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Abstract

An algorithm for a solution of ordinary di�erential equations using a modi�ed

corrector in the Adams predictor-corrector method of order four is described. The

Lagrange interpolation used in the corrector of the Adams method is replaced par-

tially by the cubic spline interpolation satisfying the �rst derivative constraints

at the two end points. By exhibiting three examples, we show that the proposed

method is more e�cient when the solution of a di�erential equation is highly os-

cillating.

1. Introduction

There are many studies on variations of the Adams predictor-corrector method.

Some considers the accuracy measures[1] while most others consider the stability prob-

lems[2,3,4]. In this paper, we consider a variation of the method which is more e�cient

for a speci�c type of problems, i.e. the cases where the solutions are highly oscillating.

Given a di�erential equation y
0 = f(x; y) with y0 = y(x0), we may write the solution

as

yn+1 = yn +

Z
xn+1

xn

f(t; y(t))dt (1)

In evaluating the integral, the Adams-Bashforth formula[5] of order k at xn uses a

polynomial pk;n interpolating the computed derivatives at the k preceeding points, i.e.

pk;n(x) =
kX

j=1

lj(x)fn+1�j for j = 1; 2; � � � ; k, where lj(x)'s are the Lagrange polynomials

de�ned on xn+1�j ; j = 1; 2; � � � ; k.

In the following, we consider the case of k = 4 and assume that the points xn's

are equally spaced with h = xn�xn�1.The Adams predictor-corrector method of order

four used in this paper is of the form[5,p88]

(g1; g2; g3; g4; g5) = (1;
1

2
;
5

12
;
3

8
;
251

720
)
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(��1; �
�

2; �
�

3; �
�

4) = (fn; fn � fn�1; fn � 2fn�1 + fn�2; fn � 3fn�1 + 3fn�2 � fn�3)

pn+1 = yn + h

4X
i=1

gi�
�

i

�
e

5 = 0; �
e

i
= �

e

i+1 + �
�

i
; i = 4; 3; 2; 1 (2)

f
p

n+1 = f(xn+1; pn+1)

yn+1 = pn+1 + hg5(f
p

n+1 � �
e

1))

fn+1 = f(xn+1; yn+1)

Our variation is to add one more step at the end of (2) to rede�ne yn+1 by yn +R
xn+1

xn
Sn(t)dt, where Sn(x) is the cubic spline interpolation which satis�es

S
0

n
(xn�2) = f

0(xn�2; yn�2) = fx(xn�2; yn�2) + y
0(xn�2)fy(xn�2; yn�2)

Sn(xn+2�j) = fn+2�j ; j = 1; 2; 3; 4 (3)

S
0

n(xn+1) = f
0(xn+1; yn+1) = fx(xn+1; yn+1) + y

0(xn+1)fy(xn+1; yn+1)

Note that the cubic spline function Sn(x) interpolates not only the function f(t; y(t))

at the four points tn�2; tn�1; tn; tn+1 but also its derivatives at tn�2, tn+1.

For convenience, we let a = xn. Then the spline interpolation function Sn(x) can

be written as

Sn(x) =
6X

j=1

cjBa�(4�j)h(x) (4)

where Ba�(4�j)(x)'s are the B-spline functions[6] with support [a�(6�j)h; a�(2�j)h].

Using properties of B-splines, the �ve equations in (2) can be written in a matrix form

as Ac = b, where c= (c1; c2; � � � ; c6)
T , b= (f 0

n�2; fn�2; fn�1; fn; fn+1; f
0

n+1)
T , and A is

the coe�cient matrix

A =
1

6

2
66666664

�
3
h

0 3
h

0 0 0

1 4 1 0 0 0

0 1 4 1 0 0

0 0 1 4 1 0

0 0 0 1 4 1

0 0 0 �
3
h

0 3
h

3
77777775

(5)

When the integral of Ba�(4�j)h(x) over the interval [xn; xn+1] = [a; a+h] is evaluated,

we �nd that for j = 3; 4; 5,

Z
a+h

a

Ba�h(t)dt =

Z
a+h

a

Ba+2h(t)dt =
h

24
;

Z
a+h

a

Ba(t)dt =

Z
a+h

a

Ba+h(t)dt =
11h

24
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while the integrals of Ba�3h(x) and Ba�2h(x) are both zero. Therefore, the integral of

the cubic spline interpolation function Sn(x) can be written as

Z
a+h

a

Sn(t)dt =

Z
a+h

a

6X
j=1

cjBa�(4�i)h(t)dt =
h

24
(c3 + 11c4 + 11c5 + c6) (6)

2. A Modi�ed Algorithm

The coe�cients cj 's of the spline interpolation function Sn(x) in (6) can be com-

puted by using the inverse of the matrix A in (5) along with the relation c = A�1b.

When the inverse of A is computed, we have

A
�1 =

1

45

2
66666664

�97h �21 84 �24 6 �2h

26h 78 �42 12 �3 h

�7h �21 84 �24 6 �2h

2h 6 �24 84 �21 7h

�h �3 12 �42 78 �26h

2h 6 �24 84 �21 97h

3
77777775

(7)

and hence the coe�cients cj 's of the B-splines become

c3 =
1

45
(�7hf 0n�2 � 21fn�2 + 84fn�1 � 24fn + 6fn+1 � 2hf 0n+1)

c4 =
1

45
(2hf 0

n�2 + 6fn�2 � 24fn�1 + 84fn � 21fn+1 + 7hf 0
n+1)

c5 =
1

45
(�hf 0n�2 � 3fn�2 + 12fn�1 � 42fn + 78fn+1 � 26hf 0n+1)

c6 =
1

45
(2hf 0n�2 + 6fn�2 � 24fn�1 + 84fn � 21fn+1 + 97hf 0n+1)

Substituting these into (6), we obtain

Z
a+h

a

Sn(x)dx =
h

1080
(6hf 0

n�2 + 18fn�2 � 72fn�1 + 522fn + 612fn+1 � 114hf 0
n+1) (8)

3. Examples

The following are some of the computed results using the relation (6) as a corrector

for the Adams-Moulton's method. The results show that when the solutions are highly

oscillating, the modi�ed corrector reduces the error substantially even though it does

not for other cases.

Example 1. y0 = y + 10exCos(10x); y(0) = 0.

Note that the analytical solution of the above is y = e
x
Sin(10x). We solved

the above equation from x = 0 to x = 10 using both the standard Adams-Moulton's
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method and the modi�ed method. Table 1 shows the maximum and average of the

absolute errors for various values of h. For h � 0:05, both the maximum and average

errors are reduced to less than one tenth of those from the standard method. In the

case of h < 0:05, the di�erences become signi�cant when the integration range gets

larger than [0,10].

Table 1. Comparison of Maximum and Average Errors - Example 1

h 0:2 0:1 0:05 0:025

Adams Mod: Adams Mod: Adams Mod: Adams Mod:

Average 929:4 65:1 27:52 2:54 2:15 0:83 0:40 0:33

Max: 10224:4 1025:5 311:89 39:63 28:10 7:18 3:91 3:31

Example 2. y
0 =

y

x
+ 2x2Cos(x2); y(0) = 0; y

0(0) = 0

It is easy to check that the analytical solution for the above equation is y =

xSin(x2). When the above equation is solved from x = 0 to x = 10:; 20:; 30: respec-

tively by using both the standard Adams-Moulton's method and the modi�ed method,

we obtain the results shown in Table 2.

Table 2. Comparison of Maximum and Average Errors - Example 2

Range x = 0 to 10 x = 0 to 20 x = 0 to 30

Avg: Max: Avg: Max: Avg: Max:

h = 0:1 Adams 0:4106 3:731 9:123 65:894 46:107 597:2

Mod: 0:0426 0:348 2:845 24:898 37:392 568:6

h = 0:025 Adams :00066 :00614 :03690 0:3286 0:3243 3:298

Mod: :00031 :00135 :00353 0:0345 0:0323 :3165

Example 3. y
0 = 2xCos(x2); y(0) = 0.

It is clear that the analytical solution of the above is y = Sin(x2). The equation

is solved from x = 0 to x = 10:; 20:; 30: respectively by using both the standard Adams-

Moulton's method and the modi�ed method to obtain the results shown in Table 3.

Table 3. Comparison of Maximum and Average Errors - Example 3

Range x = 0 to 10 x = 0 to 20 x = 0 to 30

Avg: Max: Avg: Max: Avg: Max:

h = 0:1 Adams :04777 0:3711 0:5607 3:2963 1:8798 19:91

Mod: :00509 0:0373 0:1670 1:2636 1:4151 19:07

h = 0:025 Adams :00006 :00056 0:0019 0:0164 0:0127 0:1103

Mod: :00001 :00009 0:0002 0:0017 0:0013 0:0106
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