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THE PAN-GENERALIZED FUZZY INTEGRAL
OF A COMMUTATIVE ISOTONIC
. SEMIGROUP-VALUED FUNCTION

Ju HAN YooN, GwANG Sik EUN, AND BYEONG MOO LEE

ABSTRACT. In this paper, we introduce the pan-generalized fuzzy
integral of a commutative isotonic semigroup-valued function, which
is generalization of the (G) fuzzy integral and investigate the funda-
mental properties of this kind of fuzzy integral.

1. Introduction

In 1980, D.A. Ralescu and G. Adams generalized the concept of
fuzzy integral due to M. Sugeno[3]. For convenience, we will call it
(S) fuzzy integral. Following that, D.A. Ralescu and G. Adams [1]
and D.A. Ralescu [2] have investigated the basic properties of (S)
fuzzy integral. Wang Zhenyuen obtained a series of (S) fuzzy integral
convergent theorems in [4]. Meanwhile, Zhao Ruhuai introduced a
new definition of fuzzy integral, viz. (N) fuzzy integral in [7]. Wu
Congxin, Wang Shuli, and Ma Ming [5] introduced the (G) fuzzy
integral using a generalized triangular norm which is a generalization
of both (S) fuzzy integral and (N) fuzzy integral. In this paper, we
introduce the pan-generalized fuzzy integral of a commutative isotonic
semigroup-valued function, which is generalization of the (G) fuzzy
integral and investigate the fundamental properties of this kind of
fuzzy integral. |
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2. Preliminaries
DEFINITION 2.1. Let X be a nonempty set, A be a o-algebra of
a class of the subsets of X, the mapping p : A — [0,00] is called a
fuzzy measure provided
(1) (@) =0; |
(2) if A C B, then u(A) < u(B);
(3) if Ay C Ay C -+ C Ap C -+, Ap € A, then p(U, 4n) =
limy, 00 #(An);
(4) fA; DA D---DA, D+, A, € A, and there exists a nat-
ural number ng such that p(A4,,) < oo, then p((o, As) =
limy, 00 (An).

If i is a fuzzy measure, (X, A, p) is called a fuzzy measure space.

DEFINITION 2.2. Let (X, A, 1) be a fuzzy measure space, f : X —
[0, 0] is said to be A-measurable function if N,(f) € A for all o €
(—00,00), where No(f) = {z: f(z) > a}.

DEFINITION 2.3. A fuzzy measure is said to be null-additive if
u(AU B) = u(A) whenever A, B € A with u(B) = 0.

In this paper, let R, = [0, oo), R, =[0,0] and a, b, c, d, a;, b; €
R..

DEFINITION 2.4([8]). Let @ be a binary operation on R,. The

pair (R4, ®) is called a commutative isotonic semigroup and & is
- called a pan-addition on R, iff @ satisfies the following requirements:
(PAl) a®b=0q;

(PA2) (a®b)®c)=a® (b&c);

(PA3) a <b,thena®c < b c for any c;

(PA4) a®0=g;

’(PA5) if lim, ay, and limy, b, exist, then lim,(a, @ by, )exists,

and lim, (a, @ b,) = lim, a, ® lim, b,
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DEFINITION 2.5([8]). Let ® be a binary operation on R,. The
triple (R4, ®,®), where @ is a pan-addition on R, is called a com-

mutative isotonic semiring with respect to @ and ©, iff:

(PM1) a®b=0b0a;

(PM2) (a®@b)Oc=a0 (bOc);

(PM3) (a®bd)Oc=(a@c)® (bOc);

(PM4) ifa < b, then (a®c) < (bOc) for any c;

(PM5) a#0and b#0 < a® b # 0;

(PMS6) there exists e € R such that e ® a = a for any a € Ry;

(PM7) if limy, a,, and lim, b, exist and are finite, then lim,(a, ®
bp) = lim, a,, ® limy, by,.

The operation © is called a pan-multiplication on R, and the number

e is called the unit element of (R, ®,®).

NOTE 2.1. R, with the common addition and the common multi-

plication of real numbers is a commutative isotonic semiring.

NoOTE 2.2. R, with the logical addition and logical multiplication
of real numbers is commutative isotonic semiring.

If (X, A, u) is a fuzzy measure space and (R4, ®, ®) is a commuta-
tive semiring, (X, A, u, Ry, ®, ®) is called a pan-space and if E C X,

e ifzeFl

xe(@) = { 0 otherwise."

is called the pan-characteristic function of E, where e is the unit
element of (Ry,®,0®).

DEFINITION 2.6. Let (X, a,p, R,,®,®) be a pan-space. A func-
tion on X given by s(z) = ®F ,[a; ® Xk, () is called a pan-simple
measurable function, where a; € Ry, i = 1,2,---,n and {E;|i =

1,2,--- ,n} is a measurable partition of X.



176 JU HAN YOON, GWANG SIK EUN, AND BYEONG MOO LEE

3. Definition and fundamental properties of (PG) fuzzy in-
tegral

DEFINITION 3.1. Denote D = [0,00] x [0,00] \ {(0, o), (00, 0)}.
The mapping S : D — [0, 0o] is called a c-generalized triangular norm
provided that

(1) S[0,z] = 0 for all z € [0,00) and there exists an e € (0, 00]

such that S[z,e] = z for each z € [0, 00], e is called the unit
element of S; '
S[z,y] = Sy, z] for all (z,y) € D;
(3) S[a,b] < S[c,d] whenever a < ¢, b < d;
(4) if {(zn,yn)} C D, (z,y) € D, xp, = x, yn — ¥, then

~—~~
[\
N~—

Slan, yn] = Slz,y)-

NOTE 3.1. A generalized triangular norm ([8]) implies a c-generali-
zed triangular norm.

NoTE 3.2. Take Si[z,y] = min(z,y), S2(z,y] = k(zy)?, (k,p > 0)
and
0 if min(z,y) =0,
) S3[$, y] = . .
zy + k(zy)? if min(z,y) # 0 (k,p > 0)

then Si, So and S3 are c-generalized triangular norm.

DEFINITION 3.2. Let S be a c-generalized triangular norm and f
be a nonnegative measurable function, A € A. Then the (PG) fuzzy
integral of f on A is defined by

(PG)/Afdu = inf Qals)

where s = ®% ,a; © x4,y # o; (1 # j),os > 0, 4; € A(i =
1,2,---,n) and Qa(s) = sup;<;<, Slai, u(AN A;)]. Define sup{i : i €
@} =0.
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In what follows, (PG) [y f du will be denoted by (PG) [ f du. For
the notions and results on fuzzy measure and fuzzy measurable func-

tions refer to [8].

THEOREM 3.1. For (PG) fuzzy integral we have the following equi-

valent forms:

(PG) [ fdp=sup Slay (AN No(1))]
A a>0
= sup Sla, w(A 0 Na(f)]
= sup Slinf f(z), n(AN E)]
E€A,inf,cp f(z)>0 *€E
where NX(f) ={z: f(z) > o}

Proof. The above four expressions are denoted by (1),(2,),(3), and
(4) in proper order. Then we infer (1)< (4): For any E € A,
infzcg f(x) > 0, it is clear that inf,cg f(z) © xg < f. By Definition
3.2, we know

(PG) | fdu= sup Qa(s) > S[inf f(z), (4N E)
A 0<s<f zeE

Since F € A is arbitrary, hence

(PG) / fdu> s Slinf f(a),u(ANE)]
A E€A,infacp f(z)>0 €E

(4)>(3): By Ng(f) € A for any o > 0 and infyens (o) f > @, there-

fore we have

sup Slinf f(z),u(AN E)] > S[a, u(ANN(f)]
E€A,inf,cp f(z)>0 2€E

Since « is arbitrary, hence we have

sup S[inf f(z), u(AN E)] > sup S[e, u(AN Ny(f)]
E€A,infycp f(z)>0 *€E a>0
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(3)<(2):No(f) C NX(f) for any a > 0 and the monotonicity of fuzzy
measure u and c-generalized triangular norm, we infer that S{a, u(AN
NX(f)] = S[a, p(AN Nu(f)], thus we have

* sup Sla, u(AN NZ(f)] > sup Sle, w(A N Ne(f)]
a>0 a>0

(2)>(1): If (PG) [, f dp < oo, then for arbitrary e > 0, there exist

0<s<f,s=8@,0; ®xa, and ig such that

(PG)/Afdu < Qa(s)+ -‘;— = sup Sla;, p(AN A;)]+

1<i<n

N ™

= S[aio, ,U(A N Aio)] +

N ™

On the other hand, by the property of c-generalized triangular norm

we have

lim S[a;, — 1/n, (AN A;)] = Slai,, p(AN Ajp)]

n—o00

Therefore, there exists an ng with a;, — 1/n¢ > 0 such that

S[aio - l/n’ :U(Aﬂ Aio)] > S[aio?ﬂ(A N Aio)] -

N ™

Therefore we have

(PG) /A f dp < Slovg, (AN A)] + =

2
< Sloiy — 1/no, u(AN Ay)] + €
< S[aio - 1/no,g(Aﬂ Naio——l/no(f))] +e€

< sup Sla, W(AN N (f)] +¢
a>

Since € > 0 is arbitrary, this implies that sup,q S[a, p(ANNa(f))] >
(PG) [, fdu
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If (PG) [, f du = 0o, then for each M > 0, there exists 0 < s(M) <
f,sM) = @2 o; @ x4, such that Q4(s(M)) > M. Similar to the case
of (PG) [, fdu < oo, we infer that there exists an no such that

Slai, — 1/no, w(A N Ay)] > M. It follows that sup,so S[a, u(A N
No(f))] > S[a,u(AN A;)] > M. Since M > 0 is arbitrary, we
have sup,~q S, u(AN Ng(f))] = co. From the preceding proof, we
conclude the proof of this theorem. O

NoOTE 3.3. By the preceding theorem, it is easy to show that (S)
fuzzy integral, (N) fuzzy integral , and (G) fuzzy integral are special
kinds of (PG) fuzzy integral.

THEOREM 3.2. For (PG) fuzzy integral, we have

(1) if f1 < f2, then (PG) [, fidp < (PG) [, f2du;
(2) if Ay C Ay, then (PG) [, fdu < (PG) [, fdu;
(3) if u(A) =0, then (PG) [, fdu =0;
(4) (PG) [,fdu= (PG)[fOxady;
(5)

5) (PQG) [,cdu = S[c, u(A)] for any A € A and constant ¢ €

(
(0, 00);
(6) (PG) [y 1V f2du > (PG) [, fiduV (PG) [, f2du;
(1) (PG) [, f1 A fadp < (PG) [, frdu A (PG) [, f2du;
(8) (PG) [4(cV fdu= (PQG) [,cdun (PG) [, fdp for any con-

stant ¢ € (0,00).

Proof. The proof of (1),(2),(3),(6),and (7) is deduced directly from
Theorem 3.1. (4) By Theorem 3.1, we have
(PG) [ fdu = sup Sloy w(AN Na( )]

= sup S[a, p(No(f © xa))]
a>0 :

= (PG)/f ® x4 dp
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(5) Let f = c. For any a > 0, we have

X, a<c
g, a>c

Mo ={

Hence Theorem 3.1 gives that
(PG) [ fds = sup Sl u(AN Na( )] = e, ()]

(8) For any a > 0, we have

N _ X, a<c
AV D={ N ait

Hence Theorem 3.1 gives that

6) [ eV Hau= su Slay (AN Na(e v £)))]

0<a<c
V sup S[a, u(AN Ny(eV f))]]

a>c

= Sle, w(A)] v sup Sla, u(AN Na(f))]

In addition, sup, <. S[a, u(A N Na(f))] = supa<. Sla, u(A)]. There-

fore we have

(PG) /A (cV f)du= (PG) /A cdpV (PG) /A fdu

THEOREM 3.3. Let f, g be nonnegative measurable functions.
Then (PG) [ fdu = (PG) [ gdu whenever f = ga.e., if and only if
u is null-additive.

Proof. Sufficiency: Suppose that p is null-additive and f = ga.e.

Put B = {z; f(z) # g(z)}. Then u(B) = 0 and p(Na(g)) = p(Na(g)U
B). So we have p(Na(f)) < u(Na(g) U B) = p(Na(g)) for any a > 0.
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The converse inequality holds as well, we have pu(Ny(f)) = u(Na(g)).
By Theorem 3.1, we have that (PG) [ fdu = (PG) [ gdp.
Necessity: For any A € A, B € A with u(B) =0, if u(A) = oo, then
by the monotonicity of u, we have (AU B) = oo = u(A). Now, we
assume that p(A) < oo, define

e, t€ AUB e, T€A
= d =
/(=) {o, c¢ Aup 24 9@ {0, z¢ A

where e is the unit of S, then f = ga.e. So, by hypothesis, (PG) [ f du
= (PG) [ gdu. Therefore we have Sle,u(A U B)] = Sle, u(A)]. It
follows that u(AN B) = u(A). Hence p is null-additive. a

COROLLARY 3.1. If p is null-additive, then (PQG) [, fdu=
(PG) [, gdu whenever f = ga.e. on A.

Proof. If f =0a.e.on A, then fOxa = g®xB a.e. ;From Theorem
3.3 and Theorem 3.2(4), we get the conclusion. o

COROLLARY 3.2. If p is null-additive, then (PG) [, gfdu =
(PG) [, f du whenever A € A, B € A with u(B) = 0.

Proof. Since f ®xau = f®xa a.e., by Theorem 3.3 and Theorem
3.2(4), we get the conclusion. O

THEOREM 3.4. Let (X, A, ) be a fuzzy measure space and f be
nonnegative measurable function. Then for A € A,

#6) [ fau=P6) [~ aa(@am=(P6) [ g3(a)dm

where m is the Lebesgue measure, g4(a) = p(A N No(f)), g% () =
p(AN N (f));

Proof. Since g% () > g 4(04) for every a € (0, 00), it follows that

(PG) /0 ~ g (a) dm > (PG) /O ~ 4(0) am.
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In addition, g4(z) > ga(a) for every x € [0,a]. Therefore we have
[0,a] C {z:ga(z) > ga(a)}. It follows that

(PG) /A f du = sup Sla (AN Nal£)] = 519 S 9(a)]

a>0

< sup STm(Ny, o) (94)),94(a) < (PG) / " gal) dm

a>0

Hence we have (PG) [, fdu > (PG) [;° g4(f)d

In what follows, we will show that

#G) [ fam > (PG) / " ga(f) dm

If (PG) [ 4 fdu = oo or gj = 0a.e., then the inequality is trivial.
Suppose that there exists an Ag € A, A9 C A with g} (z) > 0 for
all z.€ Ap. For any pan-simple s = @;_;; ® x4, With 0 < s < g},
there exists an i such that S[aj,, m(A;,)] = sup;<;<, S[ai, m(4;)]-
In what follows, we conclude the proof in two cases.

(a) If m(A;,) < oo, denote 8 = sup{z : € A;,}, then m(4;,) < B.
For B < oo, there exists zy € A;, such that limz; = 3. For any € > 0,

there exists a kg such that
Slios 8] < Slavg, ] + ¢ < Slgi(an), il + ¢ < (PG) [ fa
for all £ > ko. Hence we have that
#6) [ aatam < (PG) [ fau
Wheﬁ B < oo, there exists a zg € A;, such thdt m(A;,) < ‘:ro. Since
(PG) | 1 du = sup Slor u(AN N ()] = sup Sla m(g5 ()]

Hence we have (PG) [7° g% (a) dm < (PG) [, f dp.
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(b) If m(4;,) = oo, then there exist z, € 4;, (n = 1,2,--+) such

that limz, = co.If g%(z,) = oo for all n € N. Otherwise, there

exists an ng such that g%(z,,) < oco. In addition, g% (z,) > a,

implies g% (00) > a;,. Hence

Slaie, m(As,)] < S[gia(00), 0] = lim S[g(2n), Tn] < (PG)[Ade

Hence we have (PG) [;° g% dm < (PG) [, f dp. a
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