Journal of the Korean
Data & Information Science Society
1998, Vol. 9, No. 2, pp. 299 ~ 303

A Note on Weak Law of Large Numbers for $L^1(R)$

Sungho Lee ²

Abstract

In this paper weak laws of large numbers are obtained for random variables in $L^1(R)$ which satisfy a compact uniform integrability condition.

Key Words and Phrases: weak law of large numbers, random variables in $L^1(R)$, compact uniform integrability.

1. Introduction

For identically distributed random elements $\{X_k\}$ in a separable normed linear space with $E \|X_1\| < \infty$, Taylor (1972) obtained $\left\|\frac{1}{n}\sum_{k=1}^n X_k - EX_1\right\| \to 0$ in probability if and only if $\left|\frac{1}{n}\sum_{k=1}^n f(X_k) - Ef(X_1)\right| \to 0$ in probability for each continuous linear functional f. Taylor and Wei(1979) obtained a more general result for a sequence of tight random elements. In particular, for tight random elements $\{X_k\}$ with $\sup_k E \|X_k\|^p < \infty$ (p>1), $\left\|\frac{1}{n}\sum_{k=1}^n X_k\right\| \to 0$ in probability if and only if $\left|\frac{1}{n}\sum_{k=1}^n f(X_k)\right| \to 0$ in probability for each continuous linear functional f. Wei and Taylor(1987) proved similar results for weighted sums, that is, $\left\|\sum_{k=1}^n a_{nk} X_k\right\| \to 0$ in probability if and only if $\left|\sum_{k=1}^n a_{nk} f(X_k)\right| \to 0$ in probability for each continuous linear functional f where $\{a_{nk}\}$ is a Toeplitz sequence. Wang and Rao(1987) obtained a weak law of large numbers by combining the tightness and moment conditions into a condition for compact uniformly integrable random elements.

This paper concentrates on weak law of large numbers of random elements in the space $L^1(R)$ with the L^1 norm. Some basic properties of random elements in $L^1(R)$ are introduced and weak laws of large numbers are obtained for compact uniformly integrable random elements in $L^1(R)$.

¹This research was supported (in part) by the Taegu University Reserch Grant, 1998.

²Associate professor, Department of Statistics, Taegu University, Kyungbuk 712-714, Korea.

2. Preliminaries

Let (Ω, A, μ) be a measure space. The space $L^1 = L^1(\Omega, A, \mu, R)$ is the set of all μ -equivalence classes of A measurable function $x:\Omega \to R$ such that $\int_{\Omega} |x| d\mu < \infty$. The norm for L^1 is defined by $||x|| = \int_{\Omega} |x| d\mu$. For the space $L^1(R)$ of this paper, $\Omega = R$, A =the Borel subsets and μ will be the Lebesgue measure on R. Let (Ω, A, P) be a probability space and let X be a function from Ω into a Banach space E. If $X^{-1}(B) \in A$ for every Borel set $B \in B(E)$, then X is said to be a random element in E. The following characterization of random elements in $L^1(R)$ is illustrative and useful in obtaining later results.

Lemma 2.1 (a) Let X be a function from $R \times \Omega$ into R such that (i) for each, $t \in R$ $X(t,\cdot): w \to X(t,w)$ is a random variable, (ii) for each $w \in \Omega, X(\cdot,w): t \to X(t,w)$ is a Riemann integrable function. If for each $w \in \Omega, X(\cdot,w)$ is identified with $\tilde{X}(\cdot,w)$, the equivalence class of $X(\cdot,w)$, then \tilde{X} is a random element in $L^1(R)$. (b) Let \tilde{X} be a random element in $L^1(R)$. Then there exists a function $X: R \times \Omega \to R$ such that (i) for each $w \in \Omega, X(\cdot,w)$ is a Lebesgue integrable function, (ii) for each $t \in R, X(t,\cdot)$ is an extended random variable.

The expected value for a random element in a normed linear space is defined by the Pettis integral (cf. Taylor(1978)). In a separable Banach space, the Pettis integral is equal to the Bochner integral when the Bochner integral exists.

Lemma 2.2 (Araujo and Gine(1980). Let $(E, \| \|)$ be a separable Banach space and let X be a random element in E. Then X has a Bochner integral $EX \in E$ if and only if $E \|X\| < \infty$. In this case, $\|EX\| \le E \|X\|$.

The following lemma gives a characterization of expected values in $L^1(R)$.

Lemma 2.3 (Lee(1990)) Let \tilde{X} be a random element in $L^1(R)$ such that $E \|X\| < \infty$. Then there exists a unique $\tilde{EX} \in L^1(R)$ such that

(i)
$$f(\tilde{EX}) = E[f(\tilde{X})]$$
 for every $f \in L^1(R)^*$

and

(ii)
$$\tilde{EX} = \tilde{E[X(t,\cdot)]}$$
.

Let $\{X_n\}$ be a sequence of random elements on a probability space (Ω, A, P) taking values in a separable normed linear space E and let r > 0. Then $\{X_n\}$ is said to be compact uniformly rth-order integrable if for every $\epsilon > 0$ there exists a compact subset K of E such that $\sup_n E\left[\left\|X_nI_{[X_n\in K^c]}\right\|^r\right] < \epsilon$. Compact uniform integrability denotes the case r=1.

3. Convergence in Probability

Weak laws of large numbers (WLLN'S) are proved in this section. For a sequence of compact uniformly integrable random elements in $L^1(R)$, it is shown that pointwise convergence conditions are sufficient for WLLN's. For weighted sums of triangular arrays of random elements in $L^1(R)$, a WLLN is proved. These results are the $L^1(R)$ counterparts to the Daffer and Taylor(1979)'s results for D[0,1]. The following lemmas are needed in the proofs of the Theorems.

Lemma 3.1 Let K be a compact subset of $L^1(R)$. Then for each $\epsilon > 0$ there exists a constant m_k such that $\sup_{\tilde{x} \in K} \left\| \tilde{x} - \tilde{x} I_{[|t| \leq m_k]} \right\| < \epsilon$.

Proof. Since K is compact, for given $\epsilon > 0$ there exist $\tilde{x}_1, \dots, \tilde{x}_s \in K$ such that $\bigcup_{i=1}^s \{\tilde{y} : \|\tilde{y} - \tilde{x}_i\| < \epsilon/3\} \supset K$. Thus, for each $\tilde{x} \in K$ there exists \tilde{x}_i such that $\|\tilde{x} - \tilde{x}_i\| < \epsilon/3$. Since $\tilde{x}_i \in L^1(R)$ implies $\|\tilde{x}_i - \tilde{x}_i I_{[|t| \le n]}\| \to 0$ as $n \to \infty$, we can choose m_k such that $\sup_{1 \le i \le s} \|\tilde{x}_i - \tilde{x}_i I_{[|t| \le m_k]}\| < \epsilon/3$. Hence, for each $\tilde{x} \in K$

$$\begin{split} \left\|\tilde{x} - \tilde{x}I_{[|t| \leq m_k]}\right\| &\leq \left\|\tilde{x} - \tilde{x}_i\right\| + \left\|\tilde{x}_i - \tilde{x}_iI_{[|t| \leq m_k]}\right\| \\ &+ \left\|\tilde{x}_iI_{[|t| \leq m_k]} - \tilde{x}I_{[|t| \leq m_k]}\right\| < \epsilon. \end{split}$$

Lemma 3.2 (Wang and Rao(1987)) Let $\{X_n\}$ be a sequence of random elements defined on a probability space (Ω, A, P) taking values in a separable Banach space E. Let r > 0. Then statements

- (i) and (ii) are equivalent:
- (i) $\{X_n\}$ is uniformly tight and $\{\|X_n\|^r\}$ is uniformly absolutely continuous.
- (ii) $\{X_n\}$ is compact uniformly rth-order integrable.

Lemma 3.3 (Wang and Rao(1987)) Let $\{X_n\}$ be a sequence of random elements taking values in a separable Banach space E. If $\{X_n\}$ is compact uniformly rth-order integrable for some $r \geq 1$, then $\{X_n - EX_n\}$ is compact uniformly rth-order integrable.

Theorem 3.4 Let $\{\tilde{X}_{nk}: 1 \leq k \leq n, n \geq 1\}$ be a triangular array of random elements in $L^1(R)$ which are compact uniformly integrable with $\tilde{EX}_{nk} = \tilde{0}$ for each n and k and such that $|X_{nk}(t)| \leq M$ for each t, k and n. Let $\{a_{nk}\}$ be an array of real numbers such that $\sum_{k=1}^{n} |a_{nk}| \leq \Gamma < \infty$ for each n.

If $\sum_{k=1}^{n} a_{nk} X_{nk}(t) \to 0$ in probability for each $t \in R$, then $E \left\| \sum_{k=1}^{n} a_{nk} \tilde{X}_{nk} \right\| \to 0$.

Proof.

Let $\epsilon > 0$ be given. Since

$$E\left\|\sum_{k=1}^{n} a_{nk} \tilde{X}_{nk}\right\| = \Gamma E\left\|\sum_{k=1}^{n} (a_{nk}/\Gamma) \tilde{X}_{nk}\right\|,$$

without loss of generality we can assume $\sum_{k=1}^{n} |a_{nk}| \leq 1$ for each n. Choose K compact, convex and symmetric with $\tilde{0} \in K$ such that

$$\sup_{n,k} E \left\| \tilde{X}_{nk} I_{[\tilde{X}_{nk} \in K]} \right\| < \epsilon/4. \tag{1}$$

By Lemma 3.1 pick a constant m_k such that

$$\sup_{\tilde{x}\in k} \left\| \tilde{x} - \tilde{x} I_{[|t| \le m_k]} \right\| < \epsilon/4. \tag{2}$$

Thus, for each n

$$E\left\|\sum_{k=1}^{n} a_{nk} \tilde{X}_{nk} I[|t| > m_{k}]\right\| \leq E\left\|\sum_{k=1}^{n} a_{nk} \tilde{X}_{nk} I_{[\tilde{X}_{nk} \in K]} I[|t| > m_{k}]\right\|$$

$$+ E\left\|\sum_{k=1}^{n} a_{nk} \tilde{X}_{nk} I_{[\tilde{X}_{nk} \notin K]} I[|t| > m_{k}]\right\|$$

$$< \epsilon/4 + \sum_{k=1}^{n} |a_{nk}| E\left\|\tilde{X}_{nk} I_{[\tilde{X}_{nk} \notin K]}\right\|$$

$$< \epsilon/4 + \epsilon/4 = \epsilon/2.$$
(3)

from (1) and (2). Since $|\sum_{k=1}^n a_{nk} X_{nk}(t)| \to 0$ in probability and $|\sum_{k=1}^n a_{nk} X_{nk}(t)| \le M$ for each $t \in R$, it follows that $E|\sum_{k=1}^n a_{nk} X_{nk}(t)| \le M$ for each n and $E|\sum_{k=1}^n a_{nk} X_{nk}(t)| \to 0$ for each $t \in R$. Thus, by the bounded convergence theorem

$$E\left\|\sum_{k=1}^{n} a_{nk} \tilde{X}_{nk} I_{[|t| \le m_k]}\right\| = \int_{-m_k}^{m_k} E\left|\sum_{k=1}^{n} a_{nk} X_{nk}(t)\right| d\mu(t) \to 0 \tag{4}$$

as $n \to \infty$. Hence, from (3) and (4) there exists N such that for all $n \ge N$

$$E\left\|\sum_{k=1}^{n} a_{nk} \tilde{X}_{nk}\right\| < \epsilon/2 + \epsilon/2 = \epsilon.$$

Since $E\left\|\sum_{k=1}^n a_{nk}\tilde{X}_{nk}\right\| \to 0$ implies $\left\|\sum_{k=1}^n a_{nk}\tilde{X}_{nk}\right\| \to 0$ in probability, several WLLN's follow as corollaries to Theorem 3.4. The following corollary follows from Lemma 3.3 and Theorem 3.4 by letting $a_{nk}=1/n$ for $1\leq k\leq n$.

Corollary 3.5 Let $\{\tilde{X}_k\}$ be a sequence of compact uniformly integrable random elements in $L^1(R)$ such that $\sup_{t,k} |X_k(t)| < \infty$. If

$$\frac{1}{n}\sum_{k=1}^{n}\left[X_{k}(t)-EX_{k}(t)\right]\to0\quad in\ probability$$

for each $t \in R$, then

$$E\left\|\frac{1}{n}\sum_{k=1}^{n}(\tilde{X}_{k}-\tilde{EX}_{k})\right\|\to 0.$$

References

- 1. Araujo, A. and Gine, E. (1980). The Central Limit Theorem for Real and Banach Valued Random Variables, John Wiley, New York.
- 2. Daffer, P. Z. and Taylor, R. L. (1979). Laws of large numbers for D[0, 1], Ann. Probability, 7, 85-95.
- 3. Lee, S. (1990). Laws of large numbers for $L^1(R)$, PhD. thesis, University of Georgia.
- 4. Rudin, W. (1974). Real and Complex Analysis, McGraw-Hill, Inc., New York.
- 5. Taylor, R. L. (1972). Weak law of large numbers in normed linear spaces, Ann. Math. Statist., 43, 1267-1274.
- Taylor, R. L. (1978). Stochastic Convergence of Weighted Sums of Random Elements in Linear Spaces, Lecture Notes in Mathematics 672, Springer-Verlag, New York.
- 7. Taylor, R. L. and Wei, D. (1979). Laws of large numbers for tight random elements in normed linear spaces, *Ann. Probability*, 7, 150-155.
- 8. Wei, D. and Taylor, R. L. (1987). Convergence of weighted sums of tight random elements, J. Multivariate Anal., 8, 282-294.
- 9. Wang, X. C. and Rao, M. B. (1987). Some results on the convergence of weighted sums of random elements in separable Banach spaces, *Studia Mathematica*, T. LXXXVI, 131-153.