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THE PAN-GENERALIZED FUZZY INTEGRAL 
OF A COMMUTATIVE ISOTONIC 

SEMIGROUP-VALUED FUNCTION

Ju Han Yoon, Gwang Sik Eun, and Byeong Moo Lee

ABSTRACT. In this paper, we introduce the pan-generalized fuzzy 
integral of a commutative isotonic semigroup-valued function, which 
is generalization of the (G) fuzzy integral and investigate the funda­
mental properties of this kind of fuzzy integral.

1. Introduction
In 1980, D.A. Ralescu and G. Adams generalized the concept of 

fuzzy integral due to M. Sugeno[3]. For convenience, we will call it 

(S) fuzzy integral. Following that, D.A. Ralescu and G. Adams [1] 

and D.A. Ralescu [2] have investigated the basic properties of (S) 

fuzzy integral. Wang Zhenyuen obtained a series of (S) fuzzy integral 

convergent theorems in [4]. Meanwhile, Zhao Ruhuai introduced a 

new definition of fuzzy integral, viz. (N) fuzzy integral in [7]. Wu 

Congxin, Wang Shuli, and Ma Ming [5] introduced the (G) fuzzy 

integral using a generalized triangular norm which is a generalization 

of both (S) fuzzy integral and (N) fuzzy integral. In this paper, we 

introduce the pan-generalized fuzzy integral of a commutative isotonic 

semigroup-valued function, which is generalization of the (G) fuzzy 

integral and investigate the fundamental properties of this kind of 

fuzzy integral.
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2. Preliminaries
Definition 2.1. Let X be a nonempty set, >1 be a cr-algebra of 

a class of the subsets of X, the mapping 사 : >1 —今 [0, oo] is called a 

fuzzy measure provided

(1) M(0)= 0；

(2) if A C B, then /z(A) <

(3) if A C A2 C • • • C C • • • , e X, then m(UZ=i 슈)= 

limn_>oo "U)；

(4) if Ai D A2 三 … 三〉Ai 丁 • • • , Ai 三 八 and there exists a nat­

ural number no such that /^(Ano) < oo, then 사(「|：Li 刀n) = 

limn—Ko

If 乂 is a fuzzy measure, (X, A, /z) is called a fuzzy measure space.

Definition 2.2. Let (X,사) be a fuzzy measure space, f : X -今 

[0, oo] is said to be v4-measurable function if Na(f) e A for all a e 

(—00,00), where Na(f) = {x : f{x) > oj.

Definition 2.3. A fuzzy measure is said to be nulbadditive if 

/2(』4U B) = 11(A) whenever A^B e A with /』$B) = 0.

In this paper, let R+ = [0, oo), 正十 = [0, oo] and cz, 6, c, d, 어, bi e 

正十.

Definition 2.4([이). Let © be a binary operation on The 

pair (B+, ®) is called a commutative isotonic semigroup and ® is 

called a pan-addition on 正十 iff ® satisfies the following requirements:

(PAI) a ® 6 = b ® a;

(PA2) (a © 6) © c) = a ® (6 ® c);

(PA3) a <b, then a® c<b® dor any c;

(PA4) a ® 0 = a;

(PA5) if limn an and limn bn exist, then limn(an ® bn)exists, 

and limn(an © bn) = limn an © limn bn
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Definition 2.5([8]). Let 0 be a binary operation on FL누. The 

triple (g+,®,0), where ® is a pan-addition on 正十, is called a com­

mutative isotonic semiring with respect to ® and 0, iff:

(PM1) aQb = bQ a;

(PM2) (a06)0c = a0(bOc);

(PM3) (a © 6) 0 c = (a O c) © (6 ® c);

(PM4) if a 冬 b, then (a O c) < (6 0 c) for any c;

(PM5) a 〒으 0 and & 7〈 0 = 位0&斗 0;

(PM6) there exists e e jR+ such that e & a = a for any a e 正十;

(PM7) if limn an and limn bn exist and are finite, then limn (an 0 

bn) = limn an Q limn bn.

The operation Q is called a pan-multiplication on 正斗., and the number 

e is called the unit element of (jR+, ®, 0).

Note 2.1. 正十 with the common addition and the common multi­

plication of real numbers is a commutative isotonic semiring.

Note 2.2. 正十 with the logical addition and logical multiplication 

of real numbers is commutative isotonic semiring.

If (X, X, ii) is a fuzzy measure space and (正十, ®, 0)is a commuta­

tive semiring, (X, A, 사, 正十, ®, 0)is called a pan-space and if E C X,

e if x e E 

0 otherwise.

is called the pan-characteristic function of E, where e is the unit 

element of (正十, ®, 0).

Definition 2.6. Let (X, ⑵ 凶 正十, ®, 0)be a pan-space. A func­

tion on X given by s(x) = ®^=1[ai Q 乂及 (鉛) is called a pan-simple 

measurable function, where a》e 正十, i = 1,2, ••• ,n and {Ei\i =

1,2, • • - , n} is a measurable partition of X.

=
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3. Definition and fundamental properties of (PG) fuzzy in­
tegral

Definition 3.1. Denote D = [0, oo] x [0, oo] \ {(0, oo), (oo,0)}. 

The mapping S : Z) -今 [0, oo] is called a c-generalized triangular norm 

provided that

(1) S[0, x] = 0 for all x e [0, oo) and there exists an e e (0, oo] 

such that e\ = x for each x G [0, oo], e is called the unit 

element of S;

(2) 5[:zw| = S[?/,:z:] for all (aw) e 刀;

(3) S[a, 이 < S[c, d] whenever a < c, 6 < d;

(4) if {(xn,yn)} C D, e D, xn x, yn -今 y, then

이%n, ?/n] —어’ 이)仏 ?/]으

Note 3.1. A generalized triangular norm ([8]) implies a c-generali­

zed triangular norm.

Note 3.2. Take y] = min(：r,이), S2[x, i/] = k(xy)p, > 0) 

and

| 0 if min(⑦, y) = 0,
3 X’히 \ xy + k(xy)p if min(rr, 2/)^0 {k.p > 0) 

then Si, S2 and S3 are c-generalized triangular norm.

Definition 3.2. Let S be a c-generalized triangular norm and f 

be a nonnegative measurable function, A 6 丄L Then the (PG) fuzzy 

integral of / on A is defined by

(PG) [ f dp, — inf

J a Q<s<f

where s = 0 X* 凶 구 사0 G 7으 J), 以 > 0, A e X (i =

1,2, ― ,7궁) and Qa(s) = sup1：幻，5[以, 以刀0八)]. Define sup{i: i e 

0} = O.
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I f dfi - sup S[a, /z(A n A^a(/))]
A a>0

In what follows, (PG) fx f di丄 will be denoted by (PG) f f d^. For 

the notions and results on fuzzy measure and fuzzy measurable func­

tions refer to [8].

Theorem 3.1. For (PG) fuzzy integral we have the following equi­

valent forms:

(PG)

= supS[o!,/z(An7V*(/))]
ct>0

= sup S[inf /(:r),사(An』5j]
EeA,infxeE f(x)>o x=

where N；(f) = {x : f(x) > a}

Proof. The above four expressions are denoted by (1),(2,),(3), and 

(4) in proper order. Then we infer (1)< (4): For any E E A, 

infxEE > 0, it is clear that inf^e^ /(^) G) Xe 丄 f • By Definition

3.2, we know

{PG}

Since E e Ais arbitrary, hence

(PG) [ fd^> sup Slinff(xl^ADE)] 

J A EeA,infxeE f(x)>0

(4)>(3): By N츠 (J) e A for any a > 0 and infxe7V*/(x) / > 사A there­

fore we have

sup Slinff(x),^AQE)] > S[a,n 7V&(/)] 
EeA, infxEjE f(x)>Q X^E

Since a is arbitrary, hence we have

sup 5[inf> sup /i(A n 7V*(/)]
EGA infxEEf(x)>0 X^E a>0

f dp,= sup Qa(s] > S[inf /(⑦), 사(』4 n」EQ] 
0<s<f X^E
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(3)<(2):iVQ(/) C 7V*(/) for any a > 0 and the monotonicity of fuzzy 

measure p> and c-generalized triangular norm, we infer that S[ct, /i(』4A 

AQXf)] > S[a, A &(/)], thus we have

sup S[a, //(A A 7V*(/)] > sup S[a, n M(/)] 
a>0 a>0

(2)>(1): If (PG) fA f df』< oo, then for arbitrary € > 0, there exist 

0 < s < /, s = ©{Li% Q XAi and i0 such that

(PG) [ f d4i<QA(s) +》= sup 이유, /i(An 八)] + | 

J A 2 l<i<n 丄

= S[ai0,/i(A n Ao)] + x

On the other hand, by the property of c-generalized triangular norm 

we have

lim S[aiQ — l/n^CAnA元)] = S[aio, p,(Ar} Aio)] 
n—>oo

Therefore, there exists an no with c^0 — l/n()> 0 such that

으
S[oii0 — l/n,A<An 八0)] > S[a하,/』(An A(J] — 즈

Therefore we have

(PG)< 이유,/川4n八0)] + |

드 이이#o — i/no? 乂(』4 n 八0)] + e

으 日k아o — l/n0, M(』4 0 八『Ctio —l/n0(/))] + e

< supS[a,^(An7Va(/))] + s 
a>0

Since e > 0 is arbitrary, this implies that supa>0 5[ct, /z(AA7Va(/))] > 

(PG) 心/dM
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If (PG) fAfd^ = oo, then for each M > 0, there exists 0 < s(M)< 

f, s(M)= ©2=10스 ©乂八 such that Qa(s(m)) > M. Similar to the case 

of (PG) fAf di丄 < oo, we infer that there exists an n()such that 

日[0位)一 l/n(),/丄(』4「)八0)] > M. It follows that supa>0 S[a,/z(』4 D 

八『a(/))] > S[ct,사(A A A하))] > M. Since M > 0 is arbitrary, we 

have supa>0 S[a, /i(A n 7Va(/))] = oo. From the preceding proof, we 

conclude the proof of this theorem. □

Note 3.3. By the preceding theorem, it is easy to 안low that (S) 

fuzzy integral, (N) fuzzy integral , and (G) fuzzy integral are special 

kinds of (PG) fuzzy integral.

Theorem 3.2. For (PG) fuzzy integral, we have

(1) if fi < f= then (PG) fA h dp. < (PG) fA f2 하』;

(2) if A C A2, then (PG) J소 f d以 으 (PG) 凡 f 하』;

(3) if //(A) = 0, then (PG) fAf dp = 0;

(4) (PG)fAfd^ = (PG)ffQxAd^;

(5) (PG) fAcd/丄 = S[c, 사(』4)] for any A e A and constant c E 

(0,oo);

(6) (PG) fA h V/2^> (PG) JJdfW (PG) fA f2 dii;

(7) (PG) fA h A/2^< (PG) fA h 如 A (PG) fA f2 (仙

(8) (PG) fA(cV/仙 = (PG) fAcdi丄/\ (PG) fAf d/jL for any con­

stant c e (0, oo).

Proof. The proof of (1),(2),⑶,(6),and (7) is deduced directly from 

Theorem 3.1. (4) By Theorem 3.1<we have

(PG) [ f du = sup S[a, ijl{A n Na(f)] 

J A q>0

= sup S[a, 아(&(/0 x^))] 
Q>0

= (PG) j f =
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(5) Let f = c. For any a > 0, we have

&(/) = {스’ a < c

a > c

Hence Theorem 3.1 gives that

(PG) [ / c仙 = sup S[a,/』Q4n&(/))] = S[c, 사(A)]

J A ot>0

(8) For any a > 0, we have

/ 、 f X, a < c八지…)= L\W), ct>c

Hence Theorem 3.1 gives that

(PG) / (c V /) d/x = sup 日[cMi(An』Va(c V f)))]
J A 0<a<c

V sup S[a, A Na(c V jf))]]
a>c

= S[c, 以刀)] V sup S[a, n &(/))] 
a>c

In addition, supa<c 日[a,/z(A A&(/))] = supa<c S[a,/i(』4)]. There­

fore we have

(PG) [ ((S f)di』=(PG) [ c 히ZV(FG) [ fd아

J A J A J A

□

Theorem 3.3. Let /, g be nonnegative measurable functions.

Then (PG) f f dp, = (PG) f gdfi whenever f = g a.e., if and only if 

fi is null-additive.

Proof. Sufficiency: Suppose that yi is null-additive and f = ga.e. 

Put B = {x; f(x) 羊 Then (丄(B) = 0 and 以Na(g)) = 山、Na(g)U

B). So we have /』$Na(jy)< /』[Na(g) \J B) = /丄(Na(g)) for any a > 0. 
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The converse inequality holds as well, we have//(&(/)) = /丄(Na(9)). 

By Theorem 3.1, we have that (PG) f f d/丄 = (PG) f g df丄.

Necessity: For any A € X, B E A with /丄(B) = 0, if /z(A) = oo, then 

by the monotonicity of /』,, we have /z(A U B) = oo = /1(A). Now, we 

assume that 사(A) < oo, define

f e, xe AU B f e, xeA
•“=(0, "AUB and")= (o, X。

where e is the unit of S, then f = g a.e. So, by hypothesis, (PG) f f d/丄 

= (PG) f g dp,. Therefore we have S[e,/z(』4 U B)] = S[e,/丄⑵)]. It 

follows that //(AD B) = 사(A). Hence f丄 is null-additive. □

Corollary 3.1. If /丄 is null-additive, then (PG) fA f d/j, = 

(PG) fAgdfi whenever f = g a.e. on A.

Proof. If / = 0 a.e. on A, then fQXA = 9®Xb ⑦•匕• 그From Theorem

3.3 and Theorem 3.2(4), we get the conclusion. □

Corollary 3.2. If 아 is null-additive, then (PG) fAuB f dp = 

(PG) fAfd/i whenever A e A, B e A with fj[B) = 0.

Proof. Since fQXAuB = f&XA a.e., by Theorem 3.3 and Theorem

3.2(4), we get the conclusion. □

Theorem 3.4. Let (X, A, /z) be a fuzzy measure space and f be 

nonnegative measurable function. Then for A e A,

P POO POO
(PG) fd— (PG) / w(a) dm = (PG) / 成 (a) dm

J A Jo Jo

where m is the Lebesgue measure, 切4(伏) = fi(A A Na(f)), g초(a) = 

以凶 n 애 (/)),

Proof. Since gQ(a) > 以引伏) for every a G (0, oo), it follows that

/»OO /*OO
(PG) / 이;(a) dm > (PG) / 成 (a) dm

Jo Jo
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In addition, 以引⑦) > 切4(伐) for every x G [0, a]. Therefore we have 

[0, a] C {x : gA(아) > "(a)}. It follows that

(PG) [ fdii = supS[a,/z(An7Va(/))] = supS[a,^(a)]

J A a>0 a>0
poo

< supS[m(7V"(a)(iM)),w(a)] < (PG) / gA^) dm 

a>0 J 0

Hence we have (PG) fAf d/j,> (PG) g)(/) dm.

In what follows, we will show that

(PG) [ f dm > (PG) g\(f) dm. 

J A Jo

If (PG) fAf d/丄 = oo or gQ = 0 a.e., then the inequality is trivial. 

Suppose that there exists an Aq e A, Aq C A with g\{x) > 0 for 

all e Ao- For any pan-simple s = ©자느以 0 乂八 with 0 < s < 오;, 

there exists an io such that S[aioim(Aio)] = sup1<i<n S[c아, m(Ai)]. 

In what follows, we conclude the proof in two cases.

(a) If m(八0) < oo, denote /? = sup{rr : x € 八0}, then m(Ai0) < (3. 

For /? < oo, there exists Xk € Ai0 such that ]imxk = /3. For any s > 0, 

there exists a ko such that

이%(W < 5[ow시 + € < 日[= 鉛니 + 으 (PG) 우 / 仙

for all k > k(). Hence we have that

(PG) gAU) dm < (PG) [ /⑪. 

Jo J A

When /? < oo, there exists a 位()仁 Ao such that m(A하)) < xq. Since

(PG) [ fd^ = sup S[a, A TV* (/))] = sup S[a, m(^(a))]

JA a>0 a>0

Hence we have (PG) gQ(ct) dm < (PG) fA f d/z.
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(b) If m(八0) = oo, then there exist xn e Ao (n = 1, 2, … ) such 

that limxn = oo.If = co for all n E N. Otherwise, there 

exists an n()such that g^(xno) < oo. In addition, g^(xn) > c^0 

implies 5^(°°) 之 시位). Hence

S[aioJm(Aio)] < S[^(oo),oo] = limS[g\(xn),xn] < (PG) [ f dfi 

J A

Hence we have (PG) f^° g\ dm < (PG) fA f dji. □
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