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JACOBI FIELDS AND CONJUGATE POINTS 
IN A COMPLETE RIEMANNIAN MANIFOLD

Dae Ho Cheoi and Tae Soo Kim

ABSTRACT. In this paper, we investigate some properties of Jacobi 
fields and conjugate points in a complete Riemannian manifold M. 
Also we get a necessary and sufficient condition about a geodesic 
without conjugate points in the manifold with non-negative curva
ture.

1. Jacobi Fields on Space of Constant Curvature
In this paper, we shall make a survey of some relations between the 

two basic concepts, namely, geodesics and curvature. The curvature 
/C(p, cr), determines how fast geodesics, that start from p and arc 
tangent to cr, spread apart. In order to formalize precisely this velocity 
of variation of the geodesics, it is necessary to introduce the so called 
Jacobi fields.

M will denote a n-dimensional complete Riemannian manifold. We 
shall begin by making precise the idea of neighboring curves of a given 
curve. We are particularly interested in studying the behavior of the 
geodesics neighboring 7 : [0, a] -今 M, which start from 7(0). Thus, 
we shall consider variation h : [0, a] x (—c, e) —> M that satisfy the 
condition /z(0, i) = 7(0) for all t 6 (—e, e). Therefore, the correspond
ing Jacobi field satisfies the condition J『(0) = 0. Now we are going to 
relate the rate of spreading of the geodesics that start from p E M 
with the curvature R at p.
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Now, let ei(0), … , en(0) be unit orthogonal vectors at p = 7(0) G 
M and ei(s), … , en(s) be the parallel transport of ei(0), … , en(0), 
respectively, along the geodesic 7(5) on M. Then we can write

J(s) = 으) fi(s)ei(s)

(〕旧 =< 7?(7'(昌)=(昌))7'(h), 句•(日)〉, (j,j = 1, 2, 우 ,n).

Thus
으>〉= Ew)w),

足(7', 刀7' = E<」R(7',<7)7', 句 > ej = 스 스 fiCLijCj. 
j i,j

Therefore, the Jacobi equation is equivalent to the system

+ 흐(5)= °’ 0* = 그… ’n)-

In this section, we obtain some informations on the behavior of 
geodesics neighboring a given geodesic 7 : [0, a] —今 M, and derive 
some results on M with constant sectional curvature Kq.

Now let J(5)be a Jacobi field along 7(5), < J, 7' >= 0 and \yf\ = 1, 
then for all vector field W along 7 we have

< R(日, J)Y, J > = 2G)< ?', 7' >< J, W > -Kq < 7', J >< 7', W > 

= K0<J,W>.

Thus we have the following theorems.

Theorem 1.1. ([2], Theorem 3.1) We have 

sw(s)

in(sy/Ao)w(s)

j(s) =

sinh(5x/-Ko)w(昌)

for Kq > 0,

for Kq = 0,

for Kq < 0,

where w(s) be a parallel vector field along a geodesic 7(5) with < 
y(s), w(s) >= 0, |V(5)| = 1, and |w(s)| = 1.



JACOBI FIELDS AND CONJUGATE POINTS 145

Corollary 1.2. ([2], Corollary 3-2). For K > Q,K = 0, and 
K < 0 we have, respectively,

( [ac<W/^|7'(W) + 6sin(v〈而7'(昌) WW),

J(s) = 수 (a + bs)w(日),

[ [a co안i( \/—互01?'(昌) |昌) + bsinh(\/—JColY(昌) k)]w(昌).

where w(s) be a parallel field along a geodesic 7(s) 냐=■ constant) with 
< y(s), w(5)>= 0 and |w(5)| = 1.

Corollary 1.3. ([2], Corollary 3-3). We have

sin(vZ히7'(s)p)]w(5) for Kq > 0,

J(s) = sw(s)
[丁느 sinh(V=|W)|S)]W)

for Kq = 0,

for Kq < 0.

Theorem 1.4. Let M be a Riemannian manifold with constant 
negative sectional curvature Kq < 0. Let 7 : [0, a] — M be a normal
ized geodesic, and let v e such that < v,y(a) >= 0 and |씨 = 

1. Then the Jacobi field J along 7 determined by J(0) = 0, J (a) = v 
is given by

= sinh(sy^o)
⑶ 느 (이’

where w(s) is the parallel transport along 7 of the vector w(0) = 
j끊pW = (서으印忌乂⑴⑵)，하1己 where uq is considered as a vector 
7}(o)M by the identification 2}(0)M = 7三7/(0)(7스(0)71么).

Proof, From Theorem 1.1, the Jacobi field J± along 7 satisfying 
才1(0) = 0 and J{(0) = w(0) =『휴 is given by

sinh sy/—KQ f x 
—w(s) J1（S）= 4而
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and a Jacobi field J「i along 7 with Ji(0) = 0 is given by

Ji(cz) = (dexpp)ay(o)(aw(O)) = 心 (dexj幼)(())(*),

w(0) = J'(0).

Thus
c7((Z)= V = ((九XJ)p)ay(0)(Uo) = •네』「1((丄) ,

以 0 = (c?expp)；$(o)(t;).

Therefore

J(S) = 쁜171(S)= a|^o| sinh55/三延

On the other hand, since

1=1씨=1 j(Q)1=1으으1 으11111
a v-Ko

we obtain
Iwl _ a/—Xq 

a sinh a시-—K令

Therefore we have the desired result. □

2. Conjugate Points of a Complete Riemannian Manifold.
Let 7 : [0, a] —> M be a geodesic starting from 7(0). The point 

7(so), sq e (0,a], is called conjugate point of 7(0) along 7 if there 
exists a Jacobi field J(s) which is not identically zero along 7 with 
J(0) = J(so) = 0, and we say that 0 and sq are conjugate values 
along 7. If the dimension of M is n, there exist exactly n—linealy 
independent Jacobi fields along 7 : [0, cz] —> M, which is not zero at 
7(0). This follows from the fact that the Jacobi fields Ji, … , Jk with 
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Ji(0) = 0 are linearly independent if and only if 애(0), … , <7；(0) are 
linearly independent. In addition, the Jacobi field J(s) = syf(s) never 
vanishes for 5 쿠： 0. So we deduce that the multiplicity of a conjugate 
point never exceed n — 1.

Let 7 : [0, a] —今 M be a geodesic and Q7 denotes the set of all 
piecewise vector fields W along 7 with VF(0) == W{d) = 0. Then we 
have a function F : x Q7 R defined by

f° D2WaF(WuW2) = J <0,-쥬스 R(日, Mh' > ds— < W2, 씌어 > .

Theorem 2.1. ([5], Theorem 8.6). Let 7 : [0,a] —> M be a 
geodesic with conjugate points. Then there is some VF e Q7 with 
F(W, W) < 0.

Theorem 2.2. ([5], Proposition 8.9). Let 7 : [O,cz] M be a 
geodesic without conjugate points. Then F(W^ W) > 0 for every non
zero W E Q7.

Theorem 2.3. ([5], Proposition 8.11). If all sectional curvature of 
M are < 0, then no two points of M are conjugate along any geodesic.

Proof. Let p e M and let 7 : [0, a] —今 M be a geodesic of M with 
7(0) = p. Assume that there exists a non-vanishing Jacobi field along 
7(s) with J(0) = J(a) = 0. Then we have

< J(s)/y'(s) >= 0 for all s e [0,a].

On the other hand, since K(p, cr) < 0, we have

d DJ T D2J T DJ DJ— <厂 --  / 斗 — 느* --- / 三> 뉴4—   ——삐 '丄
ds ds ’ ds2 ’ ds ’ ds

n j
= (P?0‘) < > 뉘“7—|2 之 o,

as 
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which means that < gg, J『 > is increasing.
Now if J vanishes at two points, 3 = 0 and s = a, then < 을%, J >= 

0 at 5 = 0 and 昌 = a, so < g으, J > must be 0 on [0, a].
Finally, since < J, J >=< 블}, J >= 0, we have < J,J >= 

constant. Remembering the initial condition J(0) = 0, we have

|J(s)| = 0 for all s G [0,a].

This contradicts to the hypothesis. Therefore M with K < Q does 
not have conjugate points. □

Remark. Corollary 1.3 shows that a geodesic 7 on a space of constant 
curvature Kq < 0 has no conjugate point. If Ko > 0, then there are 
conjugate points at precisely s = n = 1, 2, • • •. Hence there
are no conjugate points if £(7 : [0, a] —> M) = |Y(s)| < 즈휴, whereas 
for」L(7 : [0, a] —> M) = py'(5)| > -프차 there are conjugate points.

Theorem 2.4. Let M be a complete surface with non-negative 
curvature. A necessary and sufficient condition that a geodesic 7 : 
[0, a] —> M has no conjugate points is

< j)y, j >.

Proof. Suppose there exists a Jacobi field J along 7, not identically 
zero, with J(0) = 0 = J(so)，昌 E (0, a], and suppose < J', J7 > — < 
R{(Y, J)y, J > > 0. Let f : [0, 이 -스K J(s), J(s) >, then

/' = 2< J',J> (s),

f" = 2(< Jf, J' > + < J", J >)(5)

= 2(< jf >-< j)y, j >)(5)> 0.

Thus we have /(5)< 0 for s e [0, 如], which is contradict the hypoth
esis. Therefore 7(5) has no conjugate points.
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To prove the converse, suppose now that 7（0） = p and there exists 
a Jacobi field satisfying

< 心, 心 > （s0） < </?（?', Joh'M > （知）, A）€（0,a].

Then, there are two number si and 幼 satisfying

<《사） > （s）— < 7?（y, Jo）?'』> （昌） < o for all5 e [幻우].

I（^0? ’A））|[s!,s2] = [ （느 J* 느 — <： -R（7\ <A））7，? 느）（、分）dt < 0.
J 81

Now put, for any e > 0,

{
J-e for 5 e [si — 6, 幻],

Jo for s e [5i,s2],
J+e for s € [物, 昌2 十 己

Then we have
J-』— — €）= 0, 

J『—€（旨 1） = «A）（ 昌].）5 

J+€（S2） = e/o（呂 2）, 

«7_|_€（匕1 + €）= 0.
Since J_e and J十e are unique, s± — e and + e are not conjugate 
values along 7. Therefore, since 7 has no conjugate points, we obtain

0 으 /（比, WQ|[S1_€,S2+€]

= I （J-a 才-€）|[si—€,S1] 十 丁 （<A）, eZo）|[si,S2] 十 ☆『•+•€）l[s2,S2+e] 

= < J：, J-e >（51） + / < J（…A） > h>i,s2]— 느 리€’ 丄+€ > （呂2）.

As a —> oo we have

< J'_타 J—e > （^1） —> 0, < J|_e, J-f-c > （昌2）—今 0.

Thus
0 드 I（tZo?』『0）|[si,s2] = [ （< Jqj Jq > — < R（Y> 才0）7'? Jo >）（5）c?5, 

J si
which contradicts the condition. □
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