Journal of the Korean

Data & Information Science Society
1998, Vol. 9, No. 2, pp. 305 ~ 310

# Integral constants of Transformed geometric Poisson process <sup>1</sup>

# Jeong Hyun Park <sup>2</sup>

#### Abstract

In this paper, we introduce the conditions that the P-process has the intensity function which it is a standard form of gamma distribution. And we show that the transformed geometric Poisson process which the intensity function is a standard form of gamma distribution is a alternative sign P-process

Key Words and Phrases: P-process, transformed geometric Poisson process, alternative sign P-process.

#### 1. Introduction

Park(1997a) introduced the P-process and transformed geometric Poisson process such that the intensity function is  $g_i(t) \neq g_j(t)$  for  $i \neq j$ . And Park(1997 b) showed that the transformed geometric Poisson process which the intensity function is a Pareto distribution is a strongly P-process. In this paper, we will show that the transformed geometric Poisson process which the intensity function is a standard form of gamma distribution is a alternative sign P-process.

Let  $\int_* f(t)dt = \int f(t)dt - C$ , where C is a integral constant of f(t).

**Definition 1.** The counting process  $\{N(t)|t \geq 0\}$  is said to be a polynomial process (P-process) with intensity function  $g_n(t)$  if

(i) 
$$N(0) = 0$$
,

(ii) 
$$P{N(t+h) - N(t) = 1 | N(t) = n} = g_n(t)h + o(h)$$

<sup>&</sup>lt;sup>1</sup>1. This paper was supported by research fund, kwandong University, 1998

<sup>&</sup>lt;sup>2</sup>Full Professor, Department of Computer Science and Statistics, Kwandong University, Kangnung, 210-102 (E-mail: jhpark@kdccs.kwandong.ac.kr)

where 
$$-\infty < \left[ \int_* g_n(t) dt \right]_{t=0} < \infty$$
,

(iii) 
$$P\{N(t+h) - N(t) \ge 2|N(t) = n\} = o(h)$$
 for each  $n = 0, 1, 2, \dots$ 

If  $g_n(t) = \lambda$  for each  $n = 0, 1, 2, \dots$ , then the P-process is a Poisson process with rate  $\lambda$ . And if  $g_n(t) = \lambda(t)$  for each  $n = 0, 1, 2, \dots$ , then the P-process is a nonhomogeneous Poisson process with intensity function  $\lambda(t)$ .

Let  $P_n(t) = P\{N(t) = n\}$ . Then, from the definition 1, we obtain that

$$P_0(t) = k_0 \exp\left(-\int_{t}^{t} g_0(t)dt\right)$$

and for  $n \geq 1$ ,

$$P_n(t) = \exp\left(-\int_* g_n(t)dt\right) \left[\int_* g_{n-1}(t) P_{n-1}(t) \exp\left(\int g_n(t)dt\right) dt\right] + k_n \exp\left(-\int_* g_n(t)dt\right),$$

for some constants  $k_0, k_1, \cdots$ . The constants  $k_0, k_1, k_2, \cdots$  is called to be a *integral constants* of P-process.

Let X be a geometric random variable. Then random variable Y = X - 1 is called to be a transformed geometric. Park(1997a) introduced a P-process which the distribution of number of events in interval [0, t] is transformed geometric and  $g_i(t) \neq g_j(t)$  for each  $i \neq j$   $(i, j = 0, 1, 2, \cdots)$ .

**Definition 2.** The P-process  $\{N(t)|t\geq 0\}$  is said to be a transformed geometric Poisson process with intensity function f(t) if

- (i) f(0) = 0
- (ii)  $0 \le f(t) < 1$  for each  $t \ge 0$
- (iii)  $g_n(t) = (n+1) \frac{df(t)/dt}{1-f(t)}$

**Definition 3.** The P-process  $\{N(t)|t\geq 0\}$  is called to be a *strongly P-process* if

$$k_0 = 1$$
 and  $k_n = 0 (n \ge 1)$ .

**Definition 4.** The P-process  $\{N(t)|t\geq 0\}$  is called to be a alternative sign P-process if

$$k_0 = 1$$
 and  $k_n = (-1)^n (n > 1)$ .

Park(1997a, 1997b) showed that the transformed geometric Poisson process which intensity function is a Pareto distribution is a strongly P-process and (0,1)-generalized Poisson process is a strongly P-process but (1,2)-generalized Poisson process is not a strongly P-process. Also (1,2)-generalized Poisson process is not a alternative sign P-process.

## II. Main results

In this section, we obtain the conditions that the P-process has the intensity function which it is a standard form of gamma distribution. And we show that the transformed geometric Poisson process which the intensity function is a standard form of gamma distribution is a alternative sign P-process

**Theorem 1.** If the counting process  $\{N(t)|t \geq 0\}$  is satisfying

$$(1) \quad N(0) = 0$$

(2) 
$$P\{N(t+h) - N(t) = 1 | N(t) = k\} = \frac{(k+1)(\alpha - 1 - t)t^{\alpha - 2}e^{-t}}{\Gamma(\alpha) - t^{\alpha - 1}e^{-t}}h + o(h)$$
  
where  $\alpha > 1$  and  $k = 0, 1, 2, \cdots$ 

(3) 
$$P\{N(t+h)-N(t)\geq 2|N(t)=k\}=o(h) \ (k=0,\ 1,\ 2,\ \cdots),$$

then the counting process  $\{N(t)|t\geq 0\}$  is a transformed geometric Poisson process which the intensity function is a standard form of gamma distribution.

### **Proof.** Since

$$g_k(t) = \frac{(k+1)(\alpha-1-t)t^{\alpha-2}e^{-t}}{\Gamma(\alpha) - t^{\alpha-1}e^{-t}}$$

$$= (k+1)\frac{\frac{d}{dt}(\frac{1}{\Gamma(\alpha)}t^{\alpha-1}e^{-t})}{1 - (\frac{1}{\Gamma(\alpha)}t^{\alpha-1}e^{-t})}$$

$$= (k+1)\frac{d}{dt}f(t)$$

$$= (k+1)\frac{d}{dt}f(t)$$

where 
$$f(t) = \frac{1}{\Gamma(\alpha)} t^{\alpha-1} e^{-t}$$
,

$$\begin{split} \int_* g_k(t) dt &= \int_* (k+1) \frac{\frac{d}{dt f(t)}}{1 - f(t)} dt \\ &= -(k+1) \ln[1 - f(t)] \\ &= -(k+1) \ln[1 - \frac{1}{\Gamma(\alpha)} t^{\alpha - 1} e^{-t}]. \end{split}$$

Hence we obtain that

$$-\infty < \left[ \int_{\mathbb{R}} g_n(t) dt \right]_{t=0} < \infty.$$

Thus the counting process  $\{N(t)|t \geq 0\}$  is a P-process. And when  $\alpha > 1$ ,

$$f(0) = 0$$

and

$$0 \le f(t) < 1$$
 for each  $t \ge 0$ .

Therefore, by Definition 2, the counting process  $\{N(t)|t\geq 0\}$  is a transformed geometric Poisson process which the intensity function is a standard form of gamma distribution.

**Theorem 2.** If  $\{N(t)|t\geq 0\}$  is a transformed geometric Poisson process which the intensity function is a standard form of gamma distribution. Then  $\{N(t)|t\geq 0\}$  is a alternative sign P-process

**Proof.** Since

$$P_0(t) = k_0 \exp\left(-\int_{\star} g_0(t)dt\right)$$

and for  $n \ge 1$ 

$$\begin{split} P_n(t) &= \exp\Bigl(-\int_* g_n(t)dt\Bigr)\Bigl[\int_* g_n - 1(t)P_n - 1(t)\exp\Bigl(\int g_n(t)dt\Bigr)dt\Bigr] \\ &+ k_n \exp\Bigl(-\int_* g_n(t)dt\Bigr), \end{split}$$

if n=0,

$$g_0(t) = \frac{(\alpha - 1 - t)t^{\alpha - 2}e^{-t}}{\Gamma(\alpha) - t^{\alpha - 1}e^{-t}}$$

and

$$P_0(t) = k_0 \exp\left(-\int_* g_0(t)dt\right)$$
$$= k_0 \left(1 - \frac{1}{\Gamma(\alpha)} t^{\alpha - 2} e^{-t}\right).$$

The boundary condition  $P_0(0) = P\{N(0) = 0\} = 1$  implies that  $k_0 = 1$ . Suppose  $n \ge 1$ . Since

$$g_n(t)=rac{(n+1)(lpha-1-t)t^{lpha-2}e^{-t}}{\Gamma(lpha)-t^{lpha-1}e^{-t}}$$

and

$$g_{n-1}(t) = \frac{n(\alpha-1-t)t^{\alpha-2}e^{-t}}{\Gamma(\alpha)-t^{\alpha-1}e^{-t}},$$

We obtain

$$\int_{*} g_n(t)dt = \int_{*} \frac{(n+1)(\alpha-1-t)t^{\alpha-2}e^{-t}}{\Gamma(\alpha)-t^{\alpha-1}e^{-t}}dt$$
$$= -(n+1)\ln(1-\frac{1}{\Gamma(\alpha)}t^{\alpha-1}e^{-t}).$$

Since the intensity function is a standard form of gamma distribution, we know that

$$P_{n-1}(t) = (1 - \frac{1}{\Gamma(\alpha)}t^{\alpha-2}e^{-t})(\frac{1}{\Gamma(\alpha)}t^{\alpha-2}e^{-t})^{n-1}$$

Thus,

$$P_n(t) = \exp\left(-\int_* g_n(t)dt\right) \left[\int_* g_{n-1}(t) P_{n-1}(t) \exp\left(\int_* g_n(t)dt\right)dt\right] + k_n \exp\left(-\int_* g_n(t)dt\right)$$

$$= (1 - \frac{1}{\Gamma(\alpha)} t^{\alpha - 2} e^{-t})^{n+1} \int_{*} \frac{n \frac{((\alpha - 1 - x)x^{\alpha - 2} e^{-x})}{\Gamma(\alpha) - x^{\alpha - 1} e^{-x})} (\frac{1}{\Gamma(\alpha)} t^{\alpha - 2} e^{-t})^{n-1}}{\{1 - (\frac{1}{\Gamma(\alpha)} t^{\alpha - 2} e^{-t})\}^{n}} dt$$

$$+ k_{n} \{1 - (\frac{1}{\Gamma(\alpha)} t^{\alpha - 2} e^{-t})\}^{n+1}$$

$$= \sum_{i=1}^{n} (-1)^{i+1} (\frac{1}{\Gamma(\alpha)} t^{\alpha - 2} e^{-t})^{n-i} \{1 - (\frac{1}{\Gamma(\alpha)} t^{\alpha - 2} e^{-t})\}^{i}$$

$$+ k_{n} \{1 - (\frac{1}{\Gamma(\alpha)} t^{\alpha - 2} e^{-t})\}^{n+1}.$$

The boundary condition  $P_n(0) = 0$  implies that  $k_n = (-1)^n$ .

### References

- 1. Concul, P. C. and Jain, G. C. (1973). A generalization of the Poisson distribution, *Technomatrics*, 15, 791-799.
- 2. Concul, P. C. and Shoukri, M. M. (1988). Some chance mechanisms generating the generalized Poisson Probability models, *Amer. J. Math. Management Sci.*, 8(1).
- 3. Park, J. H. (1995). k-Generalized Poisson Process, Journal of Kwandong University, 23, 293-299.
- Park, J. H. (1996). The Counting Processes that the Number of Events in [0, t] has Generalized Poisson Distribution, Journal of Statistical Theory & Methods, 7, 273-281
- 5. Park, J. H. (1997a). The counting Process of Which the Intensity Function Depends on States, *The Korean Communications in Statistics*, 4(1), 281-292
- 6. Park, J. H. (1997b). Note on the Transformed geometric Poisson processes, Journal of Statistical Theory & Methods, 8(2), 135-141
- 7. Ross, S. D. (1993). *Introduction to probability Models*, Fifth Edition, Academic Press, Inc.