JACOBI FIELDS AND CONJUGATE POINTS IN A COMPLETE RIEMANNIAN MANIFOLD

Dae Ho Cheoi and Tae Soo Kim

Abstract

In this paper, we investigate some properties of Jacobi fields and conjugate points in a complete Riemannian manifold M. Also we get a necessary and sufficient condition about a geodesic without conjugate points in the manifold with non-negative curvature.

1. Jacobi Fields on Space of Constant Curvature

In this paper, we shall make a survey of some relations between the two basic concepts, namely, geodesics and curvature. The curvature $K(p, \sigma)$, determines how fast geodesics, that start from p and arc tangent to σ, spread apart. In order to formalize precisely this velocity of variation of the geodesics, it is necessary to introduce the so called Jacobi fields.
M will denote a n-dimensional complete Riemannian manifold. We shall begin by making precise the idea of neighboring curves of a given curve. We are particularly interested in studying the behavior of the geodesics neighboring $\gamma:[0, a] \rightarrow M$, which start from $\gamma(0)$. Thus, we shall consider variation $h:[0, a] \times(-\epsilon, \epsilon) \rightarrow M$ that satisfy the condition $h(0, t)=\gamma(0)$ for all $t \in(-\epsilon, \epsilon)$. Therefore, the corresponding Jacobi field satisfies the condition $J(0)=0$. Now we are going to relate the rate of spreading of the geodesics that start from $p \in M$ with the curvature R at p.

Received by the editors on June 29, 1998.
Key words and phrases: Jacobi field, Conjugate points, Sectional curvature.

Now, let $e_{1}(0), \cdots, e_{n}(0)$ be unit orthogonal vectors at $p=\gamma(0) \in$ M and $e_{1}(s), \cdots, e_{n}(s)$ be the parallel transport of $e_{1}(0), \cdots, e_{n}(0)$, respectively, along the geodesic $\gamma(s)$ on M. Then we can write

$$
\begin{aligned}
J(s) & =\sum f_{i}(s) e_{i}(s) \\
a_{i j} & =<R\left(\gamma^{\prime}(s), e_{i}(s)\right) \gamma^{\prime}(s), e_{j}(s)>, \quad(i, j=1,2, \cdots, n) .
\end{aligned}
$$

Thus

$$
\begin{gathered}
\frac{D^{2} J(s)}{d s^{2}}=\sum f_{i}^{\prime \prime}(s) e_{i}(s), \\
R\left(\gamma^{\prime}, J\right) \gamma^{\prime}=\sum_{j}<R\left(\gamma^{\prime}, J\right) \gamma^{\prime}, e_{j}>e_{j}=\sum_{i, j} f_{i} a_{i j} e_{j} .
\end{gathered}
$$

Therefore, the Jacobi equation is equivalent to the system

$$
f_{j}^{\prime \prime}(s)+\sum_{i} a_{i j}(s) f_{i}(s)=0, \quad(j=1, \cdots, n)
$$

In this section, we obtain some informations on the behavior of geodesics neighboring a given geodesic $\gamma:[0, a] \rightarrow M$, and derive some results on M with constant sectional curvature K_{0}.

Now let $J(s)$ be a Jacobi field along $\left.\gamma(s),<J, \gamma^{\prime}\right\rangle=0$ and $\left|\gamma^{\prime}\right|=1$, then for all vector field W along γ we have

$$
\begin{aligned}
<R\left(\gamma^{\prime}, J\right) \gamma^{\prime}, J> & =K_{0}<\gamma^{\prime}, \gamma^{\prime}><J, W>-K_{0}<\gamma^{\prime}, J><\gamma^{\prime}, W> \\
& =K_{0}<J, W>
\end{aligned}
$$

Thus we have the following theorems.
Theorem 1.1. ([2], Theorem 3.1) We have

$$
J(s)= \begin{cases}\frac{1}{\sqrt{K_{0}}} \sin \left(s \sqrt{K_{0}}\right) w(s) & \text { for } K_{0}>0 \\ s w(s) & \text { for } K_{0}=0 \\ \frac{1}{\sqrt{-K_{0}}} \sinh \left(s \sqrt{-K_{0}}\right) w(s) & \text { for } K_{0}<0\end{cases}
$$

where $w(s)$ be a parallel vector field along a geodesic $\gamma(s)$ with $<$ $\gamma^{\prime}(s), w(s)>=0,\left|\gamma^{\prime}(s)\right|=1$, and $|w(s)|=1$.

Corollary 1.2. ([2], Corollary 3-2). For $K>0, K=0$, and $K<0$ we have, respectively,

$$
J(s)=\left\{\begin{array}{l}
{\left[a \cos \left(\sqrt{K_{0}}\left|\gamma^{\prime}(s)\right| s\right)+b \sin \left(\sqrt{K_{0}}\left|\gamma^{\prime}(s)\right| s\right)\right] w(s),} \\
(a+b s) w(s), \\
{\left[a \cosh \left(\sqrt{-K_{0}}\left|\gamma^{\prime}(s)\right| s\right)+b \sinh \left(\sqrt{-K_{0}}\left|\gamma^{\prime}(s)\right| s\right)\right] w(s)}
\end{array}\right.
$$

where $w(s)$ be a parallel field along a geodesic $\gamma(s)(\neq$ constant $)$ with $<\gamma^{\prime}(s), w(s)>=0$ and $|w(s)|=1$.

Corollary 1.3. ([2], Corollary 3-3). We have

$$
J(s)= \begin{cases}{\left[\frac{1}{\sqrt{K_{0}}} \sin \left(\sqrt{K_{0}}\left|\gamma^{\prime}(s)\right| s\right)\right] w(s)} & \text { for } K_{0}>0 \\ s w(s) & \text { for } K_{0}=0 \\ {\left[\frac{1}{\sqrt{-K_{0}}} \sinh \left(\sqrt{-K_{0}}\left|\gamma^{\prime}(s)\right| s\right)\right] w(s)} & \text { for } K_{0}<0\end{cases}
$$

Theorem 1.4. Let M be a Riemannian manifold with constant negative sectional curvature $K_{0}<0$. Let $\gamma:[0, a] \rightarrow M$ be a normalized geodesic, and let $v \in T_{\gamma(a)} M$ such that $\left.<v, \gamma^{\prime}(a)\right\rangle=0$ and $|v|=$ 1. Then the Jacobi field J along γ determined by $J(0)=0, J(a)=v$ is given by

$$
J(s)=\frac{\sinh \left(s \sqrt{-K_{0}}\right)}{\sinh \left(a \sqrt{-K_{0}}\right)} w(s)
$$

where $w(s)$ is the parallel transport along γ of the vector $w(0)=$ $\frac{u_{0}}{\left|u_{0}\right|}, u_{0}=\left(d \exp _{p}\right)_{a \gamma^{\prime}(0)}^{-1}(v)$, and where u_{0} is considered as a vector $T_{\gamma(0)} M$ by the identification $T_{\gamma(0)} M \approx T_{a \gamma^{\prime}(0)}\left(T_{\gamma(0)} M\right)$.

Proof. From Theorem 1.1, the Jacobi field J_{1} along γ satisfying $J_{1}(0)=0$ and $J_{1}^{\prime}(0)=w(0)=\frac{u_{0}}{\left|u_{0}\right|}$ is given by

$$
J_{1}(s)=\frac{\sinh s \sqrt{-K_{0}}}{\sqrt{-K_{0}}} w(s)
$$

and a Jacobi field J_{1} along γ with $J_{1}(0)=0$ is given by

$$
\begin{gathered}
J_{1}(a)=\left(d \exp _{p}\right)_{a \gamma^{\prime}(0)}(a w(0))=\frac{a}{\left|u_{0}\right|}\left(d \exp _{p}\right)_{a \gamma^{\prime}(0)}\left(u_{0}\right) \\
w(0)=J^{\prime}(0)
\end{gathered}
$$

Thus

$$
J(a)=v=\left(d \exp _{p}\right)_{a \gamma^{\prime}(0)}\left(u_{0}\right)=\frac{\left|u_{0}\right|}{a} J_{1}(a)
$$

or

$$
u_{0}=\left(d \exp _{p}\right)_{a \gamma^{\prime}(0)}^{-1}(v)
$$

Therefore

$$
J(s)=\frac{\left|u_{0}\right|}{a} J_{1}(s)=\frac{\left|u_{0}\right|}{a} \frac{\sinh s \sqrt{-K_{0}}}{\sqrt{-K_{0}}} w(s)
$$

On the other hand, since

$$
1=|v|=|J(a)|=\frac{\left|u_{0}\right|}{a} \frac{\sinh a \sqrt{-K_{0}}}{\sqrt{-K_{0}}}
$$

we obtain

$$
\frac{\left|u_{0}\right|}{a}=\frac{\sqrt{-K_{0}}}{\sinh a \sqrt{-K_{0}}}
$$

Therefore we have the desired result.

2. Conjugate Points of a Complete Riemannian Manifold.

Let $\gamma:[0, a] \rightarrow M$ be a geodesic starting from $\gamma(0)$. The point $\gamma\left(s_{0}\right), s_{0} \in(0, a]$, is called conjugate point of $\gamma(0)$ along γ if there exists a Jacobi field $J(s)$ which is not identically zero along γ with $J(0)=J\left(s_{0}\right)=0$, and we say that 0 and s_{0} are conjugate values along γ. If the dimension of M is n, there exist exactly n-linealy independent Jacobi fields along $\gamma:[0, a] \rightarrow M$, which is not zero at $\gamma(0)$. This follows from the fact that the Jacobi fields J_{1}, \cdots, J_{k} with
$J_{i}(0)=0$ are linearly independent if and only if $J_{0}^{\prime}(0), \cdots, J_{k}^{\prime}(0)$ are linearly independent. In addition, the Jacobi field $J(s)=s \gamma^{\prime}(s)$ never vanishes for $s \neq 0$. So we deduce that the multiplicity of a conjugate point never exceed $n-1$.

Let $\gamma:[0, a] \rightarrow M$ be a geodesic and Ω_{γ} denotes the set of all piecewise vector fields W along γ with $W(0)=W(a)=0$. Then we have a function $F: \Omega_{\gamma} \times \Omega_{\gamma} \rightarrow \mathbb{R}$ defined by

$$
F\left(W_{1}, W_{2}\right)=\int_{a}^{0}<W_{2}, \frac{D^{2} W_{1}}{d s^{2}}+R\left(\gamma^{\prime}, W_{1}\right) \gamma^{\prime}>d s-<W_{2}, \frac{D W_{1}}{d s}>
$$

Theorem 2.1. ([5], Theorem 8.6). Let $\gamma:[0, a] \rightarrow M$ be a geodesic with conjugate points. Then there is some $W \in \Omega_{\gamma}$ with $F(W, W)<0$.

Theorem 2.2. ([5], Proposition 8.9). Let $\gamma:[0, a] \rightarrow M$ be a geodesic without conjugate points. Then $F(W, W)>0$ for every nonzero $W \in \Omega_{\gamma}$.

Theorem 2.3. ([5], Proposition 8.11). If all sectional curvature of M are ≤ 0, then no two points of M are conjugate along any geodesic.

Proof. Let $p \in M$ and let $\gamma:[0, a] \rightarrow M$ be a geodesic of M with $\gamma(0)=p$. Assume that there exists a non-vanishing Jacobi field along $\gamma(s)$ with $J(0)=J(a)=0$. Then we have

$$
<J(s), \gamma^{\prime}(s)>=0 \quad \text { for all } \quad s \in[0, a] .
$$

On the other hand, since $K(p, \sigma) \leq 0$, we have

$$
\begin{aligned}
\frac{d}{d s}<\frac{D J}{d s}, J> & =<\frac{D^{2} J}{d s^{2}}, J>+\left\langle\frac{D J}{d s}, \frac{D J}{d s}>\right. \\
& =-K(p, \sigma)<J, J>+\left|\frac{D J}{d s}\right|^{2} \geq 0
\end{aligned}
$$

which means that $<\frac{D J}{d s}, J>$ is increasing.
Now if J vanishes at two points, $s=0$ and $s=a$, then $<\frac{D J}{d s}, J>=$ 0 at $s=0$ and $s=a$, so $<\frac{D J}{d s}, J>$ must be 0 on $[0, a]$.

Finally, since $\frac{d}{d s}<J, J>=<\frac{D J}{d s}, J>=0$, we have $<J, J>=$ constant. Remembering the initial condition $J(0)=0$, we have

$$
|J(s)|=0 \quad \text { for all } \quad s \in[0, a]
$$

This contradicts to the hypothesis. Therefore M with $K \leq 0$ does not have conjugate points.

REmark. Corollary 1.3 shows that a geodesic γ on a space of constant curvature $K_{0} \leq 0$ has no conjugate point. If $K_{0}>0$, then there are conjugate points at precisely $s=\frac{n \pi}{\sqrt{K_{0}}}\left|\gamma^{\prime}\right|, n=1,2, \cdots$. Hence there are no conjugate points if $L(\gamma:[0, a] \rightarrow M)=\left|\gamma^{\prime}(s)\right|<\frac{\pi}{\sqrt{K_{0}}}$, whereas for $L(\gamma:[0, a] \rightarrow M)=\left|\gamma^{\prime}(s)\right| \geq \frac{\pi}{\sqrt{K_{0}}}$, there are conjugate points.

THEOREM 2.4. Let M be a complete surface with non-negative curvature. A necessary and sufficient condition that a geodesic γ : $[0, a] \rightarrow M$ has no conjugate points is

$$
<J^{\prime}, J^{\prime}>\geq<R\left(\gamma^{\prime}, J\right) \gamma^{\prime}, J>
$$

Proof. Suppose there exists a Jacobi field J along γ, not identically zero, with $J(0)=0=J\left(s_{0}\right), s \in(0, a]$, and suppose $<J^{\prime}, J^{\prime}>-<$ $R\left(\gamma^{\prime}, J\right) \gamma^{\prime}, J>\geq 0$. Let $f:[0, a] \rightarrow<J(s), J(s)>$, then

$$
\begin{aligned}
f^{\prime} & =2<J^{\prime}, J>(s) \\
f^{\prime \prime} & =2\left(<J^{\prime}, J^{\prime}>+<J^{\prime \prime}, J>\right)(s) \\
& =2\left(<J^{\prime}, J^{\prime}>-<R\left(\gamma^{\prime}, J\right) \gamma^{\prime}, J>\right)(s) \geq 0
\end{aligned}
$$

Thus we have $f(s) \leq 0$ for $s \in\left[0, s_{0}\right]$, which is contradict the hypothesis. Therefore $\gamma(s)$ has no conjugate points.

To prove the converse, suppose now that $\gamma(0)=p$ and there exists a Jacobi field satisfying

$$
<J_{0}^{\prime}, J_{0}^{\prime}>\left(s_{0}\right) \ll R\left(\gamma^{\prime}, J_{0}\right) \gamma^{\prime}, J_{0}>\left(s_{0}\right), \quad s_{0} \in(0, a] .
$$

Then, there are two number s_{1} and s_{2} satisfying

$$
\begin{gathered}
<J_{0}^{\prime}, J_{0}^{\prime}>(s)-<R\left(\gamma^{\prime \prime}, J_{0}\right) \gamma^{\prime}, J_{0}>(s)<0 \text { for all } s \in\left[s_{1}, s_{2}\right] . \\
\left.I\left(J_{0}, J_{0}\right)\right|_{\left[s_{1}, s_{2}\right]}=\int_{s_{1}}^{s_{2}}\left(<J_{0}^{\prime}, J_{0}^{\prime}>-<R\left(\gamma^{\prime}, J_{0}\right) \gamma^{\prime}, J_{0}>\right)(s) d t<0 .
\end{gathered}
$$

Now put, for any $\epsilon>0$,

$$
W_{\epsilon}= \begin{cases}J_{-\epsilon} & \text { for } s \in\left[s_{1}-\epsilon, s_{1}\right] \\ J_{0} & \text { for } s \in\left[s_{1}, s_{2}\right] \\ J_{+\epsilon} & \text { for } s \in\left[s_{2}, s_{2}+\epsilon\right]\end{cases}
$$

Then we have

$$
\begin{aligned}
& J_{-\epsilon}\left(s_{1}-\epsilon\right)=0, \\
& J_{-\epsilon}\left(s_{1}\right)=J_{0}\left(s_{1}\right), \\
& J_{+\epsilon}\left(s_{2}\right)=J_{0}\left(s_{2}\right), \\
& J_{+\epsilon}\left(s_{1}+\epsilon\right)=0 .
\end{aligned}
$$

Since $J_{-\epsilon}$ and $J_{+\epsilon}$ are unique, $s_{1}-\epsilon$ and $s_{2}+\epsilon$ are not conjugate values along γ. Therefore, since γ has no conjugate points, we obtain

$$
\begin{aligned}
0 & \leq\left. I\left(W_{\epsilon}, W_{\epsilon}\right)\right|_{\left[s_{1}-\epsilon, s_{2}+\epsilon\right]} \\
& =\left.I\left(J_{-\epsilon}, J_{-\epsilon}\right)\right|_{\left[s_{1}-\epsilon, s_{1}\right]}+\left.I\left(J_{0}, J_{0}\right)\right|_{\left[s_{1}, s_{2}\right]}+\left.I\left(J_{+\epsilon}, J_{+\epsilon}\right)\right|_{\left[s_{2}, s_{2}+\epsilon\right]} \\
& =<J_{\epsilon}^{\prime}, J_{-\epsilon}>\left(s_{1}\right)+I<J_{0}, J_{0}>\left.\right|_{\left[s_{1}, s_{2}\right]}-<J_{+\epsilon}^{\prime}, J_{+\epsilon}>\left(s_{2}\right) .
\end{aligned}
$$

As $a \rightarrow \infty$ we have

$$
<J_{-\epsilon}^{\prime}, J_{-\epsilon}>\left(s_{1}\right) \rightarrow 0, \quad<J_{+\epsilon}^{\prime}, J_{+\epsilon}>\left(s_{2}\right) \rightarrow 0
$$

Thus

$$
0 \leq\left. I\left(J_{0}, J_{0}\right)\right|_{\left[s_{1}, s_{2}\right]}=\int_{s_{1}}^{s_{2}}\left(<J_{0}^{\prime}, J_{0}^{\prime}>-<R\left(\gamma^{\prime}, J_{0}\right) \gamma^{\prime}, J_{0}>\right)(s) d s
$$

which contradicts the condition.

References

1. M.P. do Carmo, Riemannian Geometry, Birkhauser, 1992.
2. D.H.Cheoi and T.S.Kim, Jacobi fields on the space of constant curvature, Bulletin of the N.S. 8 (1997).
3. Keun Park, Jacobi fields and conjugate points on Heisenberg group, Bulletin of the Korean Math. Soc. 35(1) (1998).
4. S. Kobayashi and K. Namizu, Foundations of Differential Geometry, vol. 2, Interscience Publishers, 1969.
5. M. Spivak, Comprehensive Introduction to Differential Geometry, vol. 4, Publish or Perish, 1979.
6. D. Gromoll and W. Meyer, On complete open manifolds of positive curvature, Ann. of Math 90 (1969).
7. J. Cheeger and D. Gromoll, On the structure of complete manifolds of nonnegative curvature, Ann. of Math 96 (1972).

Department of Mathematics
Chungbuk National University
Cheonguu 361-763, Korea

