References
- Henrinksen, M. (1984), "Nonlinear viscoelastic stress analysis-a finite element apporach", Computers and Structures, 18, 133-139. https://doi.org/10.1016/0045-7949(84)90088-9
- Lee, C.F. (1995), "Recent finite element applications of the incremental endochronic plasticity", Int. I. Plasticity, 11(7), 843-865. https://doi.org/10.1016/S0749-6419(95)00034-8
- Liu, M.L. (1993), "The structure response of pavement by using the hypoelastic model", The 17th Nat. Conf. Theo. Appl. Mech., Taiwan, 761-768.
- Liu, M.L. (1994), "The use of hypo elastic constitutive model for asphalt concrete materials", Int. Compu. Meth. Strue. Geot. Engng., Hong Kong, 659-700.
- Row, G.M., Brown, S.F. and Bouldin, M.J. (1995), "Visco-elastic analysis of hot mix asphalt pavement structures", Transportation Research Board 74th Annual Meeting, Washington D.C., Paper No. 95-0617.
- SHRP Project (1991), "Performance-related testing and measuring of asphalt-aggregate interaction and mixtures", Quarterly Report, Part I-Technical Section, Institute of Transportation Studies, Asphalt Research Program, U.C. Berkeley, California, QR-UCB-A-003A-91-2.
- Sugiura, K., Lee, G.C., and Wang, K.C. (1987), "Endochronic theory for structure steel under nonpropotional loading", J. Engng. Mech, 113(12), 1901-1917, ASCE. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:12(1901)
- Valanis, K.C. (1971), "A theory of viscoplasticity without a yield surface, part i. general theory, part ii application to mechanical behavior of metals", Arch. Mech., 23, 511-517.
- Valanis, K.C. (1980), "Fundamental consequence of a new intrinsic time measure: plasticity as a limit of the endochronic theory", Arch. Mech., 32, 171-191.
- Valanis, K.C. and Fan, J. (1984), "A numerical algorithm for endochronic plasticity and comparison with experiment", Computers and Structures, 19, 717-724. https://doi.org/10.1016/0045-7949(84)90171-8
- Valanis, K.C. and Lee, C.F. (1984), "Endochronic theory of cyclic plasticity with application", Trans. ASME, J Appl. Mech., 51, 367. https://doi.org/10.1115/1.3167627
- Watanabe, O. and Atluri, S.N. (1986), "Internal time, general internal variable, andm multi-yieldsurface theories of plasticity and creep: a unification of concepts", Int. J. Plasticity, 2, 37-57. https://doi.org/10.1016/0749-6419(86)90015-X
- Wu, H.C. and Aboutorabi, M.R. (1988), "Endochronic modeling of coupled volumetric-deviatoric behavior of porous and granular materials", Int. J. Plasticity, 4, 163-181. https://doi.org/10.1016/0749-6419(88)90019-8
- Wu, H.C. and Komarakulnanakorn, C. (1992), "On the limit case of endochronic theory", Int. J. Solids and Structures, 29(2), 135-143. https://doi.org/10.1016/0020-7683(92)90103-Z
- Wu, H.C. and Lu, J.K. (1995), "Further development and application of an endochronic theory accounted for deformation induced anisotropy", Acta Mechanica, 109, 11-26. https://doi.org/10.1007/BF01176813
- Wu, H.C. and Wang, P.T. (1983), "Endochronic description of sand response to static loading", J. Engng. Mech., 109, 970-989, ASCE. https://doi.org/10.1061/(ASCE)0733-9399(1983)109:4(970)
- Wu, H.C., Wang, P.T., Pan, W.F. and Xu, Z.Y. (1990), "Cyclic stress response of porous aluminum", Int. J. Plasticity, 6, 207-230. https://doi.org/10.1016/0749-6419(90)90022-7
Cited by
- Development of finite element model using incremental endochronic theory for temperature sensitive material vol.16, pp.2, 2003, https://doi.org/10.12989/sem.2003.16.2.115