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On C.L.T. and L.1I.L. for fuzzy random variables
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Abstract

In this paper we study central limit theorem(C.L.T.) and law of iterated
logarithm (L.L.L.) for fuzzy random variables with respect to Hausdorff distance.
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1. Introduction

Since the concept of fuzzy random variables was introduced by Kwakernaak (7],
many authors have studied law of large numbers (e.g., Miyakoshi and Shimbo [11],
Stein and Talati [16], Puri and Ralescul5, Kruse 6 and Klement, Puri and Ralescu
[5]). Recently, Hong and Kim [4] studied a law of large numbers with respect to the
Hausdorff distance between the expected intervals of a fuzzy number. In this paper
we investigate C.L.T. and L.IL. with respect to the same distance as in Hong and
Kim[4].

2. Preliminaries

We will now describe some concepts related to fuzzy random variables as they
will be necessary for the discussion in the next sections. Throughout this paper,
unless otherwise stated, we assume that a fuzzy number, g, is strictly normal, that
is, there exists an element z € R such that h;(x) = 1, where h; is the membership
function of a.

Let A be a fuzzy number. We define two subsets as follow:

Ay = {z|hz > a} for any a € (0,1],
A, = {z|hz > o} for any a €[0,1),
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where h ; is the membership function of A

Let P(R) be the classes of all fuzzy numbers and Py (R) be the subclass of P(R)
satisfying the following three conditions :
(i) @ € P(R)
(ii) hs is upper semicontinuous and quasi-concave,
(iil) supp@ = cl(@o) is compact, that is, the closure of {z|ks(z) > 0} is a compact
subset of R.

Let a@y,a9 € PN('R) and a; + dz be the sum of @ and @;. Then, according to
Nguyen[14], we have

(@1 + d2)a = (@1)a + (a2)a,

sup(d; + &)z = as) +a?,

inf(@; + d2)g = a(-l) + a(2)

sup(a1 + @2)a, inf(@1 + @2)a € (a1 + az)s for any o € (0, 1],

where a( ) = sup(dr)s and ggc) = inf(@x)s (kK = 1,2), and sup, inf denote the
supremum and infimum, respectively.

Let A € Py(R). The expected interval of a fuzzy number A is denoted by
Ji Agdr and defined as Jo Asda = Uy Aade, [} Azda]( see [3, Lemma 3]).

We define a distance between fuzzy numbers in Py (R) by

P 1, 1
d(A,B) = d / Asda, / Bada).
0 0 -

Here d denotes the Hausdorfl distance between two compact subsets of R. More
precisely,

d(M,N) = inf |a — b|, sup inf |a — b|}.
(M, N) mw{:élﬁr;ggjvla Iggﬁ;nga I}

We review the definition of a fuzzy random variable and the one of the expecta-
tion of a fuzzy random variable. For details we refer to Kwakernaak[6].
Let (92, A, P) be a probability space and the w stand for the element of .

Definition 1 A fuzzy random variable ¢ is defined as a function from Q to ]-:’N(R)
satisfying the following two conditions:

(i) Xa(w), X5(w) € &(w)a for any a € (0,1],

(it) X5 and X, are A-measurable for any a € (0, 1], where Xz(w) = sup(&(w))a and
X5(w) = inf(§(w))a-
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Definition 2 The expectation of a fuzzy random variable ¢, denoted by EE, is
defined as a fuzzy numbers whose a-level set (E€)s is given by a closed interval
[EXy, EX3) for each o, where the symbol E in the square brackets stands for the
expectation of random variables X; and X, with respect to P-measure.

Next we give a definition of independence of a sequence of fuzzy random variables.

Definition 3 Leta(X,Stn),X((1 e (0,1]) be the smallest o-fields such that X( ") and

X3 (n) for any a € (0,1] are measurable. A sequence of fuzzy random variables {&,n >
1} is called independent and zdentzcally distributed(i..d) if all finite subsequences of

a sequence of o-fields {o(X; ),Xgn),a € (0,1)),n > 1} are mutually independent
and {(Xé"),Xgn)) n > 1} are identically distributed for each o > 0.

fe: Q- PN(R), then supp £ is the random interval which associates to w € 0
the support of the fuzzy number £(w). We define the norm ||M|| of a compact set
M in R as ||M|| = supyeuy |al-

3. Main Results

Theorem 1 (C.L.T.) Let {{,k > 1} be i.i.d fuzzy random variables with
E||supp&||? < co. Then we have for everyt € R

Jim P(n™2d(Y_ &, Y BE&) <t}

k=1 k=1
< 200t fmin{B( [ (X - BXE)aa), B[ O - BXEdo) ) -

where ® is the standard normal distribution.

Proof We first note that

P{n_%d ka, ZE&C <t}

k=1 k=1

— P{n- 2ma.x{|/ Z ¥ _ EX®dal, |/ Z EX®)da|} < £}

IA

min{ P{|n—%§: / (XP — EXMdo| < 1),
0
=1

n 1
Pty [ (& - BEXP)dal < 1) .
k=170
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Since { f; (Xc(—,k) - EX},” )da, k > 1} are i.i.d random variables with mean 0 and
variance E[f} (X&) — EXP)da)?, we have, as n — oo,

n 1 1
P{ln™:y" / (X3 - EXP)do| < t} — 28(t - [B( / (X — EXF)do) ) - 1.
k=1 0 . 0

In the similar manner we have, as n — oo,

n 1 1
PntY. [[(xX% - BXP)da| < 1) — 20(¢ - (B [ ¥ - BXPaay ) -1
=1 0 0

Therefore, we have the desired result.

Theorem 2 (L.I.LL.) Let {&,k > 1} be i.i.d fuzzy random variables with
E||supp&]|? < co. Then we have

n n
lim sup(2n log log n)_ld(z €k, Z E¢)
k=1 k=1

< max{(B([ (X - EXO)daylt, (B[ (X9 - EXO)daf)) as

Proof
1 n n
lim sup(2n log log n)_fd(z &k Z E¢)
k=1 k=1
, -1 ' e® k)
= limsup(2nloglogn) 2max{|/ Z(Xd - EX;')dal,
0 k=1
T n
| @ - BXP)dal)
0 k=1
: 3 I W pe®
= max{limsup(2nloglogn)~z[ [ > (X5’ — EX;")dal,
Lt
: N ) *)
lim sup(2nloglogn)~2| Z(Xd - EX;’)dal}
O k=1
o _ 1
< max{(B(| (X - EX{)da), (B([ (18 - EXO)a0))h)
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Corollary 1 If P{{i(w) € a set of same type of symmetric fuzzy numbers} = 1,
then under the conditions of Theorem 1, we have

lim P{n*%d(i & i E&) <t} < 28(t - [min{E( /0 (XD~ BXO)da) ) — 1.
k=1 k=1

n—oo

Proof If P{{;(w) € a set of same type of symmetric fuzzy numbers} = 1, then we
can easily check that

1.n 1 n
| / (XY - EXP)dal = | / S (P - EX®)dal a.s.
0 k=1 0 k=1

for all n. Now, following the line of the proof of Theorem 1 we can get the result.
Similarly, we have the following corollary.

Corollary 2 If P{{i1(w) € a set of same type of symmetric fuzzy numbers} = 1,
then under the conditions of Theorem 2, we have

n n 1 _ _
limsup(2nloglogn)~d(3 &, 3 E&) = [B( / (XD ~ EXM)da))} as.
n—00 k=1 k=1 0

Example 1 Let { be iid with P{{; = a1} = P{& = a2} = 1, where &
and ap are symmetric triangular fuzzy numbers with centers 0, 2 and spreads
1, 2, respectively. Then P{Xg) =1-a} = P{X((il) = 2a} = %, and hence
we can easily compute that [E(f; x® - E&l))da)ﬂ% = 4. Therefore, we have
limsup,,_,,(2nloglogn)~'d(C5_;1 &, Sioy E&) = 1.
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