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Bayesian Procedure for
Estimating Exponential Reliability Under the
Censored Sample with Incomplete Information
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Abstract

This paper deals with the problem of obtaining some Bayes estimators of
exponential reliability in a time censored sampling with incomplete information.
Some Bayes estimators are proposed and studied under squared error loss and
Harris loss.
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1. Introduction

The exponential distribution plays an important role in many practical relia-
bility analyses. It is the first model for which statistical methods were extensively
developed and is widely used as a reliability model.

Elperin and Gertsbakh(1988) investigated the Bayes interval estimation for expo-
nential parameter in a random censored sampling with incomplete information which
includes, as particular cases, both the random censoring model and the quantal-
response model. Calabria and Pulcini(1990) proposed the Bayesian procedure for
estimating the exponential mean lifetime and the reliability function in a time cen-
soring model with incomplete information using the squared error loss. Kim(1995)
proposed the Bayesian procedure for estimating the Rayleigh reliability functior
under the censored sample with incomplete information.
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In this paper, we will study the Bayesian estimation for the reliability function,
at a specified mission time ¢, based on a time censored sample with incomplete
information observed from the exponential model. A noninformative prior, a locally
uniform prior, and a beta prior distribution are considered as prior about a reliability.
The squared error loss function and the Harris loss functions are considered.

2. Bayesian Estimation

We consider the Bayes estimators of the reliability, at a specified mission time
t, for the exponential distribution, denoted by E(\), with probability density func-
tion(pdf) given as

f(z|A) = %emp( - ;), 0<z<oo. (1)

Then the reliability R at a specified time t > 0 is given by

R=P(X>t)=emp(-;). (2)

Let y be the fixed time to inspection and let z; be the exponential lifetime of
item i(¢ = 1,2,...,n). Then three possibilities can be occurred in testing item s:
First, the item fails at the instant z;(z; < y). The failure is not signalled and the
item is found failed on the inspection time y. In this case, the failure time is before
the inspection time. Second, the item fails at the instant z;(z; < y). The failure is
immediately signalled. In this case, the failure time is exactly known. Third, the
item is found unfailed at time y. In this case, the failure time would be beyond the
inspection time.

When n items are tested, the corresponding likelihood function is given by

L(Nz) (%)(1 — e fymeim (3)

where n; is the number of elements in the set of noncensored and nonsignalled
observations, ng is the number of elements in the set of noncensored and signalled
observations, ng is the number of elements in the set of censored observations, and
u is the sum of squares of the failure time of items in the set of noncensored and
signalled observations. Then n = n; +ngy 4+ n3 and the value of n; and ny depend on
the value of the probability of failure-to-signal p. On the average ny/(n1 + ng) = p.

Thus the likelihood function of R, which can be obtained from (3) by substituting
A=—-t/InR,is

n2 u+yn m -
L(R|z) o (— %m R) R (1 - 1#) (1)
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Unfortunately, since the likelihood function is not exponential, a natural con-
jugate prior can not be found. Thus a prior density generally involves numerical
integrations. But using the binomial formula, the likelihood function of R can be
written as

1 &
L(Rlz) o o ZO ¢;R7 (~InR)™, (5)
j=
where ¢; = (~1)/ ("); 3=0,1,...,m1 and w; = u+ (n3+j)y. Hence the commonly

used informative prior for R yields some estimators of R which are in an analytical
form.
Now, we consider the Jeffreys(1961)’ noninformative(NI) prior for R. When tke
time ¢ is specified, the noninformative prior for R is
1 .
w(R)———-RlnR, O0<R<1 (6)

Then the product of (7) and (5) provides the posterior density of R:

1 S i na— ~r
7(R)z) thzoch%-l(—lnR) -1, (7)
j:
Since
1
/ RY~lnR)"'dR = % ®)
0

the posterior density of R is given by

Yl ch%i_l(— In R)"2~!

T CR) v/ s L

0<R<], (9)

where I'(n) is the gamma function defined by I'(n) = [;° 2" le~%dz.
Thus the Bayes estimators can be calculated for a number of the loss functions.
If the squared error loss function Li(R, R) = (R— R)? is applied, then the Bayes
estimator of the reliability function is given as follows:

Theorem 2.1. (Calabria and Pulcini(1990)) If the squared error loss function
and a noninformative prior are used, then the Bayes estimator of the reliability
function is given by

Ti (wj +t; ’nz)

T1(wj; n2) (10)

Rn1 L, =
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where
Ti(z;; 1) Zc] . (11)

Next, we consider a loss function suggested by Harris(1976) for the case k = 2,
given by Ly(R,R) = [(1— R)"! — (1 — R)™')2. Under the Harris loss, the Bayes
estimator R, of Ris Ry, =1— [E{(1- R)}|X = z}]™?

Then one can obtain the Bayes estimator of the reliability function as follows:

Theorem 2.2. If the Harris loss function and a noninformative prior are used,
then the Bayes estimator of the reliability function is given by

Tz(wj + mt +t;ng)

Ryir, = >1 12
NI,L, Ty(w; T miting) ng ) (12)
where
Ty(zjm;l) = ZCJ Z (13)
m=0
Proof. By transforming Y = —In R, one can obtain the following relation:

B(;ipix=2) - Pocs 5oy te (1 — ey iy

14
D) S (L) (4
With the aid of the formula 4.5(10) in Erdélyi et al.(1955),
00 zt/~—le—pz
/ 2 € iz =a"T(W)((v,ap), Re(p) >0, Re(v)> 1, (15)
o 1-— e—z/a
where ((s,v) = > v o(v +m)~® (Re(s) > 0) is the generalized zeta function, the
Bayes estimator becomes
, Loci(e)™ o ()™
Ryrr, =1- > : =1- ! — (16)
? j= ()CJC(T'Q’ 7 ) Z 0Cj Zm—O( +m) n
With the aid of the formula 1.10(2) in Erdélyi et al.(1953)
(s, v) =C(s,1+v) +v77%, (17)

the numerator of the Bayes estimator is
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Sl ) Eo(l)" - Sotlorm) o
_ _ Zc]miio(u;]+mt+t>-"2

3=
Thus the Bayes estimator is
320 G 2om=o(wj +mt + 1)
2520 € m=o(wj +mt)™™

Next, we consider a locally uniform(LU) prior distribution UZ(0, 1) for R with
pdf

Rnip, = (19)

m(R)=1, 0<R<1. (20)
Then the posterior density of R is given by

ano ciR _.  (—InR)™
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m(R|z) = —5, 0<R<1, (21)

L(n2+1) EJ' c](w s

where I'(n) is the gamma function.
With the squared error loss function, The Bayes estimator of the reliability is
given as follows:

Theorem 2.3. If the squared error loss is used and R has a locally uniform
prior, then the Bayes estimator of the reliability function is given by

Tl(wj +2tn2+1)
Ti(wj+tng+1)°

Ripr, = (22)

where T1(zj;1) is given by the equation (11).
Proof. This can be easily proved from the equation (8), so we omit the proof.

Under the Harris loss one can obtain the Bayes estimator of the reliability func-
tion as follows:

Theorem 2.4. If the Harris loss function is used and R has a locally uniform
prior, then the Bayes estimator of the reliability function is given by

Ty(w; +mt + 2t;ng + 1) (23)
Ty(w; +mt+t;ng+1)° )

Riyr, =



216 Yeung-Hoon Kim - Jeong-Hwan Ko - Jae-Kyoung Shin

where T5(2m; 1) is given by the equation (13).
Proof. The proof is similar to Theorem 2.2 and thus is omitted.

Since a locally uniform prior UF(0,1) does not depend upon R, the posterior
density of R is proportional to the likelihood function of ¢. Thus the generalized
maximum likelihood estimator for a locally uniform prior for R is also the classical
maximum likelihood estimator.

Finally, we consider a beta prior distribution B®(a, 8) for R with pdf

n(R) = R '(1-RF ! 0<R<1,0<a,f, (24)

(ﬂ)

where B(a, () is the beta function with parameters a and § defined by B(a, 3) =
Ji 22711 — 2)P1dz.
Then the product of (24) and (5) provides the posterior density function of R:

1
B(a, B) t
In order to the marginal distribution of X, the calculation of the integration

[}~ Ry Rw/te=1(1 — R)P~14R is needed. Expanding (1 — R)’~! in a binomial
series, we have

(Rlz) ):cx ln R)R7+1(1 — R (25)

JH(—In RymR%+e-1(1 — R)P-1dR (26)
Jo (= In Ry RT+-1 52 ((~1)* (") RER.
In (26), it is understood that if the parameter (3 is a positive integer, the series
terminates; that is, all terms with &k > # — 1 are zero.
Since the interchange of integration and summation in (26) is justifiable, we can
write (26) as
Ji{(~n RymR7+-1(1 — R)P-1dR (27)
-1 : 1
= D(n2 +1) TR0~ D) (grremm)™"

whenever o + wj/t > 0, §+ ny > 0. Hence the posterior density function of R is
given by

S ¢;(~In Ry REe-1(1 — R)A-1
L(nz +1) £ ¢ SR20(~ D ) (arpamm) ™

or, equivalently,

m(Rlz) = O<R<1 (28

Tt (- D) (= In Ry R7 +atk-]

—, 0<R<1 (29)
T(ng+ 1) C5lg ¢ X0 (- 14 (% )(m) i

m(R|z) =
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If the squared error loss function is considered, then the Bayes estimator of the
reliability function is given as follows:

Theorem 2.5. If the squared error loss function is used and R follows a
beta prior distribution with parameters a and £, then the Bayes estimator of the
reliability function is given by

- T3(w;j+at+kt+t,8—1;n2+ 1)
= )
Ep(p 1 Ty(wj+ot+kt,B—1;ng+1) Btmna >0, (30)
where
3\ [o¢] 7
T3(ij,’)’;l) = ZCJ' Z(—l)k (k>zj-;cl (3])

Proof. This can be easily proved, so we omit the proof.
Also with the Harris loss function, the following theorem can be obtained:

Theorem 2.6. If the Harris loss function is used and R follows a beta prior
distribution with parameters o and 3, then the Bayes estimator of the reliability
function is given by

Tg(wj+at+kt+t,ﬁ~—2;n2+1)

¢ = -1 2
RB(a“B),Lz T3(’LUJ +at + kt,ﬂ — 2,"7/2 + 1) 3 /3 + ng > 0, (31)

where T3(2;x,7; 1) is given by the equation (31).
Proof.
Yo fo(—In R)mR7+e~1(1 — R)*-2dR

E( ! X = x) =
R T+ )R 6 TR0 ) (o)™

(33)

Since the integration of the above equation converges whenever 8+ ny — 1 > 0, by
expanding (1 — R)?~2 in a binomial series we have

[}(=In Ry=R7+=1(1 — R)P-2dR (34)
= T(n2+1) TR0 (D) (grtem) ™
Then we can obtain the Bayes estimators as follows:

2520 S Ziio(—l)’“(";l) (w; + at + kt)~(mt1)
"o ¢ o (—DF(PF?) () + at + kt)—(ratD)

Rppr, =1- (35)
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By applying the Pascal triangle identity, we have the Bayes estimator of R

Rpios 1, = il Z/c;o:o(—l)k(ﬁf) (w; + at + kt + )~ (m2+1)
oo 065 Xo(=1)F (7% (w) + ot + kt)~(r+D)

(36)

Comparing (30) and (32), we have R Bla,f=1),L; = R B(a,8),L,- Lhus we have shown
that the two families of Bayes estimators have the same form.
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