J. KSIAM Vol.2, No.2, 21-25, 1998

A Modified Adams Predictor-Corrector Method for
Differential Equations with Highly Oscillating Solutions

Byung Soo Moon
Korea Atomic Enerqy Research Institute
P.O. Box105, Taeduk Science Town, Taejon, Korea 305-600
E-mail:bsmoon@nanum.kaeri.re.kr

Abstract

An algorithm for a solution of ordinary differential equations using a modified
corrector in the Adams predictor-corrector method of order four is described. The
Lagrange interpolation used in the corrector of the Adams method is replaced par-
tially by the cubic spline interpolation satisfying the first derivative constraints
at the two end points. By exhibiting three examples, we show that the proposed
method is more efficient when the solution of a differential equation is highly os-
cillating.

1. Introduction

There are many studies on variations of the Adams predictor-corrector method.
Some considers the accuracy measures[1] while most others consider the stability prob-
lems[2,3,4]. In this paper, we consider a variation of the method which is more efficient
for a specific type of problems, i.e. the cases where the solutions are highly oscillating.
Given a differential equation y' = f(z,y) with yo = y(zp), we may write the solution
as

Uil = Y + / " ()t (1)

In evaluating the integral, the Adams-Bashforth formula[5] of order k at z, uses a
polynomial py ,, interpolating the computed derivatives at the & preceeding points, i.e.

k
Prn(z) = Z lj(x) fny1—j for j =1,2,--- Kk, where [;(x)’s are the Lagrange polynomials
j=1
defined on z, 41 5,5 = 1,2,---, k.

In the following, we consider the case of k¥ = 4 and assume that the points z,’s
are equally spaced with h = z, — x,,_1.The Adams predictor-corrector method of order
four used in this paper is of the form[5,p88]
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(¢Ta¢§a¢§a¢2):(fm fn_fnfla fn_2fn71+fnf2a fn_3fn71+3fnf2_fn73)

4
Pril =Yn+h D gid;

=1
¢g:03 ¢f:¢f—i—1+¢za 7::433,231 (2)
fg-i-l = f($n+17pn+1)
Yn+1 = Pn+1 + h95(frlz)+1 - 91))

fn+1 = f($n+1ayn+1)

Our variation is to add one more step at the end of (2) to redefine y, 11 by vy, +
Jort S, (t)dt, where Sy, (z) is the cubic spline interpolation which satisfies

S;L($nf2) = f’($n72’ ynf2) = fx(xnfb yn72) + yl(xan)fy(xnfb yn72)
Sn(xTH-Z—j) = fn+2—ja .7 = 13 23 334 (3)

5;1($n+1) = fl($n+17yn+1) = fo(Tnt1sYns1) + yl($n+1)fy($n+1,yn+1)

Note that the cubic spline function S, (x) interpolates not only the function f(¢,y(t))
at the four points ¢, o,%,_1,%,, t,+1 but also its derivatives at t,,_2, t;11.

For convenience, we let a = x,. Then the spline interpolation function S,(z) can

be written as .

Sn($) = ZC]'BG,M,]‘)]I(ZE) (4)

j=1
where B,_(4_;j)(z)’s are the B-spline functions[6] with support [a—(6—3)h, a—(2—j)h].
Using properties of B-splines, the five equations in (2) can be written in a matrix form

as Ac = b, where c= (claCZa T acﬁ)Ta b= (frlz—Za n—?afn—lafnafn+lafrll+1)Ta and A is
the coefficient matrix

3 3 1
303 00 0
1 4 1 0 0 O
1 01 4 1 0 0
A= 001 41 0 (5)
0 0 O 1 4 1
3 3
L 00 0 -2 0 3]
When the integral of B,_4_j), () over the interval [x,,, 1] = [a, a+h] is evaluated,
we find that for j = 3,4, 5,
a+h a+h h at+h ath 11h
[ Basttyit= [ Buadt = 5, [ Budt= [ Baantyit ==
a a 247 Ja a 24



A MODIFIED ADAMS PREDICTOR-CORRECTOR METHOD 23

while the integrals of B,_s3;(z) and B,_sp(z) are both zero. Therefore, the integral of
the cubic spline interpolation function S, (z) can be written as

a+h at+h 6 h
/a S, (t)dt = / jz::lcha_M_i)h(t)dt: Soles+1le +11es +¢5)  (6)

2. A Modified Algorithm

The coefficients c¢;’s of the spline interpolation function S,(z) in (6) can be com-
puted by using the inverse of the matrix A in (5) along with the relation ¢ = A~ !b.
When the inverse of A is computed, we have

[ —97h —21 84 -24 6 —2h

26h 78 —42 12 -3 h
1 —7h —-21 84 —24 6 —2h
_1__
A 45 2h 6 —24 84 -—21 7h (7)

—h =3 12 —42 78 —26h
2h 6 —24 84 -—-21 97h

and hence the coefficients ¢;’s of the B-splines become

- 4—2(—7hf,’l,2 —21fn2+84f 1 — 24 0 + 6 i1 —2hf, )
€4 = %(Qhﬂzﬁ +6fn2 — 24fp1 +84fn — 21 fni1 + Thfpy)

o = %(_h o = 3fncs + 12fn_y — 42fy + T8fns1 — 26hf", )
g = %(ghﬂl_Q + 6 fn—2 — 24 fn_1 + 84fn — 21 fny1 + 9Th S, 1)

Substituting these into (6), we obtain

a+h h
/ Sn(w)dw = 7oe (60 ) + 182 = T2fn1 +522fn + 612 41 — 114hf51) (8)
a

3. Examples

The following are some of the computed results using the relation (6) as a corrector
for the Adams-Moulton’s method. The results show that when the solutions are highly
oscillating, the modified corrector reduces the error substantially even though it does
not for other cases.

Example 1. ¢ =y + 10e*Cos(10z), y(0) = 0.

Note that the analytical solution of the above is y = e*Sin(10z). We solved
the above equation from z = 0 to £ = 10 using both the standard Adams-Moulton’s
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method and the modified method. Table 1 shows the maximum and average of the
absolute errors for various values of h. For h > 0.05, both the maximum and average
errors are reduced to less than one tenth of those from the standard method. In the
case of h < 0.05, the differences become significant when the integration range gets
larger than [0,10].

Table 1. Comparison of Maximum and Average Errors - Example 1

h| 02 |01 | 0.05 | 0.025
Adams Mod. | Adams Mod. | Adams Mod. | Adams Mod.
Average 929.4 65.1 27.52  2.54 2.15  0.83 0.40 0.33
Maz. | 10224.4 1025.5 | 311.89 39.63 28.10 7.18 3.91 3.31

Example 2. 4/ = % +222Cos(z?), y(0) =0, y'(0) =0

It is easy to check that the analytical solution for the above equation is y =
zSin(z?). When the above equation is solved from z = 0 to = = 10.,20., 30. respec-
tively by using both the standard Adams-Moulton’s method and the modified method,
we obtain the results shown in Table 2.

Table 2. Comparison of Maximum and Average Errors - Example 2

Range | =0 to 10| =0 to 20| =0 to 30
Avg. Maz.| Avg. Maz.| Avg. Max.
h=0.1| Adams | 0.4106  3.731 | 9.123 65.894 | 46.107 597.2
Mod. | 0.0426 0.348 | 2.845 24.898 | 37.392 568.6
h =0.025 | Adams | .00066 .00614 | .03690 0.3286 | 0.3243 3.298
Mod. | .00031 .00135 | .00353 0.0345 | 0.0323 .3165

Example 3. 3 = 2zCos(z?), y(0) =0.

It is clear that the analytical solution of the above is y = Sin(z?). The equation
is solved from z = 0 to z = 10., 20., 30. respectively by using both the standard Adams-
Moulton’s method and the modified method to obtain the results shown in Table 3.

Table 3. Comparison of Maximum and Average Errors - Example 3

Range | =0 to 10| =0 +to 20| =0 +to 30
Avg. Mazx.| Avg. Max.| Avg. Mazx.
h =0.1| Adams | .04777 0.3711 | 0.5607 3.2963 | 1.8798  19.91
Mod. | .00509 0.0373 | 0.1670 1.2636 | 1.4151  19.07
h =0.025 | Adams | .00006 .00056 | 0.0019 0.0164 | 0.0127 0.1103
Mod. | .00001 .00009 | 0.0002 0.0017 | 0.0013 0.0106
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