, \cdots, \mathrm{v}_{j n}^{*}\right), j=1, \cdots, k$ corresponding to $M C_{j}$ such that

$$
\left\{\begin{array}{l}
\mathrm{v}_{j l}^{*}=c_{l} \text { if } l \in M C_{j} \\
\mathrm{v}_{j l}^{*}=0 \text { otherwise }
\end{array}\right.
$$

5. persum $=0$
6. For $i=1$ To m
7. Separate each minimal path to disjoint paths (use sum of disjoint products method: see

Appendix): let d be the number of disjoint paths $P_{1}, P_{2}, \cdots, P_{d}$
8. For $u=1$ To d
9. For $j=1$ To k modified $n+1$ dimensional vector $V_{j}=\left(\mathrm{b}_{j 1}, \mathrm{v}_{j 1}, \mathrm{v}_{j 2}, \cdots, \mathrm{v}_{j n}\right)$ is derived
from

$$
V_{j}^{*} \text { as follows: }
$$

$$
\left\{\begin{array}{l}
\left\{\begin{array}{l}
\mathrm{b}_{j 1}=\sum_{l \in \mathrm{D}_{u}} \mathrm{v}_{j l}^{*} \\
\mathrm{v}_{j l}=0 \quad \text { if } l \in D_{u} \cup \bar{D}_{u} \\
\mathrm{v}_{j l}=\mathrm{v}_{j l}^{*} \quad \text { if } l \notin D_{u} \cup \bar{D}_{u}
\end{array}\right. \\
\quad \text { where } \quad D_{u} \text { is a set of links themselves belonging to } P_{u} \\
\bar{D}_{u} \text { is a set of links whose complement is belong to } P_{u}
\end{array}\right.
$$

Next j
10. persum $=$ persum $+\operatorname{SUB}(\boldsymbol{V}) *$ Probability of disjoint path P_{u}

$$
\text { where } \quad \boldsymbol{V}=\left(V_{1}, V_{2}, \cdots, V_{k}\right)^{\mathrm{t}}
$$

Next u
Next i
11. Calculate $\mathrm{C}_{\max }$
12. $\mathrm{PI}=$ persum $/ \mathrm{C}_{\max }$

$\operatorname{SUB}(V)$

1. per $=\min _{j}\left\{\mathrm{~b}_{j 1}\right\}$ and $\mathrm{b}_{j 1}=\mathrm{b}_{j 1}-\min _{j}\left\{\mathrm{~b}_{j 1}\right\}, j=1,2, \cdots, k$
2. $g=0$
3. If there are V_{j} 's such that $\mathrm{v}_{j l}=0$ for all $l=1,2, \cdots, n$ Then
take one $V_{j_{0}}$ with $\mathrm{b}_{j_{0} 1}=\min _{j}\left\{\mathrm{~b}_{j 1}\right\}$ among them and
delete all V_{j} such that $\mathrm{b}_{j_{0} 1} \leq \mathrm{b}_{j 1}$ (In this case, V_{j} may have nonzero entries $\mathrm{v}_{j l}$) and $g=$ the number of deleted V_{j} (i.e. $g=\left|V_{j}\right|$)

End If
4. $k=k-g$
5. If $k>1$ Then

1) If there is V_{j} such that $\mathrm{b}_{j 1}=0$ and all entries $\mathrm{v}_{j l}$ are zero except one $\mathrm{v}_{j h}(1 \leq h \leq n) \quad$ Then
take the reliability p_{h} of $\operatorname{link} h$ and

$$
\begin{aligned}
\text { per }= & \operatorname{per}+p_{h} * \operatorname{SUB}(\boldsymbol{W}) \\
& \text { where } W_{j}=\left(\mathrm{b}_{j 1}, \mathrm{v}_{j 1}, \mathrm{v}_{j 2}, \cdots, \mathrm{v}_{j n}\right), j=1, \cdots, k
\end{aligned}
$$

is modified from V_{j} as follows:

$$
\left\{\begin{array}{l}
\mathrm{b}_{j 1}=\mathrm{b}_{j 1}+\mathrm{v}_{j h} \\
\mathrm{v}_{j h}=0 \\
\mathrm{v}_{j l}=\mathrm{v}_{j l}, l \neq h, l=1,2, \cdots, n
\end{array}\right.
$$

2) Else

$$
\text { take the reliability } p_{l_{0}} \text { of any link } l_{0} \text { which } \mathrm{v}_{j_{l_{0}}} \neq 0 \text { and }
$$ per $=\operatorname{per}+p_{l_{0}} * \operatorname{SUB}(\boldsymbol{W})+\left(1-p_{l_{0}}\right) * \operatorname{SUB}(\overline{\boldsymbol{W}})$

where $W_{j}=\left(\mathrm{b}_{j 1}, \mathrm{v}_{j 1}, \mathrm{v}_{j 2}, \cdots, \mathrm{v}_{j n}\right), j=1, \cdots, k$
is modified from V_{j} as follows:

$$
\left\{\begin{array}{l}
\mathrm{b}_{j 1}=\mathrm{b}_{j 1}+\mathrm{v}_{j l_{0}} \\
\mathrm{v}_{j l_{0}}=0 \\
\mathrm{v}_{j l}=\mathrm{v}_{j l}, l \neq l_{0}, l=1,2, \cdots, n
\end{array}\right.
$$

and $\overline{W_{j}}=\left(\mathrm{b}_{j 1}, \mathrm{v}_{j 1}, \mathrm{v}_{j 2}, \cdots, \mathrm{v}_{j n}\right), j=1, \cdots, k$
is modified from V_{j} as follows:

$$
\left\{\begin{array}{l}
\mathrm{b}_{j 1}=\mathrm{b}_{j 1} \\
\mathrm{v}_{j l_{0}}=0 \\
\mathrm{v}_{j l}=\mathrm{v}_{j l}, l \neq l_{0}, l=1,2, \cdots, n
\end{array}\right.
$$

End If
End If
6. If $k=1$ Then
per: $=$ per $+\mathrm{b}_{j_{0} 1}$
End If
7. $\mathrm{SUB}=\mathrm{per}$

4. Example

We now illustrate the preceding algorithm using bridge network of Fig.1, where the links are numbered as shown. Their probabilities and capacities are:

$$
p_{l}=0.9 \text { for all } l, c_{1}=10, c_{2}=4, c_{3}=5, c_{4}=3, c_{5}=4
$$

Fig.1. Bridge Network

The network of Fig. 1 has 4 minimal cutsets
$M C_{1}=\{1,2\}, \quad M C_{2}=\{4,5\}, \quad M C_{3}=\{1,3,5\}, \quad M C_{4}=\{2,3,4\}$
and 4 minimal paths
$M P_{1}=\{1,4\}, \quad M P_{2}=\{2,5\}, \quad M P_{3}=\{1,3,5\}, \quad M P_{4}=\{2,3,4\}$.
Define 5-dimensional vectors
$E_{1}=(1,0,0,1,0), \quad E_{2}=(0,1,0,0,1), \quad E_{3}=(1,0,1,0,1), \quad E_{4}=(0,1,1,1,0)$ and
$V_{1}^{*}=(10,4,0,0,0), \quad V_{2}^{*}=(0,0,0,3,4), \quad V_{3}^{*}=(10,0,5,0,4), \quad V_{4}^{*}=(0,4,5,3,0)$.
Let persum $=0$
For $i=1$
Separate minimal path $M P_{1}=\{1,4\}$ to disjoint paths:
(In case $i=1$, there is no predecessor minimal path to compare and skip step 7).
Write $M P_{1}$ for P_{1}; i.e. $\quad P_{1}=\{1,4\}$
Then modified 5+1 dimensional vectors $\boldsymbol{V}=\left(V_{1}, V_{2}, V_{3}, V_{4}\right)^{t}$ are

$$
\begin{aligned}
V_{1} & =(10,0,4,0,0,0), \\
V_{2} & =(3,0,0,0,0,4), \\
V_{3} & =(10,0,0,5,0,4), \\
V_{4} & =(3,0,4,5,0,0) \\
\text { persum } & =0+\operatorname{SUB}(V)^{*} p_{1} p_{4}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{SUB}(V) \\
& \operatorname{per}=3 \text { and } \quad \mathrm{b}_{11}=7, \quad \mathrm{~b}_{21}=0, \quad \mathrm{~b}_{31}=7, \quad \mathrm{~b}_{41}=0 \\
& V_{1}=(7,0,4,0,0,0), \\
& V_{2}
\end{aligned}=(0,0,0,0,0,4), ~ \begin{aligned}
V_{3} & =(7,0,0,5,0,4), \\
V_{4} & =(0,0,4,5,0,0)
\end{aligned}
$$

Since there is no V_{j} deleted from $\boldsymbol{V}, g=0$ and $k=4$.
In V_{2}, all entries are zero except $\mathrm{v}_{25}=4$.

$$
\begin{aligned}
& \text { per } \left.=\operatorname{per}+p_{5} * \operatorname{SUB}(\boldsymbol{V}) \text { where } \begin{array}{l}
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
V_{3}=(7,0,4,0,0,0), \\
\\
\\
V_{4}=(11,0,0,5,0,0), \\
\\
\end{array}, 0,5,0,0\right)
\end{aligned}
$$

$\operatorname{SUB}(V)$
per $=0 \quad$ and $\quad b_{11}=7, \quad b_{21}=4, \quad b_{31}=11, \quad b_{41}=0$

$$
\begin{aligned}
& V_{1}=(7,0,4,0,0,0), \\
& V_{2}=(4,0,0,0,0,0), \\
& V_{3}=(11,0,0,5,0,0), \\
& V_{4}=(0,0,4,5,0,0)
\end{aligned}
$$

In $\quad V_{2}, \mathrm{v}_{2 l}=0(l=1,2,3,4,5)$ except $\mathrm{b}_{21}=4$.
Thus delete V_{1}, V_{3} and $g=2$ and $k=2$.
Take the reliability p_{2} of link 2 which $\mathrm{v}_{42} \neq 0$
per $=0+p_{2} * \operatorname{SUB}(\boldsymbol{V})+\left(1-p_{2}\right) * \operatorname{SUB}(\overline{\boldsymbol{V}})$

$$
\text { where }\left\{\begin{array} { l }
{ V _ { 2 } = (4 , 0 , 0 , 0 , 0 , 0) } \\
{ V _ { 4 } = (4 , 0 , 0 , 5 , 0 , 0) }
\end{array} \text { and } \left\{\begin{array}{l}
\overline{V_{2}}=(4,0,0,0,0,0) \\
\overline{V_{4}}=(0,0,0,5,0,0)
\end{array}\right.\right.
$$

$\operatorname{SUB}(V)$

$$
\begin{array}{ll}
\text { per }=4 & \\
& V_{2}=(0,0,0,0,0,0) \\
& V_{4}=(0,0,0,5,0,0)
\end{array}
$$

```
Now take \(V_{2}\) and delete \(V_{4}\) and \(g=1\) and \(k=1\).
per \(=4+0=4\)
\(\operatorname{SUB}(\overline{\boldsymbol{V}})\)
    per \(=0\) and \(g=0\) and \(k=2\).
per \(=0+\quad p_{3} * \operatorname{SUB}(\overline{\boldsymbol{V}})\)
    where \(\overline{V_{2}}=(4,0,0,0,0,0)\)
                        \(\overline{V_{4}}=(5,0,0,0,0,0)\)
    \(\operatorname{SUB}(\overline{\boldsymbol{V}})\)
        per \(=4\)
            \(\overline{V_{2}}=(0,0,0,0,0,0)\)
            \(\overline{V_{4}}=(1,0,0,0,0,0)\)
                Now take \(\overline{V_{2}}\) and delete \(\overline{V_{4}}\) and \(g=1\) and \(k=1\).
                per \(=4+0=4\)
```

Thus per $=3+p_{5} * \operatorname{SUB}(\boldsymbol{V})$
$=3+p_{5} *\left(p_{2} * \operatorname{SUB}(\boldsymbol{V})+\left(1-p_{2}\right) * \operatorname{SUB}(\overline{\boldsymbol{V}})\right)$
$=3+p_{5} *\left(p_{2} * 4+\left(1-p_{2}\right) *\left(p_{3} * \operatorname{SUB}(\overline{\boldsymbol{V}})\right)\right)$
$=3+p_{5} *\left(p_{2} * 4+\left(1-p_{2}\right) *\left(p_{3} * 4\right)\right)$
$=3+4 p_{5}\left(p_{2}+\left(1-p_{2}\right) p_{3}\right)$
persum $=0+\left(3+4 p_{5}\left(p_{2}+\left(1-p_{2}\right) p_{3}\right)\right) p_{1} p_{4}$
For $i=2$
Separate minimal path $M P_{2}=\{2,5\}$ to disjoint paths $P_{1}=\{\overline{1}, 2,5\}$ and $P_{2}=\{1, \overline{4}, 2,5\}$.

For $d=1$

$$
\begin{aligned}
& \text { modified } 5+1 \text { dimensional vectors } \boldsymbol{V}=\left(V_{1}, V_{2}, V_{3}, V_{4}\right)^{\mathrm{t}} \text { are } \\
& \qquad \begin{array}{l}
V_{1}=(4,0,0,0,0,0) \\
V_{2}
\end{array}=(4,0,0,0,3,0), \\
& V_{3}=(4,0,0,5,0,0) \\
& V_{4}=(4,0,0,5,3,0) \\
& \text { persum }=\left(3+4 p_{5}\left(p_{2}+\left(1-p_{2}\right) p_{3}\right)\right) p_{1} p_{4}+\operatorname{SUB}(\boldsymbol{V})^{*}\left(1-p_{1}\right) p_{2} p_{5}
\end{aligned}
$$

$\operatorname{SUB}(V)$
per $=4$

$$
\begin{aligned}
& V_{1}=(0,0,0,0,0,0) \\
& V_{2}=(0,0,0,0,3,0) \\
& V_{3}=(0,0,0,5,0,0) \\
& V_{4}=(0,0,0,5,3,0)
\end{aligned}
$$

Now take V_{1} and delete V_{2}, V_{3}, V_{4} and $g=3$ and $k=1$.

$$
\text { per }=4+0=4
$$

persum $=\left(3+4 p_{5}\left(p_{2}+\left(1-p_{2}\right) p_{3}\right)\right) p_{1} p_{4}+4\left(1-p_{1}\right) p_{2} p_{5}$

For $d=2$
modified $5+1$ dimensional vectors $V=\left(V_{1}, V_{2}, V_{3}, V_{4}\right)^{\mathrm{t}}$ are $V_{1}=(14,0,0,0,0,0)$, $V_{2}=(4,0,0,0,0,0)$, $V_{3}=(14,0,0,5,0,0)$, $V_{4}=(4,0,0,5,0,0)$
persum $=\left(3+4 p_{5}\left(p_{2}+\left(1-p_{2}\right) p_{3}\right)\right) p_{1} p_{4}+4\left(1-p_{1}\right) p_{2} p_{5}+\operatorname{SUB}(\boldsymbol{V})^{*} p_{1}\left(1-p_{4}\right) p_{2} p_{5}$
SUB (V)
per $=4$

$$
\begin{aligned}
& V_{1}=(10,0,0,0,0,0), \\
& V_{2}=(0,0,0,0,0,0), \\
& V_{3}=(10,0,0,5,0,0), \\
& V_{4}=(0,0,0,5,0,0)
\end{aligned}
$$

Now take V_{2} and delete V_{1}, V_{3}, V_{4} and $g=3$ and $k=1$.

$$
\text { per }=4+0=4
$$

$$
\text { persum }=\left(3+4 p_{5}\left(p_{2}+\left(1-p_{2}\right) p_{3}\right)\right) p_{1} p_{4}+4\left(1-p_{1}\right) p_{2} p_{5}+4 p_{1}\left(1-p_{4}\right) p_{2} p_{5}
$$

After the iterations $i=3,4$, we get

$$
\begin{aligned}
\text { persum }= & \left(3+4 p_{5}\left(p_{2}+\left(1-p_{2}\right) p_{3}\right)\right) p_{1} p_{4}+4\left(1-p_{1}\right) p_{2} p_{5}+4 p_{1}\left(1-p_{4}\right) p_{2} p_{5} \\
& +4 p_{1}\left(1-p_{2}\right) p_{3}\left(1-p_{4}\right) p_{5}+3\left(1-p_{1}\right) p_{2} p_{3} p_{4}\left(1-p_{5}\right)
\end{aligned}
$$

$$
\mathrm{C}_{\max }=\min \{10+4, \quad 3+4, \quad 10+5+4, \quad 4+5+3\}=7
$$

$\mathrm{PI}=$ persum $/ 7=0.854781$

5. Comparison of Algorithms

We implemented the two algorithms, computerized algorithm and Aggarwal's algorithm[1], in the visual basic language and executed them in IBM 586 PC using benchmarks as shown in Fig. 2. The performance of two algorithms are compared in terms of computation time. Table 1 shows that computerized algorithm proposed in this paper outperforms Aggarwal's algorithm[1] in most of the benchmarks, as shown in Fig.2. We do not present the input data (link reliabilities, link capacities) of the benchmarks here; Details can be obtained by the authors.

Table 1
Comparison of Computation Times (seconds) for two algorithms

Algorithm Network	Aggarwal's Algorithm[1]	Computerized Algorithm
A	0.11	0.17
B	2.08	0.50
C	2.75	0.71
D	1.04	0.38
E	13.02	2.58
F	20.10	2.80
G	81.45	9.28
H	43.17	4.06
I	$1,525.61$	339.93
J	27.14	2.30
K	$44,695.70$	$11,169.38$

Computation times can be changed a bit depend on the windows environment. We have tried ten times for each benchmark and the computation times on the Table 1 are the average of them.

(A)

(B)

(E)

(H)

(K)

(F)

(I)

(J)

Fig.2. Benchmarks

6. Conclusion

Performance index is an important measure of telecommunications network integrating reliability and capacity simultaneously. This paper presents a computerized algorithm which evaluates a performance index for telecommunications network and compares this computerized algorithm with the Aggarwal's algorithm[1] in terms of computation time. The results of running eleven problems in Table 1 show that even though the worst-case analysis of the number of subproblems (sum of disjoint product terms) in computerized algorithm has exponential time it is more efficient than [1] in that less computation times are needed. This computerized algorithm is quite useful for evaluating a performance index of telecommunications network.

References

[1] K.K. Aggarwal, "A Fast Algorithm for the Performance Index of a Telecommunication Network," IEEE Trans. Reliability, Vol R-37, pp.65-69, 1988.
[2] K.K. Aggarwal, "Integration of Reliability and Capacity in Performance Measure of a Telecommunication Network," IEEE Trans. Reliability, Vol R-34, pp.184-186, 1985.
[3] K.K. Aggarwal, Y.C. Chopra, J. S. Bajwa, "Capacity Consideration in reliability analysis of communication systems," IEEE Trans. Reliability, Vol R-31, pp.177-181, 1982.
[4] K.B. Misra, Reliability Analysis and Prediction, Elsevier, 1992.
[5] Ali M. Rushdi, "Performance Indexes of a Telecommunication Network," IEEE Trans. Reliability, Vol R-37, pp.57-64,1988.
[6] Y.Shin and J.Koh, "An Algorithm for Generating Minimal Cutsets of Undirected Graphs," The Korean Journal of Computational and Applied Mathematics, Vol 5, pp.681-693, 1998.
[7] D. Trstensky, P. Bowron, "An Alternative Index for the Reliability of Telecommunication Networks," IEEE Trans. Reliability, Vol R-33, pp.343-345, 1984.

Appendix

The procedure of main algorithm \#7 (sum of disjoint products method) has been added to make the paper self-contained.
7. If there are any nonzero entries in $E_{f}(f=1, \cdots, i-1)$, corresponding to zero entries in E_{i}

1) Form a list of complemented products (as indicated by continuous overbars) for each $f=1, \ldots, i-1$.
2) Multiply the complemented products successively from left to right, using Boolean algebra theorems for simplification after each multiplication; let the disjoint terms obtained by the above be $R_{1}, R_{2}, \cdots, R_{d}$.
3) Disjoint terms $R_{1}, R_{2}, \cdots, R_{d}$ are multiplied by $M P_{i}$ and obtain the disjoint product terms $M P_{i} R_{1}, M P_{i} R_{2}, \cdots, M P_{i} R_{d}$.

$$
\text { write } M P_{i} R_{u} \text { for } P_{u} \text { in convenience for each } u=1, \cdots, d
$$

Example
We will explain the above procedure with Fig. 1.

5-dimensional vectors E_{i} corresponding to 4 minimal paths
$M P_{1}=\{1,4\}, M P_{2}=\{2,5\}, M P_{3}=\{1,3,5\}, M P_{4}=\{2,3,4\}$ are:
$E_{1}=(1,0,0,1,0), \quad E_{2}=(0,1,0,0,1), \quad E_{3}=(1,0,1,0,1), \quad E_{4}=(0,1,1,1,0)$
In case $i=1$, there is no predecessor 5 -dimensional vector to compare with E_{1}.
So we do not separate $M P_{1}=\{1,4\}$.
In case $i=2$, nonzero entries in E_{1} corresponding to zero entries in E_{2} are $\{1,4\}$.
Form a complemented product $\overline{14}$ and $\overline{14}=\overline{1}+1 \overline{4}$ by boolean algebra.
Thus disjoint terms $\{\overline{1}\},\{1, \overline{4}\}$ are multiplied by $M P_{2}$ and
obtain the disjoint product terms $P_{1}=\{\overline{1}, 2,5\}$ and $P_{2}=\{1, \overline{4}, 2,5\}$.
In case $i=3$, nonzero entries in E_{1} corresponding to zero entries in E_{3} are $\{4\}$ and
nonzero entries in E_{2} corresponding to zero entries in E_{3} are $\{2\}$.
Multiply the complemented products $\{\overline{4}\}\{\overline{2}\}$ and $\{\overline{4}\}\{\overline{2}\}$ is multiplied by $M P_{3}$ and obtain the disjoint product terms $P_{1}=\{\overline{4}, \overline{2}, 1,3,5\}$.
In case $i=4$, nonzero entries in E_{1} corresponding to zero entries in E_{4} are $\{1\}$ and nonzero entries in E_{2} corresponding to zero entries in E_{4} are $\{5\}$ and
nonzero entries in E_{3} corresponding to zero entries in E_{4} are $\{1,5\}$
Multiply the complemented products $\{\overline{1}\}\{\overline{5}\}\{\overline{15}\}$ and $\{\overline{15}\}$ is deleted by boolean algebra. $\{\overline{1}\}\{\overline{5}\}$ is multiplied by $M P_{4}$ and obtain the disjoint product terms $P_{1}=\{\overline{1}, \overline{5}, 2,3,4\}$.

